Digitala Vetenskapliga Arkivet

Endre søk
Begrens søket
1 - 15 of 15
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Donzel-Gargand, Olivier
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Larsson, Fredrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Törndahl, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Stolt, Lars
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik. Solibro Research AB, Vallvägen 5, Uppsala,Sweden.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Secondary phase formation and surface modification from a high dose KF-post deposition treatment of (Ag,Cu)(In,Ga)Se-2 solar cell absorbers2019Inngår i: Progress in Photovoltaics, ISSN 1062-7995, E-ISSN 1099-159X, Vol. 27, nr 3, s. 220-228Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this study, we assessed the potential of KF-post deposition treatment (PDT) performed on a silver-alloyed Cu (In,Ga)Se-2 (ACIGS) solar absorber. ACIGS absorbers with Ag/Ag + Cu ratio (Ag/I) close to 20% were co-evaporated on a Mo-coated glass substrate and exposed to in-situ KF-PDT of various intensities. The current-voltage characteristics indicated that an optimized PDT can be beneficial, increasing in our study the median V-oc and efficiency values by +48 mV and + 0.9%(abs) (from 728 mV and 16.1% efficiency measured for the sample without PDT), respectively. However, an increased KF-flux during PDT resulted in a net deterioration of the performance leading to median V-oc and efficiency values as low as 503 mV and 4.7%. The chemical composition analysis showed that while the reference absorber without any post deposition treatment (PDT) was homogeneous, the KF-PDT induced a clear change within the first 10 nm from the surface. Here, the surface layer composition was richer in K and In with an increased Ag/I ratio, and its thickness seemed to follow the KF exposure intensity. Additionally, high-dose KF-PDT resulted in substantial formation of secondary phases for the ACIGS. The secondary phase precipitates were also richer in Ag, K, and In, and electron and X-ray diffraction data match with the monoclinic C 1 2/c 1 space group adopted by the Ag-alloyed KInSe2 phase. It could not be concluded whether the performance loss for the solar cell devices originated from the thicker surface layer or the presence of secondary phases, or both for the high-dose KF-PDT sample.

  • 2.
    Donzel-Gargand, Olivier
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Larsson, Fredrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Törndahl, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Stolt, Lars
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik. Solibro Research AB.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Surface Modification And Secondary Phase Formation From a High Dose KF-Post Deposition Treatment of (Ag,Cu)(In,Ga)Se2 Solar Cell AbsorbersInngår i: Progress in Photovoltaics, ISSN 1062-7995, E-ISSN 1099-159XArtikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this study we assessed the potential of KF-Post Deposition Treatment (PDT) performed on a silver-alloyed Cu(Inx,Ga1-x)Se2 (ACIGS) solar absorber. ACIGS absorbers with Ag/Ag+Cu ratio (Ag/I) close to 20% were co-evaporated on a Mo-coated glass substrate and exposed to in-situ KF-PDT of various intensities. The current-voltage characteristics indicated that an optimized PDT can be beneficial, increasing in our study the median Voc and efficiency values by +48 mV and +0.9 %abs (from 728 mV and 16.1 % efficiency measured for the sample without PDT), respectively. However, an increased KF-flux during PDT resulted in a net deterioration of the performance leading to median Voc and efficiency values as low as 503 mV and 4.7 %. The chemical composition analysis showed that while the reference absorber without any PDT was homogeneous, the KF-PDT induced a clear change within the first 10 nm from the surface. Here, the surface layer composition was richer in K and In with an increased Ag/I ratio, and its thickness seemed to follow the KF exposure intensity. Additionally, high-dose KF-PDT resulted in substantial formation of secondary phases for the ACIGS. The secondary phase precipitates were also richer in Ag, K and In, and Electron and X-ray diffraction data match with the monoclinic C 1 2/c 1 space group adopted by the Ag-alloyed KInSe2 (AKIS) phase. It could not be concluded whether the performance loss for the solar cell devices originated from the thicker surface layer or the presence of secondary phases, or both for the high-dose KF-PDT sample.

  • 3.
    Donzel-Gargand, Olivier
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Thersleff, T.
    Stockholm University, Department of Materials and Environmental Chemistry 106 91 Stockholm.
    Keller, Jan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Törndahl, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Larsson, Fredrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Wallin, E.
    Solibro Research AB, Vallvägen 5, Uppsala, Sweden.
    Stolt, Lars
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik. Solibro Research AB, Vallvägen 5, Uppsala, Sweden.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Cu-depleted patches induced by presence of K during growth of CIGS absorbers2017Konferansepaper (Fagfellevurdert)
    Abstract [en]

    The conversion efficiency of the CIGS thin film solar cells has rapidly increased since introduction of the heavier alkali-doping (K, Rb, Cs). While the exclusive introduction of Na in the CIGS films has led to efficiencies up to 20,4% 1, the latest K, Rb or Cs post deposition treatments (PDT) have increased the efficiency to 22,6% 2. The exact role of this heavy-alkali PDT is still under discussion but three explanations have been discussed in the literature. First, that the heavy alkali PDT facilitates CdCu substitution, that results in an enhanced absorber type inversion, moving the p-n junction further into the CIGS bulk 3. Second, that the main effect from heavy alkali PDT is due to the formation of a K-In-Se2 layer, that passivates defects at the CIGS surface, reducing interface recombination 4. And third, that the heavy alkali PDT induces a Cu depletion at the surface of the CIGS which, by increasing the local Fermi level, increases the band bending; thus creating a higher potential barrier for holes to recombine 5.

    Fulltekst (pdf)
    fulltext
  • 4.
    Donzel-Gargand, Olivier
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Thersleff, Thomas
    Stockholms Univ, Nat Skapliga Fak, Inst Mat & Miljokemi, Stockholm.
    Keller, Jan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Törndahl, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Larsson, Fredrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Wallin, Erik
    Solibro Research AB, Uppsala, Sweden.
    Stolt, Lars
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik. Solibro Research AB, Uppsala, Sweden.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Deep surface Cu depletion induced by K in high-efficiency Cu(In,Ga)Se2 solar cell absorbers2018Inngår i: Progress in Photovoltaics, ISSN 1062-7995, E-ISSN 1099-159X, Vol. 26, nr 9, s. 730-739Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this work, we used K‐rich glass substrates to provide potassium during the coevaporation of Cu(In,Ga)Se2 (CIGS) absorber layers. Subsequently, we applied a postdeposition treatment (PDT) using KF or RbF to some of the grown absorbers. It was found that the presence of K during the growth of the CIGS layer led to cell effi- ciencies beyond 17%, and the addition of a PDT pushed it beyond 18%. The major finding of this work is the observation of discontinuous 100‐ to 200‐nm‐deep Cu‐ depleted patches in the vicinity of the CdS buffer layer, correlated with the presence of K during the growth of the absorber layer. The PDT had no influence on the forma- tion of these patches. A second finding concerns the composition of the Cu‐depleted areas, where an anticorrelation between Cu and both In and K was measured using scanning transmission electron microscopy. Furthermore, a steeper Ga/(In+Ga) ratio gradient was measured for the absorbers grown with the presence of K, suggesting that K hinders the group III element interdiffusion. Finally, no Cd in‐diffusion to the CIGS layer could be detected. This indicates that if CdCu substitution occurs, either their concentration is below our instrumental detection limit or its presence is contained within the first 6 nm from the CdS/CIGS interface.

    Fulltekst (pdf)
    fulltext
  • 5.
    Ericson, Tove
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Larsson, Fredrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Törndahl, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Frisk, Christopher
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Larsen, Jes
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Kosyak, Volodymyr
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Hägglund, Carl
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Li, Shuyi
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Platzer Björkman, Charlotte
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Zinc-Tin-Oxide Buffer Layer and Low Temperature Post Annealing Resulting in a 9.0% Efficient Cd-Free Cu2ZnSnS4 Solar Cell2017Inngår i: Solar RRL, ISSN 2367-198X, Vol. 1, nr 5, artikkel-id 1700001Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Zn1−xSnxOy (ZTO) has yielded promising results as a buffer material for the full sulfur Cu2ZnSnS4 (CZTS), with efficiencies continuously surpassing its CdS-references. ZTO can be deposited by atomic layer deposition (ALD), enabling tuning of the conduction band position through the choice of metal ratio or deposition temperature. Thus, an optimization of the conduction band alignment between ZTO and CZTS can be achieved. The ZTO bandgap is generally larger than that of CdS and can therefore yield higher currents due to reduced losses in the short wavelength region. Another advantage is the possibility to omit the toxic Cd. In this study, the ALD process temperature was varied from 105 to 165 °C. Current-blocked devices were obtained at 105 °C, while the highest open-circuit voltage and device efficiency was achieved for 145 °C. The highest fill factor was seen at 165 °C. The best efficiency reached in this study was 9.0%, which, to our knowledge, is the highest efficiency reported for Cd-free full-sulfur CZTS. We also show that the effect of heat needs to be taken into account. The results indicate that part of the device improvement comes from heating the absorber, but that the benefit of using a ZTO-buffer is clear.

    Fulltekst (pdf)
    fulltext
    Download (pdf)
    Supporting information
  • 6.
    Hultqvist, Adam
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Aitola, Kerttu
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Fysikalisk kemi.
    Sveinbjörnsson, Kári
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Fysikalisk kemi.
    Saki, Zahra
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Fysikalisk kemi. Sharif Univ Technol, Tehran, Iran.
    Larsson, Fredrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Törndahl, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Johansson, Erik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Fysikalisk kemi.
    Boschloo, Gerrit
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Fysikalisk kemi.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Atomic Layer Deposition of Electron Selective SnOx and ZnO Films on Mixed Halide Perovskite: Compatibility and Performance2017Inngår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 9, nr 35, s. 29707-29716Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The compatibility of atomic layer deposition directly onto the mixed halide perovskite formamidinium lead iodide:methylammonium lead bromide (CH(NH2)(2), CH3NH3)Pb(I,Br)(3) (FAPbI(3):MAPbBr(3)) perovskite films is investigated by exposing the perovskite films to the full or partial atomic layer deposition processes for the electron selective layer candidates ZnO and SnOx. Exposing the samples to the heat, the vacuum, and even the counter reactant of H2O of the atomic layer deposition processes does not appear to alter the perovskite films in terms of crystallinity, but the choice of metal precursor is found to be critical. The Zn precursor Zn(C2H5)(2) either by itself or in combination with H2O during the ZnO atomic layer deposition (ALD) process is found to enhance the decomposition of the bulk of the perovskite film into PbI2 without even forming ZnO. In contrast, the Sn precursor Sn(N(CH3)(2))(4) does not seem to degrade the bulk of the perovskite film, and conformal SnOx films can successfully be grown on top of it using atomic layer deposition. Using this SnOx film as the electron selective layer in inverted perovskite solar cells results in a lower power conversion efficiency of 3.4% than the 8.4% for the reference devices using phenyl-C-70-butyric acid methyl ester. However, the devices with SnOx show strong hysteresis and can be pushed to an efficiency of 7.8% after biasing treatments. Still, these cells lacks both open circuit voltage and fill factor compared to the references, especially when thicker SnOx films are used. Upon further investigation, a possible cause of these losses could be that the perovskite/SnOx interface is not ideal and more specifically found to be rich in Sn, O, and halides, which is probably a result of the nucleation during the SnOx growth and which might introduce barriers or alter the band alignment for the transport of charge carriers.

  • 7.
    Larsen, Jes K
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Larsson, Fredrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Törndahl, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Saini, Nishant
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Riekehr, Lars
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Ren, Yi
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik. Midsummer AB, Elect Hojden 6, S-17543 Jarfalla, Sweden.
    Biswal, Adyasha
    KIT, Inst Photon Sci & Synchrotron Radiat IPS, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany;KIT, Inst Chem Technol & Polymer Chem ITCP, Engesserstr 18-20, D-76128 Karlsruhe, Germany.
    Hauschild, Dirk
    KIT, Inst Photon Sci & Synchrotron Radiat IPS, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany;KIT, Inst Chem Technol & Polymer Chem ITCP, Engesserstr 18-20, D-76128 Karlsruhe, Germany.
    Weinhardt, Lothar
    KIT, Inst Photon Sci & Synchrotron Radiat IPS, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany;KIT, Inst Chem Technol & Polymer Chem ITCP, Engesserstr 18-20, D-76128 Karlsruhe, Germany;Univ Nevada, Dept Chem & Biochem, Las Vegas UNLV, 4505 Maryland Pkwy, Las Vegas, NV 89154 USA.
    Heske, Clemens
    KIT, Inst Photon Sci & Synchrotron Radiat IPS, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany;KIT, Inst Chem Technol & Polymer Chem ITCP, Engesserstr 18-20, D-76128 Karlsruhe, Germany;Univ Nevada, Dept Chem & Biochem, Las Vegas UNLV, 4505 Maryland Pkwy, Las Vegas, NV 89154 USA.
    Platzer Björkman, Charlotte
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Cadmium Free Cu2ZnSnS4 Solar Cells with 9.7% Efficiency2019Inngår i: Advanced Energy Material, ISSN 1614-6832, Vol. 9, nr 21, artikkel-id 1900439Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Cu2ZnSnS4(CZTS) thin-film solar cell absorbers with different bandgaps can be produced by parameter variation during thermal treatments. Here, the effects of varied annealing time in a sulfur atmosphere and an ordering treatment of the absorber are compared. Chemical changes in the surface due to ordering are examined, and a downshift of the valence band edge is observed. With the goal to obtain different band alignments, these CZTS absorbers are combined with Zn1−xSnxOy (ZTO) or CdS buffer layers to produce complete devices. A high open circuit voltage of 809 mV is obtained for an ordered CZTS absorber with CdS buffer layer, while a 9.7% device is obtained utilizing a Cd free ZTO buffer layer. The best performing devices are produced with a very rapid 1 min sulfurization, resulting in very small grains.

    Fulltekst (pdf)
    fulltext
  • 8.
    Larsson, Fredrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Atomic Layer Deposition of amorphous Tin-Gallium Oxide for applications in thin film solar cells2018Konferansepaper (Fagfellevurdert)
  • 9.
    Larsson, Fredrik
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Donzel-Gargand, Olivier
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Keller, Jan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Törndahl, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Atomic layer deposition of Zn(O,S) buffer layers for Cu(In,Ga)Se-2 solar cells with KF post-deposition treatment2018Inngår i: Solar Energy Materials and Solar Cells, ISSN 0927-0248, E-ISSN 1879-3398, Vol. 183, s. 8-15Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We investigate the possibility to combine Zn(O,S) buffer layers grown by atomic layer deposition (ALD) with KF post-deposition treated Cu(In,Ga)Se-2 (CIGS-KF) in solar cells. It is shown that the beneficial effect on open-circuit voltage from the post-deposition treatment is essentially independent of buffer layer material. However, a wet chemical surface treatment is required prior to ALD in order to achieve competitive fill factor values. A water rinse is sufficient to create an absorber surface similar to the one formed during a conventional CdS chemical bath deposition process. However, it is observed that CIGS-KF/Zn(O,S) devices made with water-rinsed absorbers systematically result in lower fill factor values than for the corresponding CIGS-KF/CdS references. This effect can be mitigated by decreasing the H2S:H2O precursor ratio during ALD initiation, indicating that the fill factor limitation is linked to the initial Zn(O,S) growth on the modified CIGS-KF surface. The best CIGS-KF/Zn (O,S) devices were fabricated by etching away the KF-modified surface layer prior to ALD, followed by a low temperature anneal. The thermal treatment step is needed to increase the open-circuit voltage close to the value of the CdS devices. The results presented in this contribution indicate that the main beneficial effects from KFPDT in our devices are neither associated with the CdS CBD process nor due to the formation of a K-In-Serich phase on the CIGS surface.

  • 10.
    Larsson, Fredrik
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Keller, Jan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Törndahl, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    ALD of Zn(O,S) buffer layers in KF post-deposition treated CIGS solar cells2017Konferansepaper (Annet vitenskapelig)
  • 11.
    Larsson, Fredrik
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Keller, Jan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Törndahl, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Evaluation of different intrinsic ZnO and transparent conducting oxide layer combinations in Cu(In,Ga)Se2 solar cells2017Inngår i: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 633, s. 235-238Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We studied the interaction of four different window layer combinations in Cu(In,Ga)Se-2 solar cells. Intrinsic ZnO (i-ZnO) layers were grown on CdS by either chemical vapor deposition (CVD) or magnetron sputtering. These were combined with sputtered ZnO:Al or In2O3:H grown by atomic layer deposition as transparent conducting oxides (TCO). It was found that the thickness of the CVD i-ZnO layer affects the open circuit voltage (V-oc) significantly when using In2O3:H as TCO. The V-oc dropped by roughly 30 mV when the i-ZnO thickness was increased from 20 to 160 nm. This detrimental effect on V-oc was not as prominent when a ZnO:Al TCO was used, where the corresponding decrease was in the range of 5 to 10 my. In addition, the V-oc drop for the CVD i-ZnO/In2O3:H structure was not observed when using the sputtered i-ZnO layer. Furthermore, large fill factor variations were observed when using the In2O3:H TCO without an i-ZnO layer underneath, where already a thin (20 nm) CVD i-ZnO layer mitigated this effect. Device simulations were applied to explain the experimentally observed Voc trends.

  • 12.
    Larsson, Fredrik
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Keller, Jan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Primetzhofer, Daniel
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Riekehr, Lars
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Törndahl, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Atomic layer deposition of amorphous tin-gallium oxide films2019Inngår i: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 37, nr 3, artikkel-id 030906Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A wide range of applications benefit from transparent semiconducting oxides with tunable electronic properties, for example, electron transport layers in solar cell devices, where the electron affinity is a key parameter. Presently, a few different ternary oxides are used for this purpose, but the attainable electron affinity range is typically limited. In this study, the authors develop a low-temperature atomic layer deposition (ALD) process to grow amorphous Sn1-xGaxOy thin films from dimethylamino-metal complexes and water. This oxide is predicted to provide a wide selection of possible electron affinity values, from around 3 eV for pure Ga2O3 to 4.5 eV for pure SnO2. The ALD process is evaluated for deposition temperatures in the range of 105-195 degrees C by in situ quartz crystal microbalance and with ex situ film characterization. The growth exhibits an ideal-like behavior at 175 degrees C, where the film composition can be predicted by a simple rule of mixture. Depending on film composition, the growth per cycle varies in the range of 0.6-0.8 angstrom at this temperature. Furthermore, the film composition for a given process appears insensitive to the deposition temperature. From material characterization, it is shown that the deposited films are highly resistive, fully amorphous, and homogeneous, with moderate levels of impurities (carbon, nitrogen, and hydrogen). By tailoring the metal cation ratio in films grown at 175 degrees C, the optical bandgap can be varied in the range from 2.7 eV for SnO2 to above 4.2 eV for Ga2O3. The bandgap also varies significantly as a function of deposition temperature. This control of properties indicates that Sn1-xGaxOy is a promising candidate for an electron transport layer material in a wide electron affinity range. Published by the AVS.

    Fulltekst (pdf)
    fulltext
  • 13.
    Larsson, Fredrik
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Shariati, M. Nina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Keller, Jan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Frisk, Christopher
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Kosyak, Volodymyr
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Törndahl, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Record 1.0 V open-circuit voltage in wide band gap chalcopyrite solar cells2017Inngår i: Progress in Photovoltaics, ISSN 1062-7995, E-ISSN 1099-159X, Vol. 25, s. 755-763Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Tandem solar cell structures require a high‐performance wide band gap absorber as top cell. Apossible candidate is CuGaSe2, with a fundamental band gap of 1.7 eV. However, a significantopen‐circuit voltage deficit is often reported for wide band gap chalcopyrite solar cells likeCuGaSe2. In this paper, we show that the open‐circuit voltage can be drastically improved in wideband gap p‐Cu(In,Ga)Se2and p‐CuGaSe2devices by improving the conduction band alignment tothe n‐type buffer layer. This is accomplished by using Zn1−xSnxOy, grown by atomic layer deposi-tion, as a buffer layer. In this case, the conduction band level can be adapted to an almost perfectfit to the wide band gap Cu(In,Ga)Se2and CuGaSe2materials. With an improved buffer bandalignment for CuGaSe2absorbers, evaporated in a 3‐stage type process, we show devicesexhibiting open‐circuit voltages up to 1017 mV, and efficiencies up to 11.9%. This is to the bestof our knowledge the highest reported open‐circuit voltage and efficiency for a CuGaSe2device.Temperature‐dependent current‐voltage measurements show that the high open‐circuit voltageis explained by reduced interface recombination, which makes it possible to separate theinfluence of absorber quality from interface recombination in future studies.

  • 14.
    Platzer-Björkman, Charlotte
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Frisk, Christoper
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Larsen, Jes
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Ericson, Tove
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Li, Shuyi
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Scragg, Jonathan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Keller, Jan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Larsson, Fredrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Törndahl, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Reduced interface recombination in Cu2ZnSnS4 solar cells with atomic layer deposition Zn1-xSnxO buffer layers2015Inngår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 107, nr 24, artikkel-id 243904Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Cu2ZnSnS4 (CZTS) solar cells typically include a CdS buffer layer in between the CZTS and ZnO front contact. For sulfide CZTS, with a bandgap around 1.5 eV, the band alignment between CZTS and CdS is not ideal ("cliff-like"), which enhances interface recombination. In this work, we show how a Zn1-xSnxOy (ZTO) buffer layer can replace CdS, resulting in improved open circuit voltages (V-oc) for CZTS devices. The ZTO is deposited by atomic layer deposition (ALD), with a process previously developed for Cu(In,Ga)Se-2 solar cells. By varying the ALD process temperature, the position of the conduction band minimum of the ZTO is varied in relation to that of CZTS. A ZTO process at 95 degrees C is found to give higher Voc and efficiency as compared with the CdS reference devices. For a ZTO process at 120 degrees C, where the conduction band alignment is expected to be the same as for CdS, the Voc and efficiency is similar to the CdS reference. Further increase in conduction band minimum by lowering the deposition temperature to 80 degrees C shows blocking of forward current and reduced fill factor, consistent with barrier formation at the junction. Temperature-dependent current voltage analysis gives an activation energy for recombination of 1.36 eV for the best ZTO device compared with 0.98 eV for CdS. We argue that the Voc of the best ZTO devices is limited by bulk recombination, in agreement with a room temperature photoluminescence peak at around 1.3 eV for both devices, while the CdS device is limited by interface recombination.

    Fulltekst (pdf)
    fulltext
  • 15.
    Szaniawski, Piotr
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Olsson, Jörgen
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Frisk, Christopher
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Fjällström, Viktor
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Ledinek, Dorothea
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Larsson, Fredrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Zimmermann, Uwe
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    A Systematic Study of Light-On-Bias Behavior in Cu(In,Ga)Se2 Solar Cells With Varying Absorber Compositions2017Inngår i: IEEE Journal of Photovoltaics, ISSN 2156-3381, E-ISSN 2156-3403, Vol. 7, nr 3, s. 882-891Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Light-on-bias effects were investigated in multiple Cu(In, Ga)Se2 solar cells with varying absorber layer compositions. A strong link between deformations caused by red-on-bias treatments in current-voltage (IV ) and capacitance-voltage (CV) characteristics was demonstrated. Similarly to red-on-bias, blue-on-bias leads to a local increase in static negative charge, but in samples with CdS buffers this increase is shifted away from the interface and has no impact on device performance. IV characteristics of samples with Cd-free buffers are not affected by any light-on-bias treatments, suggesting that CdS plays a vital role in the decreased performance after red-on-bias. A statistical approach was used to search for compositional trends in red-on-bias behavior. Deformation factors were defined for IV and CV characteristics before and after the treatment. While there is a strong relationship between the deformations observed in both types of measurements, the degree to which red-on-bias affects IV and CV curves can vary dramatically. These variations cannot be attributed to changes in composition, since no clear compositional trends were found. Rather, other factors related to sample manufacturing and to the buffer layer seem to have major impact on red-on-bias behavior.

1 - 15 of 15
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf