Change search
Refine search result
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Carlsson, Lena
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Biochemial structure and function.
    Ronquist, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Biochemial structure and function.
    Elisasson, Rune
    Sophia Hosp, Androl Lab, Stockholm, Sweden..
    Dubois, Louise
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Biochemial structure and function.
    Ronquist, Karl Göran
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Biochemial structure and function.
    Larsson, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Biochemial structure and function.
    High Concentrations of the Angiogenic Peptide VEGF-A in Seminal Fluid and its Association to Prostasomes2016In: Clinical Laboratory, ISSN 1433-6510, Vol. 62, no 8, p. 1515-1520Article in journal (Refereed)
    Abstract [en]

    Background: Angiogenesis is the formation of new blood vessels by capillary sprouting from pre-existing vessels. This process is associated with increased expression of angiogenic factors like vascular endothelial growth factor (VEGF). The VEGF family consists of five members denoted VEGF-A, B, C, D and placenta growth factor (PlGF). Prostasomes are exosome-like extracellular vesicles existing in seminal plasma. The present study aimed at investigating the possible relationship between VEGF-A in seminal fluid and blood plasma and the prostasomal association of VEGF-A.

    Methods: Measurement of VEGF-A concentrations was carried out in seminal plasma from 40 males and in blood plasma from 40 male blood donors utilizing commercial ELISA kits. The prostasomal association of VEGF-A was investigated by flow cytometry.

    Results: We found highly elevated concentrations of VEGF-A in seminal fluid (median value 150000 pg/mL) compared with those of blood plasma. Flow cytometric analysis showed that VEGF-A is bound to the surface of prostasomes.

    Conclusions: Prostasomes and seminal plasma contain the angiogenic factor VEGF-A in high concentrations exceeding that of blood plasma by 1000 times.

  • 2.
    Dubois, Louise
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Chemistry.
    Prostasomes as Diagnostic, Prognostic and Therapeutic Vesicles2019Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis explores prostasomes and their ability to be used as a new diagnostic tool for prostate cancer. Alongside diagnosis, this thesis also suggests prostasomes as a tool for prognosis and therapeutic treatment in patients with prostate cancer. By further characterizing prostasomes we can identify a biomarker and also a method of visualizing and interpreting the information provided in order to conduct a correct and fast diagnosis for prostate cancer.

    In Paper I, we show that the prostasomal bilayered membrane consists of lipid rafts, clusters that holds cholesterol, sphingolipids and gives receptors a rigid platform upon which to work. We compare the proteomic content of prostasome lipid rafts with the entire prostasome membrane in the search for a specific biomarker. 

    In Paper II, we show that purified lipid rafts from the prostasome membrane can re-vesiculate and create new bioengineered vesicles. These new vesicles can carry different agents inside them and we find that the method is also applicable to blood cells. This suggests a new method for cell-specific delivery of drugs and cancer therapy. 

    In Paper III, we further characterize the prostasome membrane, this time mapping purinergic receptors. This could be used in the development of prostate cancer treatment and to gain better understanding of how prostasomes interact with surrounding cells in their ambient environment.

    In Paper IV, we investigate the difference in thymidine kinase 1 (TK1) enzyme activity between prostasomes and malignant exosomes. TK1 is considered to be a biomarker of cell proliferation and could therefore be used as a biomarker for prostate cancer diagnosis and progression.

    In summary, this thesis contributes to the puzzle of how to better diagnose, prognose and treat prostate cancer. Although it is mainly pre-clinical research it opens up new possibilities for the diagnosis and treatment of prostate cancer.

  • 3.
    Dubois, Louise
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Andersson, Karl
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Asplund, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Björkelund, Hanna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Evaluating real-time immunohistochemistry on multiple tissue samples, multiple targets and multiple antibody labeling methods2013In: BMC Research Notes, ISSN 1756-0500, E-ISSN 1756-0500, Vol. 6, p. 542-Article in journal (Refereed)
    Abstract [en]

    Background

    Immunohistochemistry (IHC) is a well-established method for the analysis of protein expression in tissue specimens and constitutes one of the most common methods performed in pathology laboratories worldwide. However, IHC is a multi-layered method based on subjective estimations and differences in staining and interpretation has been observed between facilities, suggesting that the analysis of proteins on tissue would benefit from protocol optimization and standardization. Here we describe how the emerging and operator independent tool of real-time immunohistochemistry (RT-IHC) reveals a time resolved description of antibody interacting with target protein in formalin fixed paraffin embedded tissue. The aim was to understand the technical aspects of RT-IHC, regarding generalization of the concept and to what extent it can be considered a quantitative method.

    Results

    Three different antibodies labeled with fluorescent or radioactive labels were applied on nine different tissue samples from either human or mouse, and the results for all RT-IHC analyses distinctly show that the method is generally applicable. The collected binding curves showed that the majority of the antibody-antigen interactions did not reach equilibrium within 3 hours, suggesting that standardized protocols for immunohistochemistry are sometimes inadequately optimized. The impact of tissue size and thickness as well as the position of the section on the glass petri dish was assessed in order for practical details to be further elucidated for this emerging technique. Size and location was found to affect signal magnitude to a larger extent than thickness, but the signal from all measurements were still sufficient to trace the curvature. The curvature, representing the kinetics of the interaction, was independent of thickness, size and position and may be a promising parameter for the evaluation of e.g. biopsy sections of different sizes.

    Conclusions

    It was found that RT-IHC can be used for the evaluation of a number of different antibodies and tissue types, rendering it a general method. We believe that by following interactions over time during the development of conventional IHC assays, it becomes possible to better understand the different processes applied in conventional IHC, leading to optimized assay protocols with improved sensitivity.

  • 4.
    Dubois, Louise
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Chemistry.
    Löf, Liza
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular tools.
    Larsson, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Chemistry.
    Hultenby, Kjell
    Department of Laboratory Medicine, Karolinska Institutet, SE-141 86 Huddinge, Sweden.
    Waldenström, Anders
    Department of Public Health and Clinical Medicine, Umeå University, SE-901 85 Umeå, Sweden.
    Kamali-Moghaddam, Masood
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Ronquist, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Chemistry.
    Ronquist, K. Göran
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Chemistry.
    Human erythrocyte-derived nanovesicles can readily be loaded with doxorubicin and act as anticancer agents2018In: Cancer Research Frontiers, ISSN 2328-5249, Vol. 4, no 1, p. 13-26Article in journal (Refereed)
    Abstract [en]

    Purpose: In future therapeutics new formulas are needed that assure lower doses, fewer side effects, targeted administration and protection of the drug from degradation. In a first step to fulfil the requirements defined above, we carried out an in vitro study by developing a new procedure to encapsulate drugs using native vesicles first from prostasomes and then from erythrocyte membranes known to be well tolerated. The new method for production of drug delivery vesicles utilized osmotic loading of detergent resistant membranes (DRMs).

    Materials and methods: DRMs of prostasomes and prepared human erythrocyte membranes were extracted and separated in a sucrose gradient at a density of 1.10 g/mL containing 1% Triton X-100. These DRMs were characterized by electron microscopy (transmission and scanning EM) and loaded with low and high molecular compounds. PC3 prostate cancer cells were treated with doxorubicin loaded DRMs in triplicate. DAPI (nuclear fluorescent stain) was included and fluorescence microscopic pictures were taken before the cells were trypsinized and counted after 48h.

    Results: The content of the well separated band was observed ultrastructurally as small spherical, double layered membrane vesicles, (DRM vesicles) which harbored hyperosmolar sucrose of the gradient. Encapsulated hyperosmolar sucrose induced a transient osmotic lysis of the DRM vesicles when suspended in isotonic buffer containing loading molecules allowing vesicular inclusion. After this proof of concept, the method was finally employed for doxorubicin loading of DRM vesicles from human erythrocytes. When incubating such vesicles with PC3 cells a complete arrest of growth was observed in sharp contrast to PC3 cells incubated with plain doxorubicin in similar conditions.

    Conclusion: The present results open up new possibilities for using DRM vesicles as drug delivery vesicles.

  • 5.
    Dubois, Louise
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Biochemial structure and function.
    Ronquist, K Göran
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Biochemial structure and function.
    Ek, Bo
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Ronquist, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Biochemial structure and function.
    Larsson, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Biochemial structure and function.
    Proteomic profiling of detergent resistant membranes (lipid rafts) of prostasomes2015In: Molecular & Cellular Proteomics, ISSN 1535-9476, E-ISSN 1535-9484, Vol. 14, no 11, p. 3015-3022Article in journal (Refereed)
    Abstract [en]

    Prostasomes are exosomes derived from prostate epithelial cells through exocytosis by multivesicular bodies. Prostasomes have a bilayered membrane and readily interact with sperm. The membrane lipid composition is unusual with a high contribution of sphingomyelin at the expense of phosphatidylcholine and saturated and monounsaturated fatty acids are dominant. Lipid rafts are liquid-ordered domains that are more tightly packed than the surrounding non-raft phase of the bilayer. Lipid rafts are proposed to be highly dynamic, submicroscopic assemblies that float freely within the liquid disordered membrane bilayer and some proteins preferentially partition into the ordered raft domains. We asked the question whether lipid rafts do exist in prostasomes and, if so, which proteins might be associated with them. Prostasomes of density range 1.13-1.19g/mL were subjected to density gradient ultracentrifugation in sucrose fabricated by phosphate buffered saline (PBS) containing 1% Triton X-100 with capacity for banding at 1.10g/mL, i.e. the classical density of lipid rafts. Prepared prostasomal lipid rafts (by gradient ultracentrifugation) were analyzed by mass spectrometry and electron microscopy. The clearly visible band on top of 1.10g/mL sucrose in the Triton X-100 containing gradient was subjected to LC-MS/MS and more than 370 lipid raft associated proteins were identified. Several of them were involved in intraluminal vesicle formation, e.g. tetraspanins, ESCRTs and Ras-related proteins. This is the first comprehensive LC-MS/MS profiling of proteins in lipid rafts derived from exosomes. Data are available via ProteomeXchange with identifier PXD002163.

  • 6.
    Dubois, Louise
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Biochemial structure and function.
    Stridsberg, Mats
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Biochemical endocrinology.
    Kharaziha, Pedram
    Chioureas, Dimitris
    Meersman, Niels
    Panaretakis, Theocharis
    Ronquist, Göran
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Biochemial structure and function.
    Malignant Cell-Derived Extracellular Vesicles Express Different Chromogranin Epitopes Compared to Prostasomes2015In: The Prostate, ISSN 0270-4137, E-ISSN 1097-0045, Vol. 75, no 10, p. 1063-1073Article in journal (Refereed)
    Abstract [en]

    BACKGROUND. Prostasomes are nanosized extracellular vesicles exocytosed by prostate epithelial cells. They have been assigned many roles propitious to sperm in favor of fertilization. Prostatic cancer cells can also produce and secrete extracellular vesicles. METHODS. We assessed using ELISA, the surface expression of chromogranin proproteins on prostasomes and malignant extracellular vesicles of four different prostate cancer cell-lines, two hormone sensitive and two hormone refractory. We used a panel of chromogranin A and chromogranin B antibodies against peptides in-between hypothetical cleavage sites along the proproteins. RESULTS. A diverging pattern of chromogranin peptides was apparent when comparing prostasomes and malignant extracellular vesicles indicating a phenotypical change. We also compared western blot patterns (prostasomes and malignant extracellular vesicles) for selected antibodies that displayed high absorbances in the ELISA. Western blot analyses revealed various cleavage patterns of those proproteins that were analyzed in prostasomes and extracellular vesicles. CONCLUSION. Chromogranins are constituents of not only prostasomes but also of malignant prostate cell-derived extracellular vesicles with different amino acid sequences exposed at the membrane surface giving rise to a mosaic pattern. These findings may be of relevance for designing new assays for detection or even possible treatment of prostate cancers.

  • 7. Larssen, Pia
    et al.
    Wik, Lotta
    Uppsala University, Science for Life Laboratory, SciLifeLab.
    Czarnewski, Paulo
    Eldh, Maria
    Löf, Liza
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Ronquist, Göran
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Biochemial structure and function.
    Dubois, Louise
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Biochemial structure and function.
    Freyhult, Eva
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Gallant, Caroline
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Oelrich, Johan
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular tools.
    Larsson, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Biochemial structure and function.
    Ronquist, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Biochemial structure and function.
    Villablanca, Eduardo
    Landegren, Ulf
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Gabrielsson, Susanne
    Kamali-Moghaddam, Masood
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Tracing Cellular Origin of Human Exosomes Using Multiplex Proximity Extension Assay2017In: Molecular & cellular proteomics (online), ISSN 1535-9476, E-ISSN 1535-9484, Vol. 16, no 3, p. 502-511Article in journal (Refereed)
    Abstract [en]

    Extracellular vesicles (EVs) are membrane-coated objects such as exosomes and microvesicles, released by many cell-types. Their presence in body fluids and the variable surface composition and content render them attractive potential biomarkers. The ability to determine their cellular origin could greatly move the field forward. We used multiplex proximity extension assays (PEA) to identify with high specificity and sensitivity the protein profiles of exosomes of different origins, including seven cell lines and two different body fluids. By comparing cells and exosomes, we successfully identified the cells originating the exosomes. Furthermore, by principal component analysis of protein patterns human milk EVs and prostasomes released from prostate acinar cells clustered with cell lines from breast and prostate tissues, respectively. Milk exosomes uniquely expressed CXCL5, MIA and KLK6, while prostasomes carried NKX31, GSTP1 and SRC, highlighting that EVs originating from different origins express distinct proteins. In conclusion, PEA provides a powerful protein screening tool in exosome research, for purposes of identifying the cell source of exosomes, or new biomarkers in diseases such as cancer and inflammation.

  • 8.
    Ronquist, Karl Göran
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Biochemial structure and function.
    Sanchez, Claire
    Department of Oncology-Pathology, Karolinska Institutet and University Hospital, Stockholm, Sweden..
    Dubois, Louise
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Biochemial structure and function.
    Chioureas, Dimitris
    Department of Oncology-Pathology, Karolinska Institutet and University Hospital, Stockholm, Sweden..
    Fonseca, Pedro
    Department of Oncology-Pathology, Karolinska Institutet and University Hospital, Stockholm, Sweden..
    Larsson, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Biochemial structure and function.
    Ullén, Anders
    Department of Oncology-Pathology, Karolinska Institutet and University Hospital, Stockholm, Sweden..
    Yachnin, Jeffrey
    Department of Oncology-Pathology, Karolinska Institutet and University Hospital, Stockholm, Sweden..
    Ronquist, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Biochemial structure and function.
    Panaretakis, Theocharis
    Department of Oncology-Pathology, Karolinska Institutet and University Hospital, Stockholm, Sweden..
    Energy-requiring uptake of prostasomes and PC3 cell-derived exosomes into non-malignant and malignant cells2016In: Journal of Extracellular Vesicles, ISSN 2001-3078, E-ISSN 2001-3078, Vol. 5, article id 29877Article in journal (Refereed)
    Abstract [en]

    Epithelial cells lining the prostate acini release, in a regulated manner (exocytosis), nanosized vesicles called prostasomes that belong to the exosome family. Prostate cancer cells have preserved this ability to generate and export exosomes to the extracellular space. We previously demonstrated that human prostasomes have an ATP-forming capacity. In this study, we compared the capacity of extracellular vesicles (EVs) to generate ATP between normal seminal prostasomes and exosomes secreted by PC3 cells (PC3 exosomes), a prostate cancer cell line. Proteomic analyses identified enzymes of the glycolytic chain in both prostasomes and PC3 exosomes, and we found that both of them were capable of generating ATP when supplied with substrates. Notably, the net production of extracellular ATP was low for prostasomes due to a high ATPase activity contrary to an elevated net ATP level for PC3 exosomes because of their low ATPase activity. The uptake of the 2 types of EVs by normal prostate epithelial cells (CRL2221) and prostate cancer cells (PC3) was visualized and measured, demonstrating differential kinetics. Interestingly, this uptake was dependent upon an ongoing glycolytic flux involving extracellular ATP formation by EVs and/or intracellular ATP produced from the recipient cells. We conclude that the internalization of EVs into recipient cells is an energy-requiring process also demanding an active V-ATPase and the capacity of EVs to generate extracellular ATP may play a role in this process.

  • 9.
    Wu, Di
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular tools. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Yan, Junhong
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular tools. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Shen, Xia
    Univ Edinburgh, Usher Inst Populat Hlth Sci & Informat, Ctr Global Hlth Res, Teviot Pl, Edinburgh EH8 9AG, Midlothian, Scotland;Karolinska Inst, Dept Med Epidemiol & Biostat, Nobels Vag 12 A, SE-17177 Stockholm, Sweden;Sun Yat Sen Univ, Sch Life Sci, State Key Lab Biocontrol, Biostat Grp, CN-510000 Guangzhou, Guangdong, Peoples R China.
    Sun, Yu
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Evolution. South China Agr Univ, Coll Life Sci, Guangdong Prov Key Lab Prot Funct & Regulat Agr O, Guangzhou 510642, Guangdong, Peoples R China.
    Thulin, Måns
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Statistics. Univ Edinburgh, Sch Math, Teviot Pl, Edinburgh EH8 9AG, Midlothian, Scotland;Univ Edinburgh, Maxwell Inst Math Sci, Teviot Pl, Edinburgh EH8 9AG, Midlothian, Scotland.
    Cai, Yanling
    Second Peoples Hosp Shenzhen, Inst Translat Med, CN-518000 Shenzhen, Peoples R China.
    Wik, Lotta
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular tools. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Shen, Qiujin
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular tools.
    Oelrich, Johan
    Vesicode AB, Nobels Vag 16, SE-17165 Solna, Sweden.
    Qian, Xiaoyan
    Stockholm Univ, Sci Life Lab, Dept Biochem & Biophys, SE-17165 Solna, Sweden.
    Dubois, Louise
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Chemistry.
    Ronquist, Göran
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Chemistry.
    Nilsson, Mats
    Stockholm Univ, Sci Life Lab, Dept Biochem & Biophys, SE-17165 Solna, Sweden.
    Landegren, Ulf
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular tools. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Kamali-Moghaddam, Masood
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular tools. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Profiling surface proteins on individual exosomes using a proximity barcoding assay2019In: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 10, article id 3854Article in journal (Refereed)
    Abstract [en]

    Exosomes have been implicated in numerous biological processes, and they may serve as important disease markers. Surface proteins on exosomes carry information about their tissues of origin. Because of the heterogeneity of exosomes it is desirable to investigate them individually, but this has so far remained impractical. Here, we demonstrate a proximity-dependent barcoding assay to profile surface proteins of individual exosomes using antibody-DNA conjugates and next-generation sequencing. We first validate the method using artificial streptavidin-oligonucleotide complexes, followed by analysis of the variable composition of surface proteins on individual exosomes, derived from human body fluids or cell culture media. Exosomes from different sources are characterized by the presence of specific combinations of surface proteins and their abundance, allowing exosomes to be separately quantified in mixed samples to serve as markers for tissue-specific engagement in disease.

1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf