Change search
Refine search result
1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ali, Hasan
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Eriksson, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Li, Hu
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Jafri, S. Hassan M.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences. Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Kumar, M. S. Sharath
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Ögren, Jim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Ziemann, Volker
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Leifer, Klaus
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    An electron energy loss spectrometer based streak camera for time resolved TEM measurements2017In: Ultramicroscopy, ISSN 0304-3991, E-ISSN 1879-2723, Vol. 176, p. 5-10Article in journal (Refereed)
    Abstract [en]

    We propose an experimental setup based on a streak camera approach inside an energy filter to measure time resolved properties of materials in the transmission electron microscope (TEM). In order to put in place the streak camera, a beam sweeper was built inside an energy filter. After exciting the TEM sample, the beam is swept across the CCD camera of the filter. We describe different parts of the setup at the example of a magnetic measurement. This setup is capable to acquire time resolved diffraction patterns, electron energy loss spectra (EELS) and images with total streaking times in the range between 100 ns and 10 μs.

  • 2.
    Bhattacharyya, Anirban
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Dancila, Dragos
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Eriksson, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Fransson, Kjell
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gajewski, Konrad
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Goryashko, Vitaliy
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Hermansson, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Jacewicz, Marek
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Jönsson, Åke
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Li, Han
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Lofnes, Tor
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Olvegård, Maja
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rydberg, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Santiago Kern, Rocio
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Wedberg, Rolf
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ziemann, Volker
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    ESS RF Source and Spoke Cavity Test Plan2015Report (Other academic)
    Abstract [en]

    This report describes the test plan for the first high power RF source, ESS prototype double spoke cavity and ESS prototype cryomodule at the FREIA Laboratory.

  • 3.
    Eriksson, Johan
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Jacewicz, Marek
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Ruber, Roger
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Cryosystem for DC spark experiments: Construction and acceptance tests2019Report (Other academic)
  • 4.
    Goryashko, Vitaliy
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Jobs, Magnus
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Hoang, Long
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Eriksson, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Ruber, Roger
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA. Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden..
    12-Way 100 kW Reentrant Cavity-Based Power Combiner With Doorknob Couplers2018In: IEEE Microwave and Wireless Components Letters, ISSN 1531-1309, E-ISSN 1558-1764, Vol. 28, no 2, p. 111-113Article in journal (Refereed)
    Abstract [en]

    We present radio frequency (RF) and thermal characterization of a compact 12-way power combiner designed for operation at 352 MHz at a power level of 100 kW with 5% duty factor. The combiner is based on a reentrant cavity with 12 input doorknob couplers and one output coupler that is integrated with the post of the cavity and forms doorknob type geometry. We introduce convenient design formulas that allow easy identification of a suitable parameter space, which is then refined with numerical simulations. Low-power RF measurements of a prototype show 0.2% insertion loss and a relative rms amplitude imbalance between the ports of 0.1% and phase imbalance of 0.036 degrees rms. The matching is better than -25 dB over a 3-dB bandwidth around the design frequency. We also tested the combiner up to 200 kW and found the RF loss to be comparable to that of the low-power measurement. In a long test run at 100 kW with 5% duty factor, the combiner temperature stabilized at 10 degrees above ambient.

  • 5.
    Jobs, Magnus
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Dancila, Dragos
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Eriksson, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Ruber, Roger
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    An 8-1 Single-Stage 10-kW Planar Gysel Power Combiner at 352 MHz2018In: IEEE Transactions on Components, Packaging, and Manufacturing Technology, ISSN 2156-3950, E-ISSN 2156-3985, Vol. 8, no 5, p. 851-857Article in journal (Refereed)
    Abstract [en]

    A compact single-stage 8-1 Gysel Combiner in planar technology for operation with 352-MHz pulses with peak output power of 10 kW has been designed, manufactured, and tested. The module has 0.2-dB insertion loss when operated at nominal power, and the return loss of all ports is 20 dB or better. The module was operated using 3.3-ms pulses at 14-Hz repetition rate without any signs of degradation, thermal heating, or arcing. The new design makes use of inclusions of weakly coupled lines in the common point section of the Gysel combiner. It is possible to adjust port imbalances caused by parasitic line coupling in the system for optimum performance at a given frequency by adjusting the coupling.

  • 6.
    Olvegård, Maja
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Bhattacharyya, Anirban
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Dancila, Dragos
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Eriksson, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Fransson, Kjell
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Gajewski, Konrad
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Goryashko, Vitaliy
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Hermansson, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Holz, Michael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Jacewicz, Marek
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Jobs, Magnus
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Jönsson, Åke
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Li, Han
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Lofnes, Tor
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Nicander, Harald
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Ruber, Roger
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Rydberg, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Santiago Kern, Rocio
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Wedberg, Rolf
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Ziemann, Volker
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Yogi, Ruthambara
    European Spallation Source.
    PROGRESS AT THE FREIA LABORATORY2015In: Proceedings of IPAC'15, JACoW: The Joint Accelerator Conferences Website , 2015Conference paper (Refereed)
    Abstract [en]

    The FREIA Facility for Research Instrumentation and Accelerator Development at Uppsala University, Sweden, has reached the stage where the testing of superconducting cavities for the European Spallation Source (ESS) is starting. The new helium liquefaction plant has been commissioned and now supplies a custom-made, versatile horizontal cryostat, HNOSS, with liquid helium at up to 140 l/h. The cryostat has been designed and built to house up to two accelerating cavities, or, later on, other superconducting equipment such as magnets or crab cavities. A prototype cavity for the spoke section of the ESS linac will arrive mid 2015 for high-power testing in the horizontal cryostat. Two tetrode-based commercial RF power stations will deliver 400 kW peak power each, at 352 MHz, to the cavity through an RF distribution line developed at FREIA. In addition, significant progress has been made with in-house development of solid state amplifier modules and powercombiners for future use in particle accelerators. We report here on these and other ongoing activities at the FREIA laboratory.

  • 7.
    Ruber, Roger
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Wedberg, Rolf
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Peterson, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Dancila, Dragos
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Hoang, Long
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Eriksson, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    400 kW RF Stations Operational Experience: Overview of the operation experience during 2018-2019 with the Itelco-Electrosys and DB Science stations at the FREIA Laboratory2019Report (Other academic)
    Abstract [en]

    We present the operational experience with the Itelco-Electrosys and DB Science 400 kW RF stations installed at the FREIA Laboratory. From the summer of 2018 to the summer of 2019 the stations were used for the test of the spoke cryomodule prototype for ESS. Unfortunately multiple issues with both RF stations delayed or inhibited normal operation. The Itelco-Electrosys station was out-of-operation from October 2018 to June 2019, due to multiple issues, which took a long time to understand and solve.

  • 8.
    Santiago-Kern, Rocio
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Eriksson, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Hermansson, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Jönsson, Åke
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Cryogenic Settings for Testing of the Fully Equipped ESS' High Beta Cavity ESS086-P01 (Part I)2018Report (Other academic)
  • 9.
    Santiago-Kern, Rocio
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Eriksson, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Hermansson, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Jönsson, Åke
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Cryogenic Settings for Testing of the Fully Equipped ESS' High Beta Cavity ESS086-P01 (Part II)2018Report (Other academic)
  • 10.
    Santiago-Kern, Rocio
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Eriksson, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Hermansson, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Jönsson, Åke
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Cryogenic Settings for Testing ofthe Fully Equipped ESS’ Double Spoke Cavity Romea2017Report (Other academic)
1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf