Change search
Refine search result
123 1 - 50 of 121
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Alhassan, Erwin
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Duan, Junfeng
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Gustavsson, Cecilia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Koning, Arjan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Pomp, Stephan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Rochman, Dimitri
    Nuclear Research and Consultancy Group.
    Österlund, Michael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Combining Total Monte Carlo and Benchmarks for Nuclear Data Uncertainty Propagation on a Lead Fast Reactor's Safety Parameters2014In: Nuclear Data Sheets, ISSN 0090-3752, E-ISSN 1095-9904, Vol. 118, p. 542-544Article in journal (Refereed)
    Abstract [en]

    Analyses are carried out to assess the impact of nuclear data uncertainties on some reactor safety parameters for the European Lead Cooled Training Reactor (ELECTRA) using the Total Monte Carlo method. A large number of Pu-239 random ENDF-format libraries, generated using the TALYS based system were processed into ACE format with NJOY99.336 code and used as input into the Serpent Monte Carlo code to obtain distribution in reactor safety parameters. The distribution in keff obtained was compared with the latest major nuclear data libraries – JEFF-3.1.2, ENDF/B-VII.1 and JENDL-4.0. A method is proposed for the selection of benchmarks for specific applications using the Total Monte Carlo approach based on a correlation observed between the keff of a given system and the benchmark. Finally, an accept/reject criteria was investigated based on chi squared values obtained using the Pu-239 Jezebel criticality benchmark. It was observed that nuclear data uncertainties were reduced considerably from 748 to 443 pcm.

  • 2.
    Alhassan, Erwin
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Duan, Junfeng
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Gustavsson, Cecilia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Pomp, Stephan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Österlund, Michael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Rochman, Dimitri
    Nuclear Research and Consultancy Group.
    Koning, Arjan J.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Uncertainty analysis of Lead cross sections on reactor safety for ELECTRA2016In: SNA + MC 2013 - Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo, 2016, article id 02401Conference paper (Refereed)
    Abstract [en]

    The Total Monte Carlo (TMC) method was used in this study to assess the impact of Pb-206, 207 and 208 nucleardata uncertainties on k-eff , beta-eff, coolant temperature coefficient, the coolant void worth for the ELECTRA reactor. Relatively large uncertainties were observed in the k-eff and the coolant void worth for all the isotopes with significant contribution coming from Pb-208 nuclear data. The large Pb-208 nuclear data uncertainty observed was further investigated by studying the impact of partial channels on the k-eff and beta-eff. Various sections of ENDF file: elasticscattering (n,el), inelastic scattering (n,inl), neutron capture (n,gamma), (n,2n), resonance parameters and the angular distribution were varied randomly and distributions in k-eff and beta-eff obtained. The dominant contributions to the uncertainty in the k-eff from Pb-208 came from uncertainties in the resonance parameters; however, elastic scattering cross section and the angular distribution also had significant impact. The impact of nuclear data uncertainties on the beta-eff was observed to be small.

  • 3.
    Alhassan, Erwin
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Duan, Junfeng
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Helgesson, Petter
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Pomp, Stephan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Österlund, Michael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Rochman, Dimitri
    Nuclear Research and Consultancy Group.
    Koning, Arjan J.
    Nuclear Research and Consultancy Group.
    Selecting benchmarks for reactor calculations2014In: PHYSOR 2014 - The Role of Reactor Physics toward a Sustainable Future, 2014Conference paper (Refereed)
    Abstract [en]

    Criticality, reactor physics, fusion and shielding benchmarks are expected to play important roles in GENIV design, safety analysis and in the validation of analytical tools used to design these reactors. For existing reactor technology, benchmarks are used to validate computer codes and test nuclear data libraries. However the selection of these benchmarks are usually done by visual inspection which is dependent on the expertise and the experience of the user and there by resulting in a user bias in the process. In this paper we present a method for the selection of these benchmarks for reactor applications based on Total Monte Carlo (TMC). Similarities betweenan application case and one or several benchmarks are quantified using the correlation coefficient. Based on the method, we also propose an approach for reducing nuclear data uncertainty using integral benchmark experiments as an additional constrain on nuclear reaction models: a binary accept/reject criterion. Finally, the method was applied to a full Lead Fast Reactor core and a set of criticality benchmarks.

  • 4.
    Alhassan, Erwin
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Helgesson, Petter
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Arjan, J. Koning
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Österlund, Michael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Pomp, Stephan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dimitri, Rochman
    Nuclear Research and Consultancy Group.
    Uncertainty and correlation analysis of lead nuclear data on reactor parameters for the European Lead Cooled Training Reactor2015In: Annals of Nuclear Energy, ISSN 0306-4549, E-ISSN 1873-2100, Vol. 75, p. 26-37Article in journal (Refereed)
    Abstract [en]

    The Total Monte Carlo (TMC) method was used in this study to assess the impact of Pb-204, 206, 207, 208 nuclear data uncertainties on reactor safety parameters for the ELECTRA reactor. Relatively large uncertainties were observed in the k-eff and the coolant void worth (CVW) for all isotopes except for Pb-204 with signicant contribution coming from Pb-208 nuclear data; the dominant eectcame from uncertainties in the resonance parameters; however, elastic scattering cross section and the angular distributions also had signicant impact. It was also observed that the k-eff distribution for Pb-206, 207, 208 deviates from a Gaussian distribution with tails in the high k-eff region. An uncertainty of 0.9% on the k-eff and 3.3% for the CVW due to lead nuclear data were obtained. As part of the work, cross section-reactor parameter correlations were also studied using a Monte Carlo sensitivity method. Strong correlations were observed between the k-eff and (n,el) cross section for all the lead isotopes. The correlation between the (n,inl) and the k-eff was also found to be signicant.

  • 5.
    Alhassan, Erwin
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Helgesson, Petter
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Österlund, Michael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Pomp, Stephan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Arjan, J. Koning
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics. Int Atom Energy Commiss, Nucl Data Sect, Vienna, Austria.
    Rochman, Dimitri
    Paul Scherrer Inst, Reactor Phys & Syst Behav Lab, CH-5232 Villigen, Switzerland.
    Selecting benchmarks for reactor simulations: an application to a Lead Fast Reactor2016In: Annals of Nuclear Energy, ISSN 0306-4549, E-ISSN 1873-2100, Vol. 96, p. 158-169Article in journal (Refereed)
    Abstract [en]

    For several decades reactor design has been supported by computer codes for the investigation of reactor behavior under both steady state and transient conditions. The use of computer codes to simulate reactor behavior enables the investigation of various safety scenarios saving time and cost. There has been an increase in the development of in-house (local) codes by various research groups in recent times for preliminary design of specific or targeted nuclear reactor applications. These codes must be validated and calibrated against experimental benchmark data with their evolution and improvements. Given the large number of benchmarks available, selecting these benchmarks for reactor calculations and validation of simulation codes for specific or target applications can be rather tedious and difficult. In the past, the traditional approach based on expert judgement using information provided in various handbooks, has been used for the selection of these benchmarks. This approach has been criticized because it introduces a user bias into the selection process. This paper presents a method for selecting these benchmarks for reactor calculations for specific reactor applications based on the Total Monte Carlo (TMC) method. First, nuclear model parameters are randomly sampled within a given probability distribution and a large set of random nuclear data files are produced using the TALYS code system. These files are processed and used to analyze a target reactor system and a set of criticality benchmarks. Similarity between the target reactor system and one or several benchmarks is quantified using a similarity index. The method has been applied to the European Lead Cooled Reactor (ELECTRA) and a set of plutonium and lead sensitive criticality benchmarks using the effective multiplication factor (keffkeff). From the study, strong similarity were observed in the keffkeff between ELECTRA and some plutonium and lead sensitive criticality benchmarks. Also, for validation purposes, simulation results for a list of selected criticality benchmarks simulated with the MCNPX and SERPENT codes using different nuclear data libraries have been compared with experimentally measured benchmark keff values.

  • 6.
    Alhassan, Erwin
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Helgesson, Petter
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Österlund, Michael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Pomp, Stephan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Koning, Arjan J.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics. Nuclear Research and Consultancy Group, Petten, The Netherlands.
    Rochman, D.
    Laboratory for Reactor Physics Systems Behaviour, Paul Scherrer Institut, Villigen, Switzerland.
    Benchmark selection methodology for reactor calculations and nuclear data uncertainty reduction2015In: Annals of Nuclear Energy, ISSN 0306-4549, E-ISSN 1873-2100Article in journal (Refereed)
    Abstract [en]

    Criticality, reactor physics and shielding benchmarks are expected to play important roles in GEN-IV design, safety analysis and in the validation of analytical tools used to design these reactors. For existing reactor technology, benchmarks are used for validating computer codes and for testing nuclear data libraries. Given the large number of benchmarks available, selecting these benchmarks for specic applications can be rather tedious and difficult. Until recently, the selection process has been based usually on expert judgement which is dependent on the expertise and the experience of the user and there by introducing a user bias into the process. This approach is also not suitable for the Total Monte Carlo methodology which lays strong emphasis on automation, reproducibility and quality assurance. In this paper a method for selecting these benchmarks for reactor calculation and for nuclear data uncertainty reduction based on the Total Monte Carlo (TMC) method is presented. For reactor code validation purposes, similarities between a real reactor application and one or several benchmarks are quantied using a similarity index while the Pearson correlation coecient is used to select benchmarks for nuclear data uncertainty reduction. Also, a correlation based sensitivity method is used to identify the sensitivity of benchmarks to particular nuclear reactions. Based on the benchmark selection methodology, two approaches are presented for reducing nuclear data uncertainty using integral benchmark experiments as an additional constraint in the TMC method: a binary accept/reject and a method of assigning file weights using the likelihood function. Finally, the methods are applied to a full lead-cooled fast reactor core and a set of criticality benchmarks. Signicant reductions in Pu-239 and Pb-208 nuclear data uncertainties were obtained after implementing the two methods with some benchmarks.

  • 7.
    Alhassan, Erwin
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Helgesson, Petter
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Österlund, Michael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Pomp, Stephan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Koning, Arjan J.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics. Int Atom Energy Commiss IAEA, Nucl Data Sect, Vienna, Austria.
    Rochman, Dmitri
    Paul Scherrer Inst, CH-5232 Villigen, Switzerland.
    On the use of integral experiments for uncertainty reduction of reactor macroscopic parameters within the TMC methodology2016In: Progress in nuclear energy (New series), ISSN 0149-1970, E-ISSN 1878-4224, Vol. 88, p. 43-52Article in journal (Refereed)
    Abstract [en]

    The current nuclear data uncertainties observed in reactor safety parameters for some nuclides call for safety concerns especially with respect to the design of GEN-IV reactors and must therefore be reduced significantly. In this work, uncertainty reduction using criticality benchmark experiments within the Total Monte Carlo methodology is presented. Random nuclear data libraries generated are processed and used to analyze a set of criticality benchmarks. Since the calculated results for each random nuclear data used are different, an algorithm was used to select (or assign weights to) the libraries which give a good description of experimental data for the analyses of the benchmarks. The selected or weighted libraries were then used to analyze the ELECTRA reactor. By using random nuclear data libraries constrained with only differential experimental data as our prior, the uncertainties observed were further reduced by constraining the files with integral experimental data to obtain a posteriori uncertainties on the k(eff). Two approaches are presented and compared: a binary accept/reject and a method of assigning file weights based on the likelihood function. Significant reductions in (PU)-P-239 and Pb-208 nuclear data uncertainties in the k(eff) were observed after implementing the two methods with some criticality benchmarks for the ELELIRA reactor. (C) 2015 Elsevier Ltd. All rights reserved.

  • 8.
    Alhassan, Erwin
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Rochman, Dimitri
    Helgesson, Petter
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    J. Koning, Arjan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics. IAEA.
    Österlund, Michael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Pomp, Stephan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Reducing A Priori 239Pu Nuclear Data Uncertainty In The Keff Using A Set Of Criticality Benchmarks With Different Nuclear Data Libraries2015Conference paper (Other academic)
    Abstract [en]

    In the Total Monte Carlo (TMC) method [1] developed at the Nuclear Research and Consultancy Group for nuclear data uncertainty propagation, model calculations are compared with differential experimental data and a specific a priori uncertainty is assigned to each model parameter. By varying the model parameters all together within model parameter uncertainties, a full covariance matrix is obtained with its off diagonal elements if desired [1]. In this way, differential experimental data serve as a constraint for the model parameters used in the TALYS nuclear reactions code for the production of random nuclear data files. These files are processed into usable formats and used in transport codes for reactor calculations and for uncertainty propagation to reactor macroscopic parameters of interest.

     

    Even though differential experimental data together with their uncertainties are included (implicitly) in the production of these random nuclear data files in the TMC method, wide spreads in parameter distributions have been observed, leading to large uncertainties in reactor parameters for some nuclides for the European Lead cooled Training Reactor [2]. Due to safety concerns and the development of GEN-IV reactors with their challenging technological goals, the present uncertainties should be reduced significantly if the benefits from advances in modelling and simulations are to be utilized fully [3]. In Ref.[4], a binary accept/reject approach and a more rigorous method of assigning file weights based on the likelihood function were proposed and presented for reducing nuclear data uncertainties using a set of integral benchmarks obtained from the International Handbook of Evaluated Criticality Safety Benchmark Experiments (ICSBEP). These methods are depended on the reference nuclear data library used, the combined benchmark uncertainty and the relevance of each benchmark for reducing nuclear data uncertainties for a particular reactor system. Since each nuclear data library normally comes with its own nominal values and covariance matrices, reactor calculations and uncertainties computed with these libraries differ from library to library.

     

    In this work, we apply the binary accept/reject approach and the method of assigning file weights based on the likelihood function for reducing a priori 239Pu nuclear data uncertainties for the European Lead Cooled Training Reactor (ELECTRA) using a set of criticality benchmarks. Prior and posterior uncertainties computed for ELECTRA using ENDF/B-VII.1, JEFF-3.2 and JENDL-4.0 are compared after including experimental information from over 10 benchmarks.

    [1] A.J. Koning and D. Rochman, Modern Nuclear Data Evaluation with the TALYS Code System. Nuclear Data Sheets 113 (2012) 2841-2934.

     

    [2] E. Alhassan, H. Sjöstrand, P. Helgesson, A. J. Koning, M. Österlund, S. Pomp, D. Rochman, Uncertainty and correlation analysis of lead nuclear data on reactor parameters for the European Lead Cooled Training reactor (ELECTRA). Annals of Nuclear Energy 75 (2015) 26-37.

     

    [3] G. Palmiotti, M. Salvatores, G. Aliberti, H. Hiruta, R. McKnight, P. Oblozinsky, W. Yang, A global approach to the physics validation of simulation codes for future nuclear systems, Annals of Nuclear Energy 36 (3) (2009) 355-361.

     

    [4] E. Alhassan, H. Sjöstrand, J. Duan, P. Helgesson, S. Pomp, M. Österlund, D. Rochman, A.J. Koning, Selecting benchmarks for reactor calculations: In proc. PHYSOR 2014 - The Role of Reactor Physics toward a Sustainable Future, kyoto, Japan, Sep. 28 - 3 Oct. (2014).

  • 9.
    Andersson, Peter
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Bjelkenstedt, Tom
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Jacobsson, Staffan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Neutron Tomography Using Mobile Neutron Generators for Assessment of Void Distributions in Thermal Hydraulic Test Loops2015Conference paper (Refereed)
    Abstract [en]

    Detailed knowledge of the lateral distribution of steam (void) and water in a nuclear fuel assembly is of great value for nuclear reactor operators and fuel manufacturers, with consequences for both reactor safety and economy of operation. Therefore, nuclear relevant two-phase flows are being studied at dedicated thermal-hydraulic test loop, using twophase flow systems ranging from simplified geometries such as heated circular pipes to full scale mock-ups of nuclear fuel assemblies. Neutron tomography (NT) has been suggested for assessment of the lateral distribution of steam and water in such test loops, motivated by a good ability of neutrons to penetrate the metallic structures of metal pipes and nuclear fuel rod mock-ups, as compared to e. g. conventional X-rays, while the liquid water simultaneously gives comparatively good contrast. However, these stationary test loops require the measurement setup to be mobile, which is often not the case for NT setups. Here, it is acknowledged that fast neutrons of 14 MeV from mobile neutron generators constitute a viable option for a mobile NT system. We present details of the development of neutron tomography for this purpose at the division of Applied Nuclear Physics at Uppsala University. Our concept contains a portable neutron generator, exploiting the fusion reaction of deuterium and tritium, and a detector with plastic scintillator elements designed to achieve adequate spatial and energy resolution, all mounted in a light-weight frame without collimators or bulky moderation to allow for a mobile instrument that can be moved about the stationary thermal hydraulic test sections. The detector system stores event-to-event pulse-height information to allow for discrimination based on the energy deposition in the scintillator elements. Experimental results from the tomographic assessment of axially symmetric test objects are shown, as well as simulation results from a scaled up version of the instrument for nonsymmetrical objects in quarter fuel-bundle size objects. In conclusion, the application of tomography on inch-wide vertical pipes has been experimentally demonstrated and simulation results indicate that tomography of the void distribution in nonsymmetrical vertical flows in quarter BWR fuel bundles is also feasible.

  • 10.
    Andersson, Peter
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Jacobsson Svärd, Staffan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Neutron tomography of axially symmetric objects using 14 MeV neutrons from a portable neutron generator2014In: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 85, no 8, p. 085109-Article in journal (Refereed)
    Abstract [en]

    In nuclear boiling water reactor cores, the distribution of water and steam (void) is essential for both safety and efficiency reasons. In order to enhance predictive capabilities, void distribution assessment is performed in two-phase test-loops under reactor-relevant conditions. This article proposes the novel technique of fast-neutron tomography using a portable deuterium-tritium neutron generator to determine the void distribution in these loops.Fast neutrons have the advantage of high transmission through the metallic structures and pipes typically concealing a thermal-hydraulic test loop, while still being fairly sensitive to the water/void content. However, commercially available fast-neutron generators also have the disadvantage of a relatively low yield and fast-neutron detection also suffers from relatively low detection efficiency. Fortunately, some loops are axially symmetric, a property which can be exploited to reduce the amount of data needed for tomographic measurement, thus limiting the interrogation time needed.In this article, three axially-symmetric test objects depicting a thermal-hydraulic test loop have been examined; steel pipes with outer diameter 24 mm, thickness 1.5 mm and with three different distributions of the plastic material POM inside the pipes. Data recorded with the FANTOM fast-neutron tomography instrument have been used to perform tomographic reconstructions to assess their radial material distribution. Here, a dedicated tomographic algorithm that exploits the symmetry of these objects has been applied, which is described in the paper.Results are demonstrated in 20 rixel (radial pixel) reconstructions of the interior constitution and 2D visualization of the pipe interior is demonstrated. The local POM attenuation coefficients in the rixels were measured with errors (RMS) of 0.025, 0.020 and 0.022 cm-1, solid POM attenuation coefficient. The accuracy and precision is high enough to provide a useful indication on the flow mode, and a visualization of the radial material distribution can be obtained. A benefit of this system is its potential to be mounted at any axial height of a two-phase test section without requirements for pre-fabricated entrances or windows. This could mean a significant increase in flexibility of the void distribution assessment capability at many existing two-phase test loops.

  • 11.
    Andersson, Peter
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Jacobsson Svärd, Staffan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Effects of proton escape on detection efficiency in thin scintillator elements and its consequences for optimization of fast-neutron imaging2011In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 651, no 1, p. 110-116Article in journal (Refereed)
    Abstract [en]

    Plastic scintillators are commonly used for neutron detection in the MeV energy range, based on n–p scattering and the subsequent deposition of recoil proton's kinetic energy in the detector material. This detection procedure gives a quasi-rectangular energy deposition distribution for mono-energetic neutrons, extending from zero to the neutron energy. However, if the detector sensitive element (DSE) is small, the energy deposition may be incomplete due to the recoil proton escape.

    In the application of neutron imaging, here exemplified by fast-neutron tomography, two conflicting requirements have been identified: (1) thin DSEs are required to obtain high spatial resolution and (2) energy discrimination may be required to reduce the influence of neutrons being scattered into the DSEs, which generally occurs at lower energies. However, at small DSE widths, the reduction of energy deposition due to recoil proton escape may cause a significant decrease in detection efficiency when energy discrimination is applied.

    In this work, energy deposition distributions in small-size DSEs have been simulated for Deuterium–Deuterium (DD; 2.5 MeV) and Deuterium–Tritium (DT; 14.1 MeV) fusion neutrons. The intrinsic efficiency has been analyzed as a function of energy discrimination level for various detector widths. The investigations show that proton recoil escape causes a significant drop in intrinsic detection efficiency for thin DSEs. For DT neutrons, the drop is 10% at a width of 3.2 mm and 50% at a width of 0.6 mm, assuming an energy threshold at half the incident neutron energy. The corresponding widths for a DD detector are 0.17 and 0.03 mm, respectively.

    Finally, implications of the proton escape effect on the design of a fast-neutron tomography device for void distribution measurements at Uppsala University are presented. It is shown that the selection of DSE width strongly affects the instrument design when optimizing for image unsharpness.

  • 12.
    Andersson, Peter
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sundén, E. Andersson
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Jacobsson Svärd, Staffan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Correction for dynamic bias error in transmission measurements of void fraction2012In: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 83, no 12, p. 125110-Article in journal (Refereed)
    Abstract [en]

    Dynamic bias errors occur in transmission measurements, such as X-ray, gamma, or neutron radiography or tomography. This is observed when the properties of the object are not stationary in time and its average properties are assessed. The nonlinear measurement response to changes in transmission within the time scale of the measurement implies a bias, which can be difficult to correct for. A typical example is the tomographic or radiographic mapping of void content in dynamic two-phase flow systems. In this work, the dynamic bias error is described and a method to make a first-order correction is derived. A prerequisite for this method is variance estimates of the system dynamics, which can be obtained using high-speed, time-resolved data acquisition. However, in the absence of such acquisition, a priori knowledge might be used to substitute the time resolved data. Using synthetic data, a void fraction measurement case study has been simulated to demonstrate the performance of the suggested method. The transmission length of the radiation in the object under study and the type of fluctuation of the void fraction have been varied. Significant decreases in the dynamic bias error were achieved to the expense of marginal decreases in precision.

  • 13.
    Andersson, Peter
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Valldor-Blücher, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Jacobsson Svärd, Staffan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Design and initial 1D radiography tests of the FANTOM mobile fast-neutron radiography and tomography system2014In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 756, p. 82-93Article in journal (Refereed)
    Abstract [en]

    The FANTOM system is a tabletop sized fast-neutron radiography and tomography system newly developed at the Applied Nuclear Physics Division of Uppsala University. The main purpose of the system is to provide time-averaged steam-and-water distribution measurement capability inside the metallic structures of two-phase test loops for Light Water Reactor thermal-hydraulic studies using a portable fusion neutron generator. The FANTOM system provides a set of 1D neutron transmission data, which may be inserted into tomographic reconstruction algorithms to achieve a 2D mapping of the steam-and-water distribution.

     

    In this paper, the selected design of FANTOM is described and motivated. The detector concept is based on plastic scintillator elements, separated for spatial resolution. Analysis of pulse heights on an event-to-event basis is used for energy discrimination. Although the concept allows for close stacking of a large number of detector elements, this demonstrator is equipped with only three elements in the detector and one additional element for monitoring the yield from the neutron generator.

     

    The first measured projections on test objects of known configurations are presented. These were collected using a Sodern Genie 16 neutron generator with an isotropic yield of about 1E8 neutrons per second, and allowed for characterization of the instrument’s capabilities. At an energy threshold of 10 MeV, the detector offered a count rate of about 500 cps per detector element. The performance in terms of spatial resolution was validated by fitting a Gaussian Line Spread Function to the experimental data, a procedure that revealed a spatial unsharpness in good agreement with the predicted FWHM of 0.5 mm.

  • 14.
    Andersson Sunden, E
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Neutron Research. Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, S
    Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, G
    Department of Physics and Astronomy, Applied Nuclear Physics.
    Gatu Johnson, M
    Department of Physics and Astronomy, Applied Nuclear Physics.
    Giacomelli, L
    Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, C
    Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, A
    Department of Physics and Astronomy, Applied Nuclear Physics.
    Källne, J
    Department of Physics and Astronomy, Applied Nuclear Physics.
    Ronchi, E
    Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, H
    Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, M
    Department of Physics and Astronomy, Applied Nuclear Physics.
    Gorini, G
    Tardocchi, M
    Murari, A
    Popovichev, S
    Sousa, J
    Pereira, R.C
    Combo, A
    Cruz, N
    JET EFDA contributors,
    Neutron emission spectroscopy diagnosis of JET D and DT plasmas with the new MPRu instrument2006In: 33rd EPS Conference on Plasma Phys. and Contr. Fusion, 2006, p. 30I P-1.071Conference paper (Refereed)
  • 15.
    Andersson Sundén, E
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, S
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, G
    Department of Neutron Research. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Gatu Johnson, M
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Giacomelli, L
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, C
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, A
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Källne, J
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ronchi, E
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, H
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, M
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Gorini, G
    Tardocchi, M
    Evaluation of Spectral Unfolding for Neutron Spectroscopy2007Report (Other (popular scientific, debate etc.))
  • 16.
    Andersson Sundén, E
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, S
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, G
    Department of Neutron Research. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Gatu Johnson, M
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Giacomelli, L
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, C
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Källne, J
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ronchi, E
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, H
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, M
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Gorini, G
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Tardocchi, M
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Evaluation of Spectral Unfolding for Neutron Spectroscopy2008In: AIP Conference Proceedings 988, 2008, p. 315-Conference paper (Refereed)
  • 17. Batistoni, P.
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    14 MeV calibration of JET neutron detectors-phase 1: calibration and characterization of the neutron source2018In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, no 2, article id UNSP 026012Article in journal (Refereed)
    Abstract [en]

    In view of the planned DT operations at JET, a calibration of the JET neutron monitors at 14 MeV neutron energy is needed using a 14 MeV neutron generator deployed inside the vacuum vessel by the JET remote handling system. The target accuracy of this calibration is +/- 10% as also required by ITER, where a precise neutron yield measurement is important, e.g. for tritium accountancy. To achieve this accuracy, the 14 MeV neutron generator selected as the calibration source has been fully characterised and calibrated prior to the in-vessel calibration of the JET monitors. This paper describes the measurements performed using different types of neutron detectors, spectrometers, calibrated long counters and activation foils which allowed us to obtain the neutron emission rate and the anisotropy of the neutron generator, i.e. the neutron flux and energy spectrum dependence on emission angle, and to derive the absolute emission rate in 4 pi sr. The use of high resolution diamond spectrometers made it possible to resolve the complex features of the neutron energy spectra resulting from the mixed D/T beam ions reacting with the D/T nuclei present in the neutron generator target. As the neutron generator is not a stable neutron source, several monitoring detectors were attached to it by means of an ad hoc mechanical structure to continuously monitor the neutron emission rate during the in-vessel calibration. These monitoring detectors, two diamond diodes and activation foils, have been calibrated in terms of neutrons/counts within +/- 5% total uncertainty. A neutron source routine has been developed, able to produce the neutron spectra resulting from all possible reactions occurring with the D/T ions in the beam impinging on the Ti D/T target. The neutron energy spectra calculated by combining the source routine with a MCNP model of the neutron generator have been validated by the measurements. These numerical tools will be key in analysing the results from the in-vessel calibration and to derive the response of the JET neutron detectors to DT plasma neutrons starting from the response to the generator neutrons, and taking into account all the calibration circumstances.

  • 18.
    Bläckberg, Lisa
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Fay, A.
    Jõgi, Indrek
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Materials Chemistry, Inorganic Chemistry.
    Biegalski, S.
    Boman, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Materials Chemistry, Inorganic Chemistry.
    Elmgren, K.
    Fritioff, T.
    Johansson, A.
    Martensson, L.
    Nielsen, F.
    Ringbom, A.
    Rooth, Mårten
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Klintenberg, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Investigations of surface coatings to reduce memory effect in plastic scintillator detectors used for radioxenon detection2011In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 656, no 1, p. 84-91Article in journal (Refereed)
    Abstract [en]

    In this work Al(2)O(3) and SiO(2) coatings are tested as Xe diffusion barriers on plastic scintillator substrates. The motivation is improved beta-gamma coincidence detection systems, used to measure atmospheric radioxenon within the verification regime of the Comprehensive Nuclear-Test-Ban Treaty. One major drawback with the current setup of these systems is that the radioxenon tends to diffuse into the plastic scintillator material responsible for the beta detection, resulting in an unwanted memory effect. Here, coatings with thicknesses between 20 and 900 nm have been deposited onto plastic scintillators, and investigated using two different experimental techniques. The results show that all tested coatings reduce the Xe diffusion into the plastic. The reduction is observed to increase with coating thickness for both coating materials. The 425 nm Al(2)O(3) coating is the most successful one, presenting a diffusion reduction of a factor 100, compared to uncoated plastic. In terms of memory effect reduction this coating is thus a viable solution to the problem in question.

  • 19.
    Bläckberg, Lisa
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Fritioff, T.
    Martensson, L.
    Nielsen, F.
    Ringbom, A.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Klintenberg, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Memory effect, resolution, and efficiency measurements of an Al2O3 coated plastic scintillator used for radioxenon detection2013In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 714, p. 128-135Article in journal (Refereed)
    Abstract [en]

    A cylindrical plastic scintillator cell, used for radioxenon monitoring within the verification regime of the Comprehensive Nuclear-Test-Ban Treaty, has been coated with 425 nm Al2O3 using low temperature Atomic Layer Deposition, and its performance has been evaluated. The motivation is to reduce the memory effect caused by radioxenon diffusing into the plastic scintillator material during measurements, resulting in an elevated detection limit. Measurements with the coated detector show both energy resolution and efficiency comparable to uncoated detectors, and a memory effect reduction of a factor of 1000. Provided that the quality of the detector is maintained for a longer period of time, Al2O3 coatings are believed to be a viable solution to the memory effect problem in question.

  • 20.
    Conroy, S
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, M
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Andersson Sundén, E
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, G
    Department of Neutron Research. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Gatu Johnson, M
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, C
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ronchi, E
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, H
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Neutron spectrometer for ITER using silicon detectors2008In: Rev. Sci. Instr., submitted, 2008Conference paper (Refereed)
  • 21.
    Drenik, A.
    et al.
    Max Planck Inst Plasma Phys, Garching, Germany; Jozef Stefan Inst, Ljubljana, Slovenia.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Natl Ctr Nucl Res NCBJ, Otwock, Poland.
    Analysis of the outer divertor hot spot activity in the protection video camera recordings at JET2019In: Fusion engineering and design, ISSN 0920-3796, E-ISSN 1873-7196, Vol. 139, p. 115-123Article in journal (Refereed)
    Abstract [en]

    Hot spots on the divertor tiles at JET result in overestimation of the tile surface temperature which causes unnecessary termination of pulses. However, the appearance of hot spots can also indicate the condition of the divertor tile surfaces. To analyse the behaviour of the hot spots in the outer divertor tiles of JET, a simple image processing algorithm is developed. The algorithm isolates areas of bright pixels in the camera image and compares them to previously identified hot spots. The activity of the hot spots is then linked to values of other signals and parameters in the same time intervals. The operation of the detection algorithm was studied in a limited pulse range with high hot spot activity on the divertor tiles 5, 6 and 7. This allowed us to optimise the values of the controlling parameters. Then, the wider applicability of the method has been demonstrated by the analysis of the hot spot behaviour in a whole experimental campaign.

  • 22.
    Duan, Junfeng
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Pomp, Stephan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Alhassan, Erwin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Gustavsson, Cecillia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Österlund, Michael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Koning, Arjan
    Rochman, Dimitri
    Uncertainty Study of Nuclear Model Parameters for the n+Fe-56 Reactions in the Fast Neutron Region below 20 MeV2014In: Nuclear Data Sheets, ISSN 0090-3752, E-ISSN 1095-9904, Vol. 118, p. 346-348Article in journal (Refereed)
    Abstract [en]

    In this work we study the uncertainty of nuclear model parameters for neutron induced Fe-56 reactions in the fast neutron region by using the Total Monte Carlo method. We perform a large number of TALYS runs and compare the calculated results with the experimental data of the cross sections to obtain the uncertainties of the model parameters. Based on the derived uncertainties another 1000 TALYS runs have been performed to create random cross section files. For comparison with the experimental data we calculate a weighted chi(2) value for each random file as well as the ENDF/B-VII. 1, JEFF-3.1, JENDL-4.0 and CENDL-3.1 data libraries. Furthermore, we investigate the optical model parameters correlation obtained by way of this procedure.

  • 23.
    Ericsson, G
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Neutron Research. Department of Physics and Astronomy, Applied Nuclear Physics.
    Andersson Sunden, E
    Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, H
    Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, C
    Department of Physics and Astronomy, Applied Nuclear Physics.
    Gatu Johnson, M
    Department of Physics and Astronomy, Applied Nuclear Physics.
    Giacomelli, L
    Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, C
    Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, A
    Department of Physics and Astronomy, Applied Nuclear Physics.
    Källne, J
    Department of Physics and Astronomy, Applied Nuclear Physics.
    Ronchi, E
    Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, M
    Department of Physics and Astronomy, Applied Nuclear Physics.
    Wikström, G
    Gorini, G
    Tardocchi, M
    Pereira, R.C
    Combo, A
    Cruz, N
    Sousa, J
    Correia, C
    Popovichev, S
    JET EFDA contributors,
    Upgrade of the Magnetic Proton Recoil (MPRu) spectrometer for 1.5-18 MeV neutrons for JET and the next step2006In: Workshop on Fast Neutron Detection and Applications,, 2006, p. 039-Conference paper (Refereed)
  • 24.
    Ericsson, G
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Neutron Research. Department of Physics and Astronomy, Applied Nuclear Physics.
    Andersson Sundén, E
    Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, S
    Department of Physics and Astronomy, Applied Nuclear Physics.
    Gatu Johnson, M
    Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, C
    Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, A
    Department of Physics and Astronomy, Applied Nuclear Physics.
    Ronchi, E
    Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, H
    Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, M
    Department of Physics and Astronomy, Applied Nuclear Physics.
    Källne, J
    Department of Physics and Astronomy, Applied Nuclear Physics.
    Gorini, G
    Department of Physics and Astronomy, Applied Nuclear Physics.
    Ognissanto, F
    Department of Physics and Astronomy, Applied Nuclear Physics.
    Tardocchi, M
    Department of Physics and Astronomy, Applied Nuclear Physics.
    Angelone, M
    Department of Physics and Astronomy, Applied Nuclear Physics.
    Popovichev, S
    Department of Physics and Astronomy, Applied Nuclear Physics.
    Prospects for High Resolution Neutron Spectroscopy on High Power Fusion Devices in View of the Recent Diagnostic Developments at JET2008In: AIP Conference Proceedings 988, 2008, p. 307-Conference paper (Refereed)
  • 25.
    Ericsson, G
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Neutron Research. Department of Physics and Astronomy, Applied Nuclear Physics.
    Andersson Sundén, E
    Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, S
    Department of Physics and Astronomy, Applied Nuclear Physics.
    Gatu Johnson, M
    Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, C
    Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, A
    Department of Physics and Astronomy, Applied Nuclear Physics.
    Ronchi, E
    Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, H
    Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, M
    Department of Physics and Astronomy, Applied Nuclear Physics.
    Källne, J
    Department of Physics and Astronomy, Applied Nuclear Physics.
    Gorini, G
    Ognissanto, F
    Tardocchi, M
    Angelone, M
    Popovichev, S
    Prospects for High Resolution Neutron Spectroscopy on High Power Fusion Devices in View of the Recent Diagnostic Developments at JET2007Report (Other (popular scientific, debate etc.))
  • 26.
    Gatu Johnson, M
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Giacomelli, L
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, A
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Källne, J
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, M
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Andersson Sundén, E
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, S
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, G
    Department of Neutron Research. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, C
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ronchi, E
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, H
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Gorini, G
    Tardocchi, M
    Combo, A
    Cruz, N
    Sousa, J
    Popovichev, S
    The 2.5 MeV Neutron Time-of-Flight Spectrometer TOFOR for Experiments at JET2007Report (Other (popular scientific, debate etc.))
  • 27.
    Gatu Johnson, M
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Giacomelli, L
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, A
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, M
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Andersson Sundén, E
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, S
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, G
    Department of Neutron Research. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, C
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Källne, J
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ronchi, E
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    sjöstrand, H
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Gorini, G
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Tardocchi, M
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    The TOFOR Neutron Spectrometer for High Performance Measurements of D Plasma Fuel Ion Properties2008In: AIP Conference Proceedings 988, 2008, p. 311-Conference paper (Refereed)
  • 28.
    Gatu Johnson, M
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Giacomelli, L
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, A
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, M
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Andersson Sundén, E
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, S
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, G
    Department of Neutron Research. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, C
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Källne, J
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ronchi, E
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, H
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Gorini, G
    Tardocchi, M
    The TOFOR Neutron Spectrometer for High-Performance Measurements of D Plasma Fuel Ion Properties2007Report (Other (popular scientific, debate etc.))
  • 29.
    Gatu Johnson, Maria
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Giacomelli, L
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Källne, Jan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics. Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ronchi, Emanuele
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Gorini, G
    Tardocchi, M
    Combo, A
    Cruz, N
    Sousa, J
    Popovichev, S
    The 2.5-MeV neutron time-of-flight spectrometer TOFOR for experiments at JET2008In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 591, no 2, p. 417-430Article in journal (Refereed)
    Abstract [en]

    A time-of-flight (TOF) spectrometer for measurement of the 2.5-MeV neutron emission from fusion plasmas has been developed and put into use at the JET tokamak. It has been optimized for operation at high rates (TOFOR) for the purpose of performing advanced neutron emission spectroscopy (NES) diagnosis of deuterium plasmas with a focus on the fuel ion motional states for different auxiliary heating scenarios. This requires operation over a large dynamic range, including high rates of > 100 kHz with a maximum value of 0.5 MHz for the TOFOR design. This paper describes the design principles and their technical realization. The performance is illustrated with recent neutron TOF spectra recorded for plasmas subjected to different heating scenarios. A true event count rate of 39 kHz has been achieved at about a tenth of the expected neutron yield limit of JET, giving a projected maximum of 400 kHz at peak JET plasma yield. This means that the count rate capability for NES diagnosis of D plasmas has been improved more than an order of magnitude. Another important performance factor is the spectrometer bandwidth, where data have been acquired and analyzed successfully with a response function for neutrons over the energy range 1 to > 5 MeV. The implications of instrumental advancement represented by TOFOR are discussed.

  • 30.
    Gatu Johnson, Maria
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Neutron Research. Department of Physics and Astronomy, Applied Nuclear Physics.
    Giacomelli, Luca
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Neutron Research. Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Neutron Research. Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Neutron Research. Department of Physics and Astronomy, Applied Nuclear Physics.
    Andersson Sundén, Erik
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Neutron Research. Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Neutron Research. Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Neutron Research. Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Neutron Research. Department of Physics and Astronomy, Applied Nuclear Physics.
    Källne, Jan
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Neutron Research. Department of Physics and Astronomy, Applied Nuclear Physics.
    Ronchi, Emanuele
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Neutron Research. Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Neutron Research. Department of Physics and Astronomy, Applied Nuclear Physics.
    The TOFOR neutron spectrometer and its first use at JET2006In: Review of Scientific Instruments: Proceedings of the 16th topical conference on High-Temperature Plasma Diagnostics 7-11 May 2006 Williamsburg, Virginia, 2006, p. 840-Conference paper (Refereed)
    Abstract [en]

    A time-of-flight neutron spectrometer (TOFOR) has been developed to measure the 2.45 MeV d+d3He+n neutron emission from D plasmas. The TOFOR design features the capability to operate at high rates in the 100 kHz range, data collection with fast time digitizing and storing, and monitoring of the signals from the scintillation detectors used. This article describes the principles of the instrument and its installation at JET and presents preliminary data to illustrate the TOFOR performance as a neutron emission spectroscopy diagnostic.

  • 31. Giacomelli, L
    et al.
    Andersson Sunden, E
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, S
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, G
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Gatu Johnson, M
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, C
    Department of Neutron Research. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, A
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Källne, J
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ronchi, E
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, H
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, M
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Gorini, G
    Tardocchi, M
    Murari, A
    Popovichev, S
    Souse, J
    Pereira, R.C
    Combo, A
    Cruz, N
    JET EFDA contributors,
    Development and characterization of the proton recoil detector for the MPRu neutron spectrometer2006In: Rev. Sci. Instrum, Vol. 77, p. 10E708-Article in journal (Refereed)
  • 32.
    Giacomelli, L
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, C
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, A
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, H
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Källne, J
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, S
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, G
    Department of Neutron Research. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Andersson Sundén, E
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Gatu Johnson, M
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Glasser, W
    Gorini, G
    Ronchi, E
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Tardocchi, M
    Weiszflog, M
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Characterization of Phoswich Scintillation Detectors for the Focal Plane Hodoscope of Magnetic Proton Recoil Spectrometers for Fusion Neutrons2007Report (Other (popular scientific, debate etc.))
  • 33.
    Giacomelli, L
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, A
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, C
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Gatu Johnson, M
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Källne, J
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, M
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sharapov, S
    Andersson Sundén, E
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, S
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, G
    Department of Neutron Research. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ronchi, E
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, H
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Gorini, G
    Tardocchi, M
    Popovichev, S
    Johnson, T
    Neutron Emission Spectroscopy Diagnosis of Fast Ions in RF (3He) Heated Plasmas at JET2007Report (Other (popular scientific, debate etc.))
  • 34.
    Giacomelli, L
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, A
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Källne, J
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, C
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Tardocchi, M
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Goroni, G
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Van Eester, D
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Lerche, E
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Johnson, T
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Kiptily, V
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, S
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Andersson Sundén, E
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, G
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Gatu Johnson, M
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ronchi, E
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, H
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, M
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Neutron Emission Spectroscopy Results for ITB and Mode Conversion ICRH Experiments at JET2008In: Rev. Sci. Instr., submitted, 2008Conference paper (Refereed)
  • 35.
    Giacomelli, Luca
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Neutron Research. Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Neutron Research. Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Neutron Research. Department of Physics and Astronomy, Applied Nuclear Physics.
    Glasser, Wolfgang
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Neutron Research. Department of Physics and Astronomy, Applied Nuclear Physics.
    Källne, Jan
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Neutron Research. Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Neutron Research. Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Neutron Research. Department of Physics and Astronomy, Applied Nuclear Physics.
    Gatu Johnson, Maria
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Neutron Research. Department of Physics and Astronomy, Applied Nuclear Physics.
    Gorini, G
    Henriksson, Hans
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Neutron Research. Department of Physics and Astronomy, Applied Nuclear Physics.
    Popovichev, S
    Ronchi, Emanuele
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Neutron Research. Department of Physics and Astronomy, Applied Nuclear Physics.
    Sousa, J
    Andersson Sundén, Erik
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Neutron Research. Department of Physics and Astronomy, Applied Nuclear Physics.
    Tardocchi, M
    Thun, Johan
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Neutron Research. Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Neutron Research. Department of Physics and Astronomy, Applied Nuclear Physics.
    Advanced Neutron Diagnostics for JET and ITER Fusion Experiments2005In: Nuclear Fusion, Vol. 45, p. 1191-1201Article in journal (Refereed)
    Abstract [en]

    The diagnostics functions of neutron measurements as well as the roles played by neutron yield monitors, cameras and spectrometers are reviewed. The importance of recent developments in neutron emission spectroscopy (NES) diagnostics is emphasized. Results are presented from the NES diagnosis of the Joint European Torus (JET) plasmas performed with the magnetic proton recoil (MPR) spectrometer during the first deuterium tritium experiment of 1997 and the recent trace tritium experiment of 2003. The NES diagnostic capabilities at JET are presently being enhanced by an upgrade of the MPR (MPRu) and a new 2.5 MeV time-of-flight (TOF) neutron spectrometer (TOFOR). The principles of MPRu and TOFOR are described and illustrated with the diagnostic role they will play in the high performance fusion experiments in the forward programme of JET largely aimed at supporting the International Thermonuclear Experimental Reactor (ITER). The importance of the JET NES effort for ITER is discussed.

  • 36. Gorini, G
    et al.
    Andersson Sundén, E
    Uppsala University.
    Ballabio, L
    Conroy, S
    Uppsala University.
    Ericsson, G
    Uppsala University.
    Gatu Johnson, M
    Uppsala University.
    Giacomelli, L
    Uppsala University.
    Hellesen, C
    Uppsala University.
    Hjalmarsson, A
    Uppsala University.
    Källne, J
    Uppsala University.
    Murari, A
    Ognissanto, F
    Sjöstrand, H
    Uppsala University.
    Ronchi, E
    Uppsala University.
    Tardocchi, M
    Weiszflog, M
    Uppsala University.
    High-Energy Fuel Ion Diagnostics on ITER Derived from Neutron Emission Spectroscopy Measurements on JET DT Plasmas2006Report (Other (popular scientific, debate etc.))
  • 37.
    Gorini, G
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Neutron Research. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Neutron Research. Department of Physics and Astronomy, Applied Nuclear Physics.
    Källne, J
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Neutron Research. Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, S
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Neutron Research. Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, G
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Neutron Research. Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, H
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Neutron Research. Department of Physics and Astronomy, Applied Nuclear Physics.
    Triton burnup studies at JET2003In: Europhysics Conference Abstracts Vol. 27A (2003): 30th EPS Conf. on Contr. Fusion and Plsma Phys., 2003Conference paper (Other scientific)
  • 38.
    Gorini, Giuseppe
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Neutron Research. Department of Physics and Astronomy, Applied Nuclear Physics.
    Källne, Jan
    Department of Physics and Astronomy, Applied Nuclear Physics.
    Voitsekhovitch, I
    Adams, M
    Bertalot, L
    Budny, R
    Conroy, Sean
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Neutron Research. Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Neutron Research. Department of Physics and Astronomy, Applied Nuclear Physics.
    Giacomelli, Luca
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Neutron Research. Department of Physics and Astronomy, Applied Nuclear Physics.
    Hawkes, N
    Henriksson, Hans
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Neutron Research. Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Neutron Research. Department of Physics and Astronomy, Applied Nuclear Physics.
    Joffrin, E
    Popovichev, S
    Sjöstrand, Henrik
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Neutron Research. Department of Physics and Astronomy, Applied Nuclear Physics.
    Tardocchi, Marco
    de Vries, P
    Weiszflog, Matthias
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Neutron Research. Department of Physics and Astronomy, Applied Nuclear Physics.
    Yavorskij, Y
    Zastrow, K-D
    Neutron Emission from Beam-Injected Fast Tritons in JET Plasmas with Reversed or Monotonic Magnetic Shear.2004In: 31st EPS Conference on Plasma Physics, 2004, p. 4-Conference paper (Other scientific)
    Abstract [en]

    The neutron emission from fast tritons in plasmas with different magnetic shear

    configurations has been investigated in a dedicated experiment on JET. Short pulses of

    neutral beam injection were used to deposit fast tritons in deuterium plasmas. By comparing

    the measured neutron yield with predictions based on DT reaction calculations, fast triton

    losses can be assessed. The latter are expected to be very low according to neoclassical

    predictions based on Fokker-Planck simulation [1]. Much larger “anomalous” beam-ion

    losses (up to 40%) have been reported in TFTR experiments for plasma conditions with

    reversed magnetic shear [2]. The TFTR experiments indicated an excess DT rate in the

    simulation and, to a lesser extent, in the DD rate and plasma stored energy. This was

    interpreted as anomalous beam-ion loss associated with reverse shear due to an unidentified

    loss mechanism. Evidence of a similar effect was searched for in the JET experiments

    reported in this paper.

  • 39.
    Griffin, Peter J.
    et al.
    Sandia National Laboratories, Albuquerque, NM, USA.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Simakov, Stanislav
    Karlsruhe Institute of Technology, Karlsruhe, Germany.
    Nuclear Reaction Data and Uncertainties for Radiation Damage: Summary Report of the Technical Meeting, IAEA Headquarters, Vienna, Austria13 – 16 June 20162016Report (Other academic)
    Abstract [en]

    This Meeting was organized to implement the recommendation of the second Research Coordinated Meeting (RCM) of the International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) “Primary Radiation Damage Cross Sections” to analyse the accuracy and consistency of the radiation damage-relevant nuclear data in the major nuclear data evaluations with the eventual goal of identifying the most reliable data and provide quantitative uncertainty estimates. Participants have considered the status of the primary nuclear data, such as recoils spectra in the latest releases of ENDF, JEFF, JENDL, FENDL, ROSFOND and TENDL, the ways of deriving the damage quantities KERMA, NRT- or arc-dpa and gas production cross sections as well as the recipes for an assessment of their uncertainties. This report contains the contemporary view of the Meeting participants on these issues in the form of a consolidated set of statements, recommendations and individual summaries.

  • 40. Hatano, Y.
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I
    Tritium distributions on W-coated divertor tiles used in the third JET ITER-like wall campaign2019In: Nuclear Materials and Energy, E-ISSN 2352-1791, Vol. 18, p. 258-261Article in journal (Refereed)
    Abstract [en]

    Tritium (T) distributions on tungsten (W)-coated plasma-facing tiles used in the third ITER-like wall campaign (2015-2016) of the Joint European Torus (JET) were examined by means of an imaging plate technique and beta-ray induced x-ray spectrometry, and they were compared with the distributions after the second (2013-2014) campaign. Strong enrichment of T in beryllium (Be) deposition layers was observed after the second campaign. In contrast, T distributions after the third campaign was more uniform though Be deposition layers were visually recognized. The one of the possible explanations is enhanced desorption of T from Be deposition layers due to higher tile temperatures caused by higher energy input in the third campaign.

  • 41.
    Helgesson, Petter
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Neudecker, Denise
    XCP Division, Los Alamos National Lab, NM, USA.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Grosskopf, Michael
    Department of Statistics and Actuarial Science, Simon Fraser University, Canada.
    Smith, Donald L.
    Argonne Associate of Seville, Argonne National Laboratory, CA, USA.
    Capote, Roberto
    NAPC-Nuclear Data Section, International Atomic Energy Agency, Austria.
    Assessment of Novel Techniques for Nuclear Data Evaluation2018In: Reactor Dosimetry: 16th International Symposium, ASTM International, 2018, p. 105-116Conference paper (Refereed)
    Abstract [en]

    The quality of evaluated nuclear data can be impacted by, e.g., the choice of the evaluation algorithm. The objective of this work is to compare the performance of the evaluation techniques GLS, GLS-P, UMC-G, and, UMC-B, by using synthetic data. In particular, the effects of model defects are investigated. For small model defects, UMC-B and GLS-P are found to perform best, while these techniques yield the worst results for a significantly defective model; in particular, they seriously underestimate the uncertainties. If UMC-B is augmented with Gaussian processes,it performs distinctly better for a defective model but is more susceptible to an inadequate experimental covariance estimate.

  • 42.
    Helgesson, Petter
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Rochman, Dimitri
    Nuclear Research and Consultancy Group NRG, Petten, The Netherlands.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Alhassan, Erwin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Koning, Arjan
    Nuclear Research and Consultancy Group NRG, Petten, The Netherlands.
    UO-2 Versus MOX: Propagated Nuclear Data Uncertainty for k-eff, with Burnup2014In: Nuclear science and engineering, ISSN 0029-5639, E-ISSN 1943-748X, Vol. 177, no 3, p. 321-336Article in journal (Refereed)
    Abstract [en]

    Precise assessment of propagated nuclear data uncertainties in integral reactor quantities is necessary for the development of new reactors as well as for modified use, e.g. when replacing UO-2 fuel by MOX fuel in conventional thermal reactors.

    This paper compares UO-2 fuel to two types of MOX fuel with respect to propagated nuclear data uncertainty, primarily in k-eff, by applying the Fast Total Monte Carlo method (Fast TMC) to a typical PWR pin cell model in Serpent, including burnup. An extensive amount of nuclear data is taken into account, including transport and activation data for 105 isotopes, fission yields for 13 actinides and thermal scattering data for H in H2O.

    There is indeed a significant difference in propagated nuclear data uncertainty in k-eff; at 0 burnup the uncertainty is 0.6 % for UO-2 and about 1 % for the MOX fuels. The difference decreases with burnup. Uncertainties in fissile fuel isotopes and thermal scattering are the most important for the difference and the reasons for this are understood and explained.

    This work thus suggests that there can be an important difference between UO-2 and MOX for the determination of uncertainty margins. However, the effects of the simplified model are difficult to overview; uncertainties should be propagated in more complicated models of any considered system. Fast TMC however allows for this without adding much computational time.

  • 43.
    Helgesson, Petter
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Fitting a defect non-linear model with or without prior, distinguishing nuclear reaction products as an example2017In: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 88, article id 115114Article in journal (Refereed)
    Abstract [en]

    Fitting parametrized functions to data is important for many researchers and scientists. If the model is non-linear and/or defect, it is not trivial to do correctly and to include an adequate uncertainty analysis. This work presents how the Levenberg-Marquardt algorithm for non-linear generalized least squares fitting can be used with a prior distribution for the parameters, and how it can be combined with Gaussian processes to treat model defects. An example, where three peaks in a histogram are to be distinguished, is carefully studied. In particular, the probability r1 for a nuclear reaction to end up in one out of two overlapping peaks is studied. Synthetic data is used to investigate effects of linearizations and other assumptions. For perfect Gaussian peaks, it is seen that the estimated parameters are distributed close to the truth with good covariance estimates. This assumes that the method is applied correctly; for example, prior knowledge should be implemented using a prior distribution, and not by assuming that some parameters are perfectly known (if they are not). It is also important to update the data covariance matrix using the fit if the uncertainties depend on the expected value of the data (e.g., for Poisson counting statistics or relative uncertainties). If a model defect is added to the peaks, such that their shape is unknown, a fit which assumes perfect Gaussian peaks becomes unable to reproduce the data, and the results for r1 become biased. It is, however, seen that it is possible to treat the model defect with a Gaussian process with a covariance function tailored for the situation, with hyper-parameters determined by leave-one-out cross validation. The resulting estimates for r1 are virtually unbiased, and the uncertainty estimates agree very well with the underlying uncertainty.

  • 44.
    Helgesson, Petter
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics. Nuclear Research and Consultancy Group NRG, Petten, The Netherlands.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Justified and complete gas-production cross sections with uncertainties for Ni-59 and consequences for stainless steel in LWR spectra2016Other (Other academic)
  • 45.
    Helgesson, Petter
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Treating defects in nuclear reaction models to improve material damage parameters and their uncertainties2017Conference paper (Other academic)
  • 46.
    Helgesson, Petter
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Treating model defects by fitting smoothly varying model parameters: Energy dependence in nuclear data evaluation2018In: Annals of Nuclear Energy, ISSN 0306-4549, E-ISSN 1873-2100, Vol. 120, p. 35-47Article in journal (Refereed)
    Abstract [en]

    The fitting of models to data is essential in nuclear data evaluation, as in many other fields of science. The models maybe necessary for interpolation or extrapolation, but they are seldom perfect; there are model defects present which can result in severe biases and underestimated uncertainties. This work presents and investigates the idea to treat this problem by letting the model parameters vary smoothly with an input parameter. To be specific, the model parameters for neutron cross sections are allowed to vary with neutron energy. The parameter variation is limited by Gaussian processes, but the method should not be confused with adding a Gaussian process to the model. The performance of the method is studied using a large number of synthetic data sets, such that it is possible to quantitatively study the distribution of results compared to the underlying truth. There are imperfections in the results, but the method is seen to readily outperform fits without the energy dependent parameters. In particular, the estimates of uncertainty and correlations are much better. Hence, the method seems to offer a promising route for future treatment of model defects, both for nuclear data and elsewhere.

  • 47.
    Helgesson, Petter
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Treating model defects with a Gaussian Process prior for the parameters2017Conference paper (Other academic)
    Abstract [en]

    The covariance information in TENDL is obtained by propagating uncertainties of, e.g., TALYSparameters to the observables, and by attempting to match the parameter uncertainties to the experimental data. This results in model-driven covariances with strong energy‐energy correlations, which can lead to erroneously estimated uncertainties for both differential and integral observables.Further, the model driven approach is sensitive to model defects, which can introduce biases and underestimated uncertainties.To resolve the issue of model defects in nuclear data (ND) evaluation, models the defect with a Gaussian process. This can reduce biases and give more correct covariances, including weakerenergy‐energy correlations. In the presented work, we continue the development of using Gaussian processes to treat model defects in ND evaluation, within a TENDL framework. The Gaussian processes are combined with the Levenberg‐Marquardt algorithm for non‐linear fitting, which reduces the need for a prior distribution. Further, it facilitates the transfer of knowledge to other nuclides by working in the parameter domain. First, synthetic data is used to validate the quality of both mean values and covariances provided by the method. After this, we fit TALYS parameters and a model defect correction to the 56Fe data in EXFOR.

  • 48.
    Helgesson, Petter
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics. Nucl Res & Consultancy Grp NRG, Petten, Netherlands.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Arjan, J. Koning
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics. Nucl Res & Consultancy Grp NRG, Petten, Netherlands.
    Rydén, Jesper
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Applied Mathematics and Statistics.
    Rochman, Dimitri
    PSI, Villigen, Switzerland.
    Alhassan, Erwin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Pomp, Stephan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Combining Total Monte Carlo and Unified Monte Carlo: Bayesian nuclear data uncertainty quantification from auto-generated experimental covariances2017In: Progress in nuclear energy (New series), ISSN 0149-1970, E-ISSN 1878-4224, Vol. 96, p. 76-96Article in journal (Refereed)
    Abstract [en]

    The Total Monte Carlo methodology (TMC) for nuclear data (ND) uncertainty propagation has been subject to some critique because the nuclear reaction parameters are sampled from distributions which have not been rigorously determined from experimental data. In this study, it is thoroughly explained how TMC and Unified Monte Carlo-B (UMC-B) are combined to include experimental data in TMC. Random ND files are weighted with likelihood function values computed by comparing the ND files to experimental data, using experimental covariance matrices generated from information in the experimental database EXFOR and a set of simple rules. A proof that such weights give a consistent implementation of Bayes' theorem is provided. The impact of the weights is mainly studied for a set of integral systems/applications, e.g., a set of shielding fuel assemblies which shall prevent aging of the pressure vessels of the Swedish nuclear reactors Ringhals 3 and 4.

    In this implementation, the impact from the weighting is small for many of the applications. In some cases, this can be explained by the fact that the distributions used as priors are too narrow to be valid as such. Another possible explanation is that the integral systems are highly sensitive to resonance parameters, which effectively are not treated in this work. In other cases, only a very small number of files get significantly large weights, i.e., the region of interest is poorly resolved. This convergence issue can be due to the parameter distributions used as priors or model defects, for example.

    Further, some parameters used in the rules for the EXFOR interpretation have been varied. The observed impact from varying one parameter at a time is not very strong. This can partially be due to the general insensitivity to the weights seen for many applications, and there can be strong interaction effects. The automatic treatment of outliers has a quite large impact, however.

    To approach more justified ND uncertainties, the rules for the EXFOR interpretation shall be further discussed and developed, in particular the rules for rejecting outliers, and random ND files that are intended to describe prior distributions shall be generated. Further, model defects need to be treated.

  • 49.
    Helgesson, Petter
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    J. Koning, Arjan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics. IAEA.
    Rochman, Dimitri
    New 59Ni data including uncertainties and consequences for gas production in steel in LWR spectraNew 59Ni data including uncertainties and consequences for gas production in steel in LWR spectra2015Conference paper (Other academic)
    Abstract [en]

    Abstract: With ageing reactor fleets, the importance of estimating material damage parameters in structural materials is increasing. 59Ni is not naturally abundant, but as noted in, e.g., Ref. [1], the two-step reaction 58Ni(n,γ)59Ni(n,α)56Fe gives a very important contribution to the helium production and damage energy in stainless steel in thermal spectra, because of the extraordinarily large thermal (n,α) cross section for 59Ni (for most other nuclides, the (n,α) reaction has a threshold). None of the evaluated data libraries contain uncertainty information for (n,α) and (n,p) for 59Ni for thermal energies and the resonance region. Therefore, new such data is produced in this work, including random data to be used with the Total Monte Carlo methodology [2] for nuclear data uncertainty propagation.

                      The limited R-matrix format (“LRF = 7”) of ENDF-6 is used, with the Reich-Moore approximation (“LRF = 3” is just a subset of Reich-Moore). The neutron and gamma widths are obtained from TARES [2], with uncertainties, and are translated into LRF = 7. The α and proton widths are obtained from the little information available in EXFOR [3] (assuming large uncertainties because of lacking documentation) or from sampling from unresolved resonance parameters from TALYS [2], and they are split into different channels (different excited states of the recoiling nuclide, etc.). Finally, the cross sections are adjusted to match the experiments at thermal energies, with uncertainties.

                      The data is used to estimate the gas production rates for different systems, including the propagated nuclear data uncertainty. Preliminary results for SS304 in a typical thermal spectrum, show that including 59Ni at its peak concentration increases the helium production rate by a factor of 4.93 ± 0.28 including a 5.7 ± 0.2 % uncertainty due to the 59Ni data. It is however likely that the uncertainty will increase substantially from including the uncertainty of other nuclides and from re-evaluating the experimental thermal cross sections.

  • 50.
    Helgesson, Petter
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    J. Koning, Arjan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics. IAEA.
    Rochman, Dimitri
    Alhassan, Erwin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Pomp, Stephan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Towards Transparent, Reproducible And Justified Nuclear Data Uncertainty Propagation For Lwr Applications2015Conference paper (Other academic)
    Abstract [en]

    Any calculated quantity is practically meaningless without estimates on the uncertainty of theobtained results, not the least when it comes to, e.g., safety parameters in a nuclear reactor. Oneof the sources of uncertainty in reactor physics computations or simulations are the uncertaintiesof the so called nuclear data, i.e., cross sections, angular distributions, fission yields, etc. Thecurrently dominating method for propagating nuclear data uncertainties (using covariance dataand sensitivity analysis) suffers from several limitations, not the least in how the the covariancedata is produced – the production relies to a large extent on personal judgment of nuclear dataevaluators, leading to results which are difficult to reproduce from fundamental principles.Further, such a method assumes linearity, it in practice limits both input and output to bemodeled as Gaussian distributions, and the covariance data in the established nuclear datalibraries is incomplete.“Total Monte Carlo” (TMC) is a nuclear data uncertainty propagation method based on randomsampling of nuclear reaction model parameters which aims to resolve these issues. The methodhas been applied to various applications, ranging from pin cells and criticality safety benchmarksto full core neutronics as well as models including thermo-hydraulics and transients. However,TMC has been subject to some critique since the distributions of the nuclear model parameters,and hence of the nuclear data, has not been deduced from really rigorous statistical theory. Thispresentation briefly discusses the ongoing work on how to use experimental data to approachjustified results from TMC, including the effects of correlations between experimental datapoints and the assessment of such correlations. In this study, the random nuclear data libraries areprovided with likelihood weights based on their agreement to the experimental data, as a meansto implement Bayes' theorem.Further, it is presented how TMC is applied to an MCNP-6 model of shielding fuel assemblies(SFA) at Ringhals 3 and 4. Since the damage from the fast neutron flux may limit the lifetimes ofthese reactors, parts of the fuel adjacent to the pressure vessel is replaced by steel (the SFA) toprotect the vessel, in particular the four points along the belt-line weld which have been exposedto the largest fluence over time. The 56Fe data uncertainties are considered, and the estimatedrelative uncertainty at a quarter of the pressure vessel is viewed in Figure 1 (right) as well as theflux pattern itself (left). The uncertainty in the flux reduction at a selected sensitive point is 2.5± 0.2 % (one standard deviation). Applying the likelihood weights does not have muchimpact for this case, which could indicate that the prior distribution for the 56Fe data is too“narrow” (the used libraries are not really intended to describe a prior distribution), and that thetrue uncertainty is substantially greater. Another explanation could be that the dominating sourceof uncertainty is the high-energy resonances which are treated inefficiently by such weights.In either case, the efforts to approach justified, transparent, reproducible and highly automatizednuclear data uncertainties shall continue. On top of using libraries that are intended to describeprior distributions and treating the resonance region appropriately, the experimental correlationsshould be better motivated and the treatment of outliers shall be improved. Finally, it is probablynecessary to use experimental data in a more direct sense where a lot of experimental data isavailable, since the nuclear models are imperfect.Figure 1. The high energy neutron flux at the reactor pressure vessel in the SFA model, and thecorresponding propagated 56Fe data uncertainty.

123 1 - 50 of 121
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf