Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Brandis, Gerrit
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Pietsch, Franziska
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Alemayehu, Rahel
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Hughes, Diarmaid
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Comprehensive phenotypic characterization of rifampicin resistance mutations in Salmonella provides insight into the evolution of resistance in Mycobacterium tuberculosis2015In: Journal of Antimicrobial Chemotherapy, ISSN 0305-7453, E-ISSN 1460-2091, Vol. 70, no 3, p. 680-685Article in journal (Refereed)
    Abstract [en]

    Objectives: Mutations in the beta-subunit of RNA polymerase (RNAP), encoded by rpoB, are responsible for rifampicin resistance (Rif(R)). Although many mutations in rpoB can reduce susceptibility, only a few are frequent amongst Rif(R) clinical Mycobacterium tuberculosis (MTB) isolates. It has been suggested that there is a negative correlation between the fitness costs of Rif(R) mutations and their respective clinical frequency, but so far comparable fitness cost measurements have only been conducted for a very limited number of Rif(R) mutations. We tested this hypothesis using Salmonella and Mycobacterium smegmatis as model organisms. Methods: We constructed 122 different Rif(R) mutations in Salmonella. MICs and relative fitness costs in the presence and absence of rifampicin were determined for each mutant, including for a smaller number of Rif(R) M. smegmatis strains. Results were compared with available mutation frequency data from clinical MTB isolates. Results: (i) Rif(R) mutations frequently found in MTB isolates have a fitness cost in Salmonella Typhimurium and M. smegmatis. (ii) Clinically frequent Rif(R) mutations have a high rifampicin MIC. (iii) There is a strong correlation between the magnitude of the fitness cost of a Rif(R) mutation in Salmonella Typhimurium or M. smegmatis and the frequency with which that mutation is associated with secondary (putative compensatory) mutations in RNAP of clinical MTB isolates. Conclusions: This suggests that the success of Rif(R) mutations in clinical MTB isolates may be dependent not only on a low initial fitness cost, but rather the results of three factors: (i) a high rifampicin MIC; (ii) a relatively low initial fitness cost; and (iii) the ability to additionally acquire compensatory mutations selected to further reduce fitness cost.

  • 2.
    Huseby, Douglas L.
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Pietsch, Franziska
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Brandis, Gerrit
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Garoff, Linnéa
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Tegehall, Angelica
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Hughes, Diarmaid
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Mutation supply and relative fitness shape the genotypes of ciprofloxacin-resistant Escherichia coli2017In: Molecular biology and evolution, ISSN 0737-4038, E-ISSN 1537-1719, Vol. 34, no 5, p. 1029-1039Article in journal (Refereed)
    Abstract [en]

    Ciprofloxacin is an important antibacterial drug targeting Type II topoisomerases, highly active against Gram-negatives including Escherichia coli. The evolution of resistance to ciprofloxacin in E. coli always requires multiple genetic changes, usually including mutations affecting two different drug target genes, gyrA and parC. Resistant mutants selected in vitro or in vivo can have many different mutations in target genes and efflux regulator genes that contribute to resistance. Among resistant clinical isolates the genotype, gyrA S83L D87N, parC S80I is significantly overrepresented suggesting that it has a selective advantage. However, the evolutionary or functional significance of this high frequency resistance genotype is not fully understood. By combining experimental data and mathematical modeling, we addressed the reasons for the predominance of this specific genotype. The experimental data were used to model trajectories of mutational resistance evolution under different conditions of drug exposure and population bottlenecks. We identified the order in which specific mutations are selected in the clinical genotype, showed that the high frequency genotype could be selected over a range of drug selective pressures, and was strongly influenced by the relative fitness of alternative mutations and factors affecting mutation supply. Our data map for the first time the fitness landscape that constrains the evolutionary trajectories taken during the development of clinical resistance to ciprofloxacin and explain the predominance of the most frequently selected genotype. This study provides strong support for the use of in vitro competition assays as a tool to trace evolutionary trajectories, not only in the antibiotic resistance field.

  • 3.
    Pietsch, Franziska
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Evolution of Antibiotic Resistance2015Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The emergence of antimicrobial resistance is a major global threat to modern medicine. The rapid dissemination of resistant pathogens and the associated loss of efficacy of many important drugs needs to be met with the development of new antibiotics and alternative treatment options. A better understanding of the evolution of resistance could help in developing strategies to slow down the spread of antimicrobial drug resistance.

    In this thesis we investigated the evolution of resistance to two important antibiotics, rifampicin and ciprofloxacin, paying special attention to the resistance patterns occurring with high frequency in clinical isolates.

    Rifampicin is a first-line drug in tuberculosis treatment and resistance to this valuable drug limits treatment options. Our work on rifampicin resistance helps to explain the extreme bias seen in the frequency of specific resistance mutations in resistant clinical isolates of M. tuberculosis. We identified an important interplay between the level of resistance, relative fitness and selection of fitness-compensatory mutations among the most common resistant isolates.

    Fluoroquinlones are widely used to treat infections with Gram-negatives and the frequency of resistance to these important drugs is increasing. Resistance to fluoroquinolones is the result of a multi-step evolutionary process. Our studies on the development of resistance to the fluoroquinolone drug ciprofloxacin provide insights into the evolutionary trajectories and reveal the order in which susceptible wild-type E. coli acquire multiple mutations leading to high level of resistance. We found that the evolution of ciprofloxacin resistance is strongly influenced by the mutation supply rate and by the relative fitness of competing strains at each successive step in the evolution. Our data show that different classes of resistance mutations arise in a particular, predictable order during drug selection. We also uncovered strong evidence for the existence of a novel class of mutations affecting transcription and translation, which contribute to the evolution of resistance to ciprofloxacin.

  • 4.
    Pietsch, Franziska
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Bergman, Jessica M.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Brandis, Gerrit
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Marcusson, Linda L.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Zorzet, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Huseby, Douglas L.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Hughes, Diarmaid
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Ciprofloxacin selects for RNA polymerase mutations with pleiotropic antibiotic resistance effects2017In: Journal of Antimicrobial Chemotherapy, ISSN 0305-7453, E-ISSN 1460-2091, Vol. 72, no 1, p. 75-84Article in journal (Refereed)
    Abstract [en]

    Objectives: Resistance to the fluoroquinolone drug ciprofloxacin is commonly linked to mutations that alter the drug target or increase drug efflux via the major AcrAB-TolC transporter. Very little is known about other mutations that might also reduce susceptibility to ciprofloxacin. We discovered that an Escherichia coli strain experimentally evolved for resistance to ciprofloxacin had acquired a mutation in rpoB, the gene coding for the beta-subunit of RNA polymerase. The aim of this work was to determine whether this mutation, and other mutations in rpoB, contribute to ciprofloxacin resistance and, if so, by which mechanism. Methods: Independent lineages of E. coli were evolved in the presence of ciprofloxacin and clones from endpoint cultures were screened for mutations in rpoB. Ciprofloxacin-selected rpoB mutations were identified and characterized in terms of effects on susceptibility and mode of action. Results: Mutations in rpoB were selected at a high frequency in 3 out of 10 evolved lineages, in each case arising after the occurrence of mutations affecting topoisomerases and drug efflux. All ciprofloxacin-selected rpoB mutations had a high fitness cost in the absence of drug, but conferred a competitive advantage in the presence of ciprofloxacin. RNA sequencing and quantitative RT-PCR analysis showed that expression of mdtK, encoding a multidrug efflux transporter, was significantly increased by the ciprofloxacin-selected rpoB mutations. The susceptibility phenotype was shown to depend on the presence of an active mdtK and a mutant rpoB allele. Conclusions: These data identify mutations in RNA polymerase as novel contributors to the evolution of resistance to ciprofloxacin and show that the phenotype is mediated by increased MdtK-dependent drug efflux.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf