Change search
Refine search result
1 - 15 of 15
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Hallgren, Stefan
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Environmental toxicology.
    Lee, Iwa
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Environmental toxicology.
    Buratovic, Sonja
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Environmental toxicology.
    Fredriksson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Environmental toxicology.
    Eriksson, Per
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Environmental toxicology.
    Viberg, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Environmental toxicology.
    Adult dose-response-related behavioral effects of 4 different pesticides, after neonatal exposure2014Conference paper (Other academic)
    Abstract [en]

    There are several different types of pesticides globally used, all with their own characteristics and toxicological potency. In the present study we have exposed male mice neonatally to different doses of four different types of pesticides, carbaryl (carbamate) chlorpyrifos (organophosphate), cypermethrin (pyrethroid) and endosulfan (organochlorine), and tested them for spontaneous behavior in a novel home environment at adult age. The doses used were 0.5 – 20 mg carbaryl/kg bw, 0.1 – 5.0 mg chlorpyrifos/kg bw, 0.1 – 5.0 mg cypermethrin/kg bw and 0.05 – 20 mg endosulfan/kg bw. All four pesticides induced adult disturbances in the spontaneous behavior in a novel home environment, affecting cognitive function, at 2 months of age. Carbaryl induced a dose-response related effect on spontaneous behavior from 5 mg/kg bw and up, while chlorpyrifos only induced a weak effect with the highest dose tested (5 mg/kg bw). The pyrethroid cypermethrin induced dose-response related neurotoxicity from 0.5 mg/kg bw and up. The organochlorine endosulfan also induced dose-response related neurotoxicity from 0.1 mg/kg bw and up These disturbances also persisted when the animals were re-observed at 4 months of age, indicating that these effects are long-lasting or even irreversible. From this study we conclude that endosulfan seem to be the most potent, of these four compounds, to induce cognitive behavioral effects in the adult after neonatal exposure, while carbaryl has the lowest potency to induce these types of neurotoxic effects. 

  • 2.
    Hendriks, Hester S.
    et al.
    Utrecht University.
    Koolen, Lucas A. E.
    Utrecht University.
    Dingemans, Milou M. L.
    Utrecht University.
    Viberg, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Environmental toxicology.
    Lee, Iwa
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Environmental toxicology.
    Leonards, Pim E.G.
    VU University, Amsterdam.
    Ramakers, Geert M.J.
    University Medical Center Utrecht.
    Westerink, Remco H.S.
    Utrecht University.
    Effects on neonatal exposure to the flame retardant tetrabrombisphenol-A, aluminum diethylphosphinate or zinc stannate on long-term, potentiation and synaptic protein levels in mice2014In: Archives of Toxicology, ISSN 0340-5761, E-ISSN 1432-0738, Vol. 89, no 12, p. 2345-2354Article in journal (Refereed)
    Abstract [en]

    Brominated flame retardants such as tetrabromobisphenol-A (TBBPA) may exert (developmental) neurotoxic effects. However, data on (neuro)toxicity of halogen-free flame retardants (HFFRs) are scarce. Recent in vitro studies indicated a high neurotoxic potential for some HFFRs, e.g., zinc stannate (ZS), whereas the neurotoxic potential of other HFFRs, such as aluminum diethylphosphinate (Alpi), appears low. However, the in vivo (neuro)toxicity of these compounds is largely unknown. We therefore investigated effects of neonatal exposure to TBBPA, Alpi or ZS on synaptic plasticity in mouse hippocampus. Male C57bl/6 mice received a single oral dose of 211 µmol/kg bw TBBPA, Alpi or ZS on postnatal day (PND) 10. On PND 17–19, effects on hippocampal synaptic plasticity were investigated using ex vivo extracellular field recordings. Additionally, we measured levels of postsynaptic proteins involved in long-term potentiation (LTP) as well as flame retardant concentrations in brain, muscle and liver tissues. All three flame retardants induced minor, but insignificant, effects on LTP. Additionally, TBBPA induced a minor decrease in post-tetanic potentiation. Despite these minor effects, expression of selected synaptic proteins involved in LTP was not affected. The flame retardants could not be measured in significant amounts in the brains, suggesting low bioavailability and/or rapid elimination/metabolism. We therefore conclude that a single neonatal exposure on PND 10 to TBBPA, Alpi or ZS does affect neurodevelopment and synaptic plasticity only to a small extent in mice. Additional data, in particular on persistence, bioaccumulation and (in vivo) toxicity, following prolonged (developmental) exposure are required for further (human) risk assessment.

  • 3. Hendriks, Hester S.
    et al.
    van Kleef, Regina G. D. M.
    Dingemans, Milou M. L.
    Meijer, Mareike
    Muilwijk, Mirthe
    van den Berg, Martin
    Ramakers, Geert M.
    Koolen, Lucas A.
    Leonards, Pim E.
    Viberg, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Environmental toxicology.
    Lee, Iwa
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Environmental toxicology.
    Westerink, Remco H. S.
    Neurotoxicity assessment of 15 brominated- and halogen-free flame retardants2015In: Neurotoxicology and Teratology, ISSN 0892-0362, E-ISSN 1872-9738, Vol. 49, p. 106-107Article in journal (Other academic)
  • 4.
    Lee, Iwa
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology.
    Developmental Neurotoxicity of Environmental Pollutants: Effects on neuronal protein markers after neonatal exposure2013Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis focused on investigations of the developmental neurotoxic effects of bisphenol A (BPA) or perfluorohexane sulfonate (PFHxS), after a single neonatal exposure, during a critical period of the brain development in mice.

    BPA is a well-known industrial chemical used in the production of polymer products and PFHxS is used as an industrial additive as a surfactant. Commonly, these two compounds have been found in the environment, wild-life and in humans. They are a cause of concern as BPA is known to be an endocrine disrupter and PFHxS is presently unregulated; although similar compounds have been phased-out of production. Additionally, humans may be exposed to these compounds throughout their life time starting already before birth. Infants and children are especially vulnerable as they are not yet fully developed and therefore can be more sensitive to toxic insults. The brain growth spurt (BGS), is a critical period of the mammalian brain development, and is characterized by a rapid growth as well as biochemical changes. Toxic insults during this period have shown to cause persistent and irreversible behavioral and cognitive dysfunctions in mice. The onset and duration of the BGS varies between species, and in mice it is postnatal starting from birth and spans up to 3-4 weeks of life. In humans, it starts from around the third trimester and extends up to the first two years of life. For both species the BGS coincide with the period of lactation. The BGS process involves several important neuroproteins, such as BDNF, CaMKII, GAP-43, synaptophysin and tau. These neuroproteins are essential for maintaining normal neuronal growth and synaptogenesis. Additionally, these proteins display specific ontogenic patterns and peak during the BGS in the neonatal mouse brain.

    This thesis has shown that BPA and PFHxS can cause developmental neurotoxic effects when administered directly during the peak of the BGS. BPA induced altered levels of CaMKII and synaptophysin in adult mice, whereas PFHxS induced altered levels of CaMKII, GAP-43, synaptophysin and tau in neonatal mice. These effects are similar to previously studied persistent organic pollutants such as polybrominated diphenyl ethers (PBDEs) and other perfluorinated compounds (PFCs). The altered neuroprotein levels may be a plausible explanation to recently seen disarranged behavior in adult mice neonatally exposed to BPA or PFHxS. As the two compounds are seemingly different, but produce similar neurotoxic effect, it further supports the notion that the developing brain is sensitive to toxic insults when exposed during a sensitive period of brain development. Also, further investigations on finding mechanisms of action and biomarkers for toxic insult of environmental pollutants are important in order to be able to foresee and prevent future consequences of existing and new emerging substances.

  • 5.
    Lee, Iwa
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology.
    Developmental neurotoxicity of persistent and non-persistent pollutants: Behavioral and neurochemical assessments of a perfluorinated compound, pesticides and interaction effects2015Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The focus of this thesis was to investigate developmental neurotoxic effects of different persistent and non-persistent environmental pollutants, alone or in binary mixtures, when exposure occurs during a critical period of brain development, in mice. The compounds investigated included a perfluorinated compound, perfluorohexane sulphonate (PFHxS), and four different pesticides, endosulfan, cypermethrin, chlorpyrifos and carbaryl.

    Both persistent and non-persistent pollutants are detected in the environment and in humans, which shows that exposure to these compounds is occurring in real life. Humans can therefore be exposed to various pollutants during their whole lifetime, starting from the gestational period to adulthood. Furthermore, exposure to environmental pollutants is rarely exclusive to a single compound, but rather occurs through combinations of various pollutants present in the environment. Exposure to environmental pollutants during human brain development have been suggested to be a possible cause for neuropsychiatric disorders, such as autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD). Previous studies have shown that chemicals can induce irreversible disorders in brain function when exposure to these chemicals occurs during a critical defined period of the brain development known as the brain growth spurt (BGS). The BGS is characterized by a rapid growth and development of the immature brain. In humans, and mice, this period also overlaps the lactation period indicating that newborns and toddlers can be exposed via mothers’ milk as well.

    This thesis has shown that a single oral exposure to PFHxS, endosulfan, cypermethrin, chlorpyrifos or carbaryl can induce developmental neurotoxic effects in mice, when exposure occurs during a critical period of brain development. These effects are manifested as persistent altered adult spontaneous behavior in a novel home environment, modified habituation, altered susceptibility of the cholinergic system and changed levels of neuroproteins in the mouse brain. Furthermore, a single neonatal co-exposure to a binary mixture of carbaryl/chlorpyrifos or PFHxS/endosulfan can interact and exacerbate the adult behavioral effects. These effects were seen at dosages were the single compound did not elicit a response or induced a much weaker behavioral effect. This indicates that risk assessments conducted on single compounds might underestimate interaction effects of mixtures when co-exposed.

  • 6.
    Lee, Iwa
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Environmental toxicology.
    Al-Refai, Ali
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Environmental toxicology.
    Viberg, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Environmental toxicology.
    Neonatal exposure to pesticides in mice alters neuroprotein levels important for the developing brain2014Conference paper (Other academic)
  • 7.
    Lee, Iwa
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Environmental toxicology.
    Eriksson, Per
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Environmental toxicology.
    Fredriksson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Environmental toxicology.
    Buratovic, Sonja
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Environmental toxicology.
    Lasley, Stephen
    Dept. of Cancer Biology and Pharmacology, University of Chicago College of Medicine.
    Viberg, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Environmental toxicology.
    Single exposure to pesticides during brain development causes neurotoxic effects manifested as persistent behavior aberrations and neuroprotein alterations in mice2014Conference paper (Other academic)
  • 8.
    Lee, Iwa
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology.
    Eriksson, Per
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Environmental toxicology.
    Fredriksson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Environmental toxicology.
    Buratovic, Sonja
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Environmental toxicology.
    Viberg, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Environmental toxicology.
    Developmental neurotoxic effects of two pesticides: behavior and biomolecular studies on chlorpyrifos and carbaryl2015In: Toxicology and Applied Pharmacology, ISSN 0041-008X, E-ISSN 1096-0333, Vol. 288, no 3, p. 429-438Article in journal (Refereed)
    Abstract [en]

    In recent times, an increased occurrence of neurodevelopmental disorders, such as neurodevelopmental delays and cognitive abnormalities has been recognized. Exposure to pesticides has been suspected to be a possible cause of these disorders, as these compounds target the nervous system of pests. Due to the similarities of brain development and composition, these pesticides may also be neurotoxic to humans. We studied two different pesticides, chlorpyrifos and carbaryl, which specifically inhibit acetylcholinesterase (AChE) in the nervous system. The aim of the study was to investigate if the pesticides can induce neurotoxic effects, when exposure occurs during a period of rapid brain growth and maturation. The results from the present study show that both compounds can affect protein levels in the developing brain and induce persistent adult behavior and cognitive impairments, in mice neonatally exposed to a single oral dose of chlorpyrifos (0.1, 1.0 or 5 mg/kg body weight) or carbaryl (0.5, 5.0 or 20.0 mg/kg body weight) on postnatal day 10. The results also indicate that the developmental neurotoxic effects induced are not related to the classical mechanism of acute cholinergic hyperstimulation, as the AChE inhibition level (8–12%) remained below the threshold for causing systemic toxicity. The neurotoxic effects are more likely caused by a disturbed neurodevelopment, as similar behavioral neurotoxic effects have been reported in studies with pesticides such as organochlorines, organophosphates, pyrethroids and POPs, when exposed during a critical window of neonatal brain development.

  • 9.
    Lee, Iwa
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Environmental toxicology.
    Eriksson, Per
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Environmental toxicology.
    Fredriksson, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Buratovic, Sonja
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Environmental toxicology.
    Viberg, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Environmental toxicology.
    Developmental neurotoxic effects of two pesticides: behavior and neuroprotein studies on endosulfan and cypermethrin2015In: Toxicology, ISSN 0300-483X, E-ISSN 1879-3185, Vol. 335, p. 1-10Article in journal (Refereed)
    Abstract [en]

    Developmental neurotoxicity of industrial chemicals and pharmaceuticals have been of growing interest in recent years due to the increasing reports of neuropsychiatric disorders, such as attention deficit hyperactivity disorder (ADHD) and autism. Exposure to these substances during early development may lead to adverse behavior effects manifested at a later phase of life. Pesticides are a wide group of chemicals which are still actively used and residues are found in the environment and in food products.

    The present study investigated the potential developmental neurotoxic effects of two different types of pesticides, endosulfan and cypermethrin, after a single neonatal exposure during a critical period of brain development. Ten-day-old male NMRI mice were administrated an oral dose of endosulfan or cypermethrin (0.1 or 0.5 mg/kg body weight, respectively). Levels of proteins were measured in the neonatal and adult brain, and adult behavioral testing was performed. The results indicate that both pesticides may induce altered levels of neuroproteins, important for normal brain development, and neurobehavioral abnormalities manifested as altered adult spontaneous behavior and ability to habituate to a novel home environment. The neurotoxic behavioral effects were also presentseveral months after the initial testing, indicating long-lasting or even persistent irreversible effects. Also, the present study suggests a possible link between the altered levels of neuroprotein and changes in behavior when exposed during a critical period of brain development.

  • 10.
    Lee, Iwa
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Environmental Toxicology.
    Eriksson, Per
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Environmental Toxicology.
    Viberg, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Environmental Toxicology.
    A single neonatal exposure to bisphenol A alters the levels of important neuroproteins in mice2012Conference paper (Refereed)
  • 11.
    Lee, Iwa
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Environmental toxicology.
    Viberg, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Environmental toxicology.
    A single neonatal exposure to perfluorohexane sulfonate (PFHxS) affects the levels of important neuroproteins in the developing mouse brain2013In: Neurotoxicology, ISSN 0161-813X, E-ISSN 1872-9711, Vol. 37, p. 190-196Article in journal (Refereed)
    Abstract [en]

    Perfluorohexane sulfonate (PFHxS) is an industrial chemical and belongs to the group of perfluorinated compounds (PFCs). It has recently been shown to cause developmental neurobehavioral defects in mammals. These compounds are commonly used in products such as surfactant and protective coating due to their ability to repel water- and oil stains. PFCs are globally found in the environment as well as in human umbilical cord blood, serum and breast milk. In a previous study on other well-known PFCs, i.e. PFOS and PFOA, it was shown that neonatal exposure caused altered neuroprotein levels in the hippocampus and cerebral cortex in neonatal male mice. The present study show that neonatal exposure to PFHxS, during the peak of the brain growth spurt, can alter neuroprotein levels, e.g. CaMKII, GAP-43, synaptophysin and tau, which are essential for normal brain development in mice. This was measured for both males and females, in hippocampus and cerebral cortex. The results suggest that PFHxS may act as a developmental neurotoxicant and the effects are similar to that of PFOS and PFOA, but also to other substances such as PCBs, PBDEs and bisphenol A. 

  • 12. Natal-da-Luz, Tiago
    et al.
    Lee, Iwa
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Environmental Toxicology.
    Verweij, Rudo A.
    Morais, Paula V.
    Van Velzen, Martin J. M.
    Sousa, Jose Paulo
    Van Gestel, Cornelis A. M.
    Influence of earthworm activity on microbial communities related with the degradation of persistent pollutants2012In: Environmental Toxicology and Chemistry, ISSN 0730-7268, E-ISSN 1552-8618, Vol. 31, no 4, p. 794-803Article in journal (Refereed)
    Abstract [en]

    Earthworms may promote the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in soil, but the mechanism through which they exert such influence is still unknown. To determine if the stimulation of PAH degradation by earthworms is related to changes in microbial communities, a microcosm experiment was conducted consisting of columns with natural uncontaminated soil covered with PAH-contaminated dredge sediment. Columns without and with low and high Eisenia andrei densities were prepared. Organic matter and PAH content, microbial biomass, and dehydrogenase activity (DHA) were measured in soil and sediment over time. Biolog Ecoplate(TM) and polymerase chain reaction using denaturing gradient gel electrophoresis were used to evaluate changes in metabolic and structural diversity of the microbial community, respectively. Earthworm activity promoted PAH degradation in soil, which was significant for biphenyl, benzo[a]pyrene, and benzo[e]pyrene. Microbial biomass and DHA activity generally did not change over the experiment. Earthworm activity did change microbial community structure, but this did not affect its functioning in terms of carbon substrate consumption. Results suggest no relationship between changes in the microbial community by earthworm activity and increased PAH disappearance. The role of shifts in soil microbial community structure induced by earthworms in PAH removal needs further investigation.

  • 13.
    Viberg, Henrik
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Environmental Toxicology.
    Lee, Iwa
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Environmental Toxicology.
    A single exposure to bisphenol A alters the levels of important neuroproteins in adult male and female mice2012In: Neurotoxicology, ISSN 0161-813X, E-ISSN 1872-9711, Vol. 33, no 5, p. 1390-1395Article in journal (Refereed)
    Abstract [en]

    Bisphenol A (BPA) is widely used in polymer products in food and beverage containers, baby bottles, dental sealants and fillings, adhesives, protective coatings, flame retardants, water supply pipes, and compact discs, and is found in the environment and in placental tissue, fetuses and breast milk. We have recently reported that a single neonatal exposure to bisphenol A can induce persistent aberrations in spontaneous behavior, in a dose-dependent manner, and affect the adult response to the cholinergic agent nicotine. Furthermore, other recent reports indicate that pre- and perinatal exposure to bisphenol A can induce neurotoxic effects. The present study indicates that a single neonatal exposure to bisphenol A, on postnatal day 10, during the peak of the brain growth spurt, can alter the adult levels of proteins important for normal brain development (CaMKII and synaptophysin). These alterations are induced in both male and female mice and effects are seen in both hippocampus and cerebral cortex. These results further support our recent study showing that neonatal exposure to bisphenol A can act as a developmental neurotoxicant and the effects are similar to effects seen after a single postnatal exposure to other POPs, such as PBDEs, PCBs and PFCs.

  • 14.
    Viberg, Henrik
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Environmental toxicology.
    Lee, Iwa
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Environmental toxicology.
    Buratovic, Sonja
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Environmental toxicology.
    Fredriksson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Environmental toxicology.
    Eriksson, Per
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Environmental toxicology.
    Persistent organic pollutants and different types of pesticides can interact during the brain development to exacerbate behavioral and cognitive defects in mice2014Conference paper (Other academic)
  • 15.
    Viberg, Henrik
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Environmental toxicology.
    Lee, Iwa
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Environmental toxicology.
    Eriksson, Per
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Environmental toxicology.
    Adult dose-dependent behavioral and cognitive disturbances after a single neonatal PFHxS dose2013In: Toxicology, ISSN 0300-483X, E-ISSN 1879-3185, Vol. 303, p. 185-191Article in journal (Refereed)
    Abstract [en]

    Perfluoroalkyl acids, including perfluorohexane sulfonate (PFHxS), are fluorinated organic compounds used as surfactants and water and stain repellents in carpets, paper, and textiles, with characteristics to bioaccumulate and biomagnify in the food chain. PFHxS is found in umbilical cord blood, human milk and child serum from all over the world. We have recently reported that neonatal exposure to certain perfluoroalkyl acids, PFOS and PFOA, can induce persistent aberrations in spontaneous behavior and also affect learning and memory functions in the adult animal. The present study indicates that a single exposure to PFHxS on postnatal day 10, during a vulnerable period of brain development can alter adult spontaneous behavior and cognitive function in both male and female mice, effects that are both dose-response related and long-lasting/irreversible. PFHxS affected the cholinergic system, manifested as altered nicotine-induced behavior in adult animals. This is also in agreement with earlier studies on neonatal exposure to PFOS and PFOA. The present findings show that PFHxS, a member of the perfluoroalkyl acid group, can act as a developmental neurotoxicant and affect the cholinergic system and cognitive function and the effects show similarities with effects earlier reported after neonatal exposure to other POPs, such as bisphenol A, PBDEs and PCBs.

1 - 15 of 15
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf