Change search
Refine search result
1234 1 - 50 of 196
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Agapitov, Oleksiy
    et al.
    Artemyev, Anton
    Krasnoselskikh, Vladimir
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Mourenas, Didier
    Breuillard, Hugo
    Balikhin, Michael
    Rolland, Guy
    Statistics of whistler mode waves in the outer radiation belt: Cluster STAFF-SA measurements2013In: Journal of Geophysical Research-Space Physics, ISSN 2169-9380, Vol. 118, no 6, p. 3407-3420Article in journal (Refereed)
    Abstract [en]

    ELF/VLF waves play a crucial role in the dynamics of the radiation belts and are partly responsible for the main losses and the acceleration of energetic electrons. Modeling wave-particle interactions requires detailed information of wave amplitudes and wave normal distribution over L-shells and over magnetic latitudes for different geomagnetic activity conditions. We performed a statistical study of ELF/VLF emissions using wave measurements in the whistler frequency range for 10years (2001-2010) aboard Cluster spacecraft. We utilized data from the STAFF-SA experiment, which spans the frequency range from 8Hz to 4kHz. We present distributions of wave magnetic and electric field amplitudes and wave normal directions as functions of magnetic latitude, magnetic local time, L-shell, and geomagnetic activity. We show that wave normals are directed approximately along the background magnetic field (with the mean value of the angle between the wave normal and the background magnetic field, about 10 degrees-15 degrees) in the vicinity of the geomagnetic equator. The distribution changes with magnetic latitude: Plasmaspheric hiss normal angles increase with latitude to quasi-perpendicular direction at approximate to 35 degrees-40 degrees where hiss can be reflected; lower band chorus are observed as two wave populations: One population of wave normals tends toward the resonance cone and at latitudes of around 35 degrees-45 degrees wave normals become nearly perpendicular to the magnetic field; the other part remains quasi-parallel at latitudes up to 30 degrees. The observed angular distribution is significantly different from Gaussian, and the width of the distribution increases with latitude. Due to the rapid increase of , the wave mode becomes quasi-electrostatic, and the corresponding electric field increases with latitude and has a maximum near 30 degrees. The magnetic field amplitude of the chorus in the day sector has a minimum at the magnetic equator but increases rapidly with latitude with a local maximum near 12 degrees-15 degrees. The wave magnetic field maximum is observed in the night sector at L>7 during low geomagnetic activity (at L approximate to 5 for K-p>3). Our results confirm the strong dependence of wave amplitude on geomagnetic activity found in earlier studies.

  • 2. Agapitov, Oleksiy
    et al.
    Krasnoselskikh, Vladimir
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Rolland, Guy
    A statistical study of the propagation characteristics of whistler waves observed by Cluster2011In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 38, p. L20103-Article in journal (Refereed)
    Abstract [en]

    VLF waves play a crucial role in the dynamics of radiation belts, and are responsible for the loss and the acceleration of energetic electrons. Modeling wave-particle interactions requires the best possible knowledge for how wave energy and wave-normal directions are distributed in L-shells and for the magnetic latitudes of different magnetic activity conditions. In this work, we performed a statistical study for VLF emissions using a whistler frequency range for nine years (2001-2009) of Cluster measurements. We utilized data from the STAFF-SA experiment, which spans the frequency range from 8.8 Hz to 3.56 kHz. We show that the wave energy distribution has two maxima around L similar to 4.5 = 6 and L similar to 2, and that wave-normals are directed approximately along the magnetic field in the vicinity of the geomagnetic equator. The distribution changes with magnetic latitude, and so that at latitudes of similar to 30 degrees, wave-normals become nearly perpendicular to the magnetic field. The observed angular distribution is significantly different from Gaussian and the width of the distribution increases with latitude. Since the resonance condition for wave-particle interactions depends on the wave normal orientation, our results indicate that, due to the observed change in the wave-normal direction with latitude, the most efficient particle diffusion due to wave-particle interaction should occur in a limited region surrounding the geomagnetic equator.

  • 3.
    Alm, L.
    et al.
    Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA..
    Argall, M. R.
    Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA..
    Torbert, R. B.
    Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA.;Southwest Res Inst, San Antonio, TX USA..
    Farrugia, C. J.
    Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA..
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX USA..
    Ergun, R. E.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA..
    Russell, C. T.
    Univ Calif Los Angeles, IGPP EPSS, Los Angeles, CA USA..
    Strangeway, R. J.
    Univ Calif Los Angeles, IGPP EPSS, Los Angeles, CA USA..
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Lindqvist, P. -A
    Marklund, G. T.
    KTH Royal Inst Technol, Stockholm, Sweden..
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA..
    Shuster, J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.;Univ Maryland, Coll Comp Math & Nat Sci, College Pk, MD 20742 USA..
    EDR signatures observed by MMS in the 16 October event presented in a 2-D parametric space2017In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 122, no 3, p. 3262-3276Article in journal (Refereed)
    Abstract [en]

    We present a method for mapping the position of satellites relative to the X line using the measured B-L and B-N components of the magnetic field and apply it to the Magnetospheric multiscale (MMS) encounter with the electron diffusion region (EDR) which occurred on 13:07 UT on 16 October 2015. Mapping the data to our parametric space succeeds in capturing many of the signatures associated with magnetic reconnection and the electron diffusion region. This offers a method for determining where in the reconnection region the satellites were located. In addition, parametric mapping can also be used to present data from numerical simulations. This facilitates comparing data from simulations with data from in situ observations as one can avoid the complicated process using boundary motion analysis to determine the geometry of the reconnection region. In parametric space we can identify the EDR based on the collocation of several reconnection signatures, such as electron nongyrotropy, electron demagnetization, parallel electric fields, and energy dissipation. The EDR extends 2-3km in the normal direction and in excess of 20km in the tangential direction. It is clear that the EDR occurs on the magnetospheric side of the topological X line, which is expected in asymmetric reconnection. Furthermore, we can observe a north-south asymmetry, where the EDR occurs north of the peak in out-of-plane current, which may be due to the small but finite guide field.

  • 4.
    Alm, L.
    et al.
    Univ New Hampshire, Space Sci Ctr, Durham, NH, USA.
    Farrugia, C. J.
    Univ New Hampshire, Space Sci Ctr, Durham, NH USA.
    Paulson, K. W.
    Univ New Hampshire, Space Sci Ctr, Durham, NH USA.
    Argall, M. R.
    Univ New Hampshire, Space Sci Ctr, Durham, NH USA.
    Torbert, R. B.
    Univ New Hampshire, Space Sci Ctr, Durham, NH USA; Southwest Res Inst, San Antonio, TX USA.
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX USA.
    Ergun, R. E.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO USA.
    Russell, C. T.
    Univ Calif Los Angeles, IGPP EPSS, Los Angeles, CA USA.
    Strangeway, R. J.
    Univ Calif Los Angeles, IGPP EPSS, Los Angeles, CA USA.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Lindqvist, P. -A
    KTH Royal Inst Technol, Dept Space & Plasma Phys, Stockholm, Sweden.
    Marklund, G. T.
    KTH Royal Inst Technol, Dept Space & Plasma Phys, Stockholm, Sweden.
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Differing Properties of Two Ion-Scale Magnetopause Flux Ropes2018In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 123, no 1, p. 114-131Article in journal (Refereed)
    Abstract [en]

    In this paper, we present results from the Magnetospheric Multiscale constellation encountering two ion‐scale, magnetopause flux ropes. The two flux ropes exhibit very different properties and internal structure. In the first flux rope, there are large differences in the currents observed by different satellites, indicating variations occurring over sub‐di spatial scales, and time scales on the order of the ion gyroperiod. In addition, there is intense wave activity and particle energization. The interface between the two flux ropes exhibits oblique whistler wave activity. In contrast, the second flux rope is mostly quiescent, exhibiting little activity throughout the encounter. Changes in the magnetic topology and field line connectivity suggest that we are observing flux rope coalescence.

  • 5.
    Alm, Love
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Vaivads, Andris
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Torbert, R. B.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA;Southwest Res Inst, San Antonio, TX USA.
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX USA.
    Ergun, R. E.
    Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA.
    Lindqvist, P. -A
    Russell, C. T.
    Univ Calif Los Angeles, IGPP EPSS, Los Angeles, CA USA.
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Mauk, B. H.
    Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA.
    Magnetotail Hall Physics in the Presence of Cold Ions2018In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 45, no 20, p. 10941-10950Article in journal (Refereed)
    Abstract [en]

    We present the first in situ observation of cold ionospheric ions modifying the Hall physics of magnetotail reconnection. While in the tail lobe, Magnetospheric Multiscale mission observed cold (tens of eV) E x B drifting ions. As Magnetospheric Multiscale mission crossed the separatrix of a reconnection exhaust, both cold lobe ions and hot (keV) ions were observed. During the closest approach of the neutral sheet, the cold ions accounted for similar to 30% of the total ion density. Approximately 65% of the initial cold ions remained cold enough to stay magnetized. The Hall electric field was mainly supported by the j x B term of the generalized Ohm's law, with significant contributions from the del center dot P-e and v(c) x B terms. The results show that cold ions can play an important role in modifying the Hall physics of magnetic reconnection even well inside the plasma sheet. This indicates that modeling magnetic reconnection may benefit from including multiscale Hall physics. Plain Language Summary Cold ions have the potential of changing the fundamental physics behind magnetic reconnection. Here we present the first direct observation of this process in action in the magnetotail. Cold ions from the tail lobes were able to remain cold even deep inside the much hotter plasma sheet. Even though the cold ions only accounted for similar to 30% of the total ions, they had a significant impact on the electric fields near the reconnection region.

  • 6.
    Andriopoulou, M.
    et al.
    Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria..
    Nakamura, R.
    Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria..
    Torkar, K.
    Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria..
    Baumjohann, W.
    Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria..
    Torbert, R. B.
    Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA..
    Lindqvist, P. -A
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Dorelli, J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Burch, J. L.
    SW Res Inst, San Antonio, TX USA..
    Russell, C. T.
    Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA..
    Study of the spacecraft potential under active control and plasma density estimates during the MMS commissioning phase2016In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 43, no 10, p. 4858-4864Article in journal (Refereed)
    Abstract [en]

    Each spacecraft of the recently launched magnetospheric multiscale MMS mission is equipped with Active Spacecraft Potential Control (ASPOC) instruments, which control the spacecraft potential in order to reduce spacecraft charging effects. ASPOC typically reduces the spacecraft potential to a few volts. On several occasions during the commissioning phase of the mission, the ASPOC instruments were operating only on one spacecraft at a time. Taking advantage of such intervals, we derive photoelectron curves and also perform reconstructions of the uncontrolled spacecraft potential for the spacecraft with active control and estimate the electron plasma density during those periods. We also establish the criteria under which our methods can be applied.

  • 7.
    Andriopoulou, Maria
    et al.
    Austrian Acad Sci, Space Res Inst, Graz, Austria.
    Nakamura, Rumi
    Austrian Acad Sci, Space Res Inst, Graz, Austria.
    Wellenzohn, Simon
    Karl Franzens Univ Graz, Inst Geophys Astrophys & Meteorol, Graz, Austria.
    Torkar, Klaus
    Austrian Acad Sci, Space Res Inst, Graz, Austria.
    Baumjohann, Wolfgang
    Austrian Acad Sci, Space Res Inst, Graz, Austria.
    Torbert, R. B.
    Univ New Hampshire, Dept Phys, Durham, NH 03824 USA;Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA.
    Lindqvist, Per-Arne
    KTH Royal Inst Technol, Dept Space & Plasma Phys, Stockholm, Sweden.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Dorelli, John
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Burch, James L.
    Southwest Res Inst, San Antonio, TX USA.
    Plasma Density Estimates From Spacecraft Potential Using MMS Observations in the Dayside Magnetosphere2018In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 123, no 4, p. 2620-2629Article in journal (Refereed)
    Abstract [en]

    Using spacecraft potential observations with and without active spacecraft potential control (on/off) from the Magnetospheric Multiscale (MMS) mission, we estimate the average photoelectron emission as well as derive the plasma density information from spacecraft potential variations and active spacecraft potential control ion current. Such estimates are of particular importance especially during periods when the plasma instruments are not in operation and also when electron density observations with higher time resolution than the ones available from particle detectors are necessary. We compare the average photoelectron emission of different spacecraft and discuss their differences. We examine several time intervals when we performed our density estimations in order to understand the strengths and weaknesses of our data set. We finally compare our derived density estimates with the plasma density observations provided by plasma detectors onboard MMS, whenever available, and discuss the overall results. The estimated electron densities should only be used as a proxy of the electron density, complimentary to the plasma moments derived by plasma detectors, especially when the latter are turned off or when higher time resolution observations are required. While the derived data set can often provide valuable information about the plasma environment, the actual values may often be very far from the actual plasma density values and should therefore be used with caution.

  • 8.
    Argall, M. R.
    et al.
    Univ New Hampshire, Ctr Space Sci, Durham, NH USA.
    Paulson, K.
    Univ New Hampshire, Ctr Space Sci, Durham, NH USA.
    Alm, L.
    Univ New Hampshire, Ctr Space Sci, Durham, NH USA.
    Rager, A.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Dorelli, J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Shuster, J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Wang, S.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Torbert, R. B.
    Univ New Hampshire, Ctr Space Sci, Durham, NH USA; Southwest Res Inst, San Antonio, TX USA.
    Vaith, H.
    Univ New Hampshire, Ctr Space Sci, Durham, NH USA.
    Dors, I.
    Univ New Hampshire, Ctr Space Sci, Durham, NH USA.
    Chutter, M.
    Univ New Hampshire, Ctr Space Sci, Durham, NH USA.
    Farrugia, C.
    Univ New Hampshire, Ctr Space Sci, Durham, NH USA.
    Burch, J.
    Southwest Res Inst, San Antonio, TX USA.
    Pollock, C.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Giles, B.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Gershman, D.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Lavraud, B.
    Univ Toulouse, CNRS, Inst Rech Astrophys & Planetol, UPS, Toulouse, France..
    Russell, C. T.
    Univ Calif Los Angeles, Earth Planetary & Space Sci, Los Angeles, CA USA..
    Strangeway, R.
    Univ Calif Los Angeles, Earth Planetary & Space Sci, Los Angeles, CA USA..
    Magnes, W.
    Austrian Acad Sci, Space Res Inst, Graz, Austria.
    Lindqvist, P. -A
    KTH Royal Inst Technol, Stockholm, Sweden.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Ergun, R. E.
    Univ Colorado Boulder, Boulder, CO USA.
    Ahmadi, N.
    Univ Colorado Boulder, Boulder, CO USA.
    Electron Dynamics Within the Electron Diffusion Region of Asymmetric Reconnection2018In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 123, no 1, p. 146-162Article in journal (Refereed)
    Abstract [en]

    Abstract: We investigate the agyrotropic nature of electron distribution functions and their substructure to illuminate electron dynamics in a previously reported electron diffusion region (EDR) event. In particular, agyrotropy is examined as a function of energy to reveal detailed finite Larmor radius effects for the first time. It is shown that the previously reported approximate to 66eV agyrotropic "crescent" population that has been accelerated as a result of reconnection is evanescent in nature because it mixes with a denser, gyrotopic background. Meanwhile, accelerated agyrotropic populations at 250 and 500eV are more prominent because the background plasma at those energies is more tenuous. Agyrotropy at 250 and 500eV is also more persistent than at 66eV because of finite Larmor radius effects; agyrotropy is observed 2.5 ion inertial lengths from the EDR at 500eV, but only in close proximity to the EDR at 66eV. We also observe linearly polarized electrostatic waves leading up to and within the EDR. They have wave normal angles near 90 degrees, and their occurrence and intensity correlate with agyrotropy. Within the EDR, they modulate the flux of 500eV electrons travelling along the current layer. The net electric field intensifies the reconnection current, resulting in a flow of energy from the fields into the plasma.

    Plain Language Summary: The process of reconnection involves an explosive transfer of magnetic energy into particle energy. When energetic particles contact modern technology such as satellites, cell phones, or other electronic devices, they can cause random errors and failures. Exactly how particles are energized via reconnection, however, is still unknown. Fortunately, the Magnetospheric Multiscale mission is finally able to detect and analyze reconnection processes. One recent finding is that energized particles take on a crescent-shaped configuration in the vicinity of reconnection and that this crescent shape is related to the energy conversion process. In our paper, we explain why the crescent shape has not been observed until now and inspect particle motions to determine what impact it has on energy conversion. When reconnection heats the plasma, the crescent shape forms from the cool, tenuous particles. As plasmas from different regions mix, dense, nonheated plasma obscures the crescent shape in our observations. The highest-energy particle population created by reconnection, though, also contains features of the crescent shape that are more persistent but appear less dramatically in the data.

  • 9. Berthomier, M.
    et al.
    Fazakerley, A. N.
    Forsyth, C.
    Pottelette, R.
    Alexandrova, O.
    Anastasiadis, A.
    Aruliah, A.
    Blelly, P. -L
    Briand, C.
    Bruno, R.
    Canu, P.
    Cecconi, B.
    Chust, T.
    Daglis, I.
    Davies, J.
    Dunlop, M.
    Fontaine, D.
    Genot, V.
    Gustavsson, B.
    Haerendel, G.
    Hamrin, M.
    Hapgood, M.
    Hess, S.
    Kataria, D.
    Kauristie, K.
    Kemble, S.
    Khotyaintsev, Yuri
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Koskinen, H.
    Lamy, L.
    Lanchester, B.
    Louarn, P.
    Lucek, E.
    Lundin, R.
    Maksimovic, M.
    Manninen, J.
    Marchaudon, A.
    Marghitu, O.
    Marklund, G.
    Milan, S.
    Moen, J.
    Mottez, F.
    Nilsson, H.
    Ostgaard, N.
    Owen, C. J.
    Parrot, M.
    Pedersen, A.
    Perry, C.
    Pincon, J. -L
    Pitout, F.
    Pulkkinen, T.
    Rae, I. J.
    Rezeau, L.
    Roux, A.
    Sandahl, I.
    Sandberg, I.
    Turunen, E.
    Vogt, J.
    Walsh, A.
    Watt, C. E. J.
    Wild, J. A.
    Yamauchi, M.
    Zarka, P.
    Zouganelis, I.
    Alfven: magnetosphere-ionosphere connection explorers2012In: Experimental astronomy (Print), ISSN 0922-6435, E-ISSN 1572-9508, Vol. 33, no 2-3, p. 445-489Article in journal (Refereed)
    Abstract [en]

    The aurorae are dynamic, luminous displays that grace the night skies of Earth's high latitude regions. The solar wind emanating from the Sun is their ultimate energy source, but the chain of plasma physical processes leading to auroral displays is complex. The special conditions at the interface between the solar wind-driven magnetosphere and the ionospheric environment at the top of Earth's atmosphere play a central role. In this Auroral Acceleration Region (AAR) persistent electric fields directed along the magnetic field accelerate magnetospheric electrons to the high energies needed to excite luminosity when they hit the atmosphere. The "ideal magnetohydrodynamics" description of space plasmas which is useful in much of the magnetosphere cannot be used to understand the AAR. The AAR has been studied by a small number of single spacecraft missions which revealed an environment rich in wave-particle interactions, plasma turbulence, and nonlinear acceleration processes, acting on a variety of spatio-temporal scales. The pioneering 4-spacecraft Cluster magnetospheric research mission is now fortuitously visiting the AAR, but its particle instruments are too slow to allow resolve many of the key plasma physics phenomena. The Alfv,n concept is designed specifically to take the next step in studying the aurora, by making the crucial high-time resolution, multi-scale measurements in the AAR, needed to address the key science questions of auroral plasma physics. The new knowledge that the mission will produce will find application in studies of the Sun, the processes that accelerate the solar wind and that produce aurora on other planets.

  • 10.
    Breuillard, H.
    et al.
    Univ Paris Sud, UPMC Univ Paris 06, Lab Phys Plasmas, UMR7648,CNRS,Ecole Polytech,Observ Paris, Paris, France..
    Le Contel, O.
    Univ Paris Sud, UPMC Univ Paris 06, Lab Phys Plasmas, UMR7648,CNRS,Ecole Polytech,Observ Paris, Paris, France..
    Chust, T.
    Univ Paris Sud, UPMC Univ Paris 06, Lab Phys Plasmas, UMR7648,CNRS,Ecole Polytech,Observ Paris, Paris, France..
    Berthomier, M.
    Univ Paris Sud, UPMC Univ Paris 06, Lab Phys Plasmas, UMR7648,CNRS,Ecole Polytech,Observ Paris, Paris, France..
    Retino, A.
    Univ Paris Sud, UPMC Univ Paris 06, Lab Phys Plasmas, UMR7648,CNRS,Ecole Polytech,Observ Paris, Paris, France..
    Turner, D. L.
    Aerosp Corp, Space Sci Dept, El Segundo, CA 90245 USA..
    Nakamura, R.
    Austrian Acad Sci, Space Res Inst, Graz, Austria..
    Baumjohann, W.
    Austrian Acad Sci, Space Res Inst, Graz, Austria..
    Cozzani, G.
    Univ Paris Sud, UPMC Univ Paris 06, Lab Phys Plasmas, UMR7648,CNRS,Ecole Polytech,Observ Paris, Paris, France..
    Catapano, F.
    Univ Paris Sud, UPMC Univ Paris 06, Lab Phys Plasmas, UMR7648,CNRS,Ecole Polytech,Observ Paris, Paris, France..
    Alexandrova, A.
    Univ Paris Sud, UPMC Univ Paris 06, Lab Phys Plasmas, UMR7648,CNRS,Ecole Polytech,Observ Paris, Paris, France..
    Mirioni, L.
    Univ Paris Sud, UPMC Univ Paris 06, Lab Phys Plasmas, UMR7648,CNRS,Ecole Polytech,Observ Paris, Paris, France..
    Graham, Daniel B.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Argall, M. R.
    Univ New Hampshire, Dept Phys, Durham, NH 03824 USA.;Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA..
    Fischer, D.
    Austrian Acad Sci, Space Res Inst, Graz, Austria..
    Wilder, F. D.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA..
    Gershman, D. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Varsani, A.
    Austrian Acad Sci, Space Res Inst, Graz, Austria..
    Lindqvist, P. -A
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Marklund, G.
    Royal Inst Technol, Stockholm, Sweden..
    Ergun, R. E.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA..
    Goodrich, K. A.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA..
    Ahmadi, N.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA..
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX USA..
    Torbert, R. B.
    Univ New Hampshire, Dept Phys, Durham, NH 03824 USA.;Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA..
    Needell, G.
    Univ New Hampshire, Dept Phys, Durham, NH 03824 USA.;Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA..
    Chutter, M.
    Univ New Hampshire, Dept Phys, Durham, NH 03824 USA.;Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA..
    Rau, D.
    Univ New Hampshire, Dept Phys, Durham, NH 03824 USA.;Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA..
    Dors, I.
    Univ New Hampshire, Dept Phys, Durham, NH 03824 USA.;Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA..
    Russell, C. T.
    Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA..
    Magnes, W.
    Austrian Acad Sci, Space Res Inst, Graz, Austria..
    Strangeway, R. J.
    Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA..
    Bromund, K. R.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Wei, H.
    Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA..
    Plaschke, F.
    Austrian Acad Sci, Space Res Inst, Graz, Austria..
    Anderson, B. J.
    Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA..
    Le, G.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Moore, T. E.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Paterson, W. R.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Pollock, C. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Dorelli, J. C.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Avanov, L. A.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Saito, Y.
    Inst Space & Astronaut Sci, Sagamihara, Kanagawa, Japan..
    Lavraud, B.
    Univ Paul Sabatier, CNRS UMR5277, Inst Rech Astrophys & Planetol, Toulouse, France..
    Fuselier, S. A.
    Southwest Res Inst, San Antonio, TX USA..
    Mauk, B. H.
    Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA..
    Cohen, I. J.
    Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA..
    Fennell, J. F.
    Univ Paris Sud, UPMC Univ Paris 06, Lab Phys Plasmas, UMR7648,CNRS,Ecole Polytech,Observ Paris, Paris, France..
    The Properties of Lion Roars and Electron Dynamics in Mirror Mode Waves Observed by the Magnetospheric MultiScale Mission2018In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 123, no 1, p. 93-103Article in journal (Refereed)
    Abstract [en]

    Mirror mode waves are ubiquitous in the Earth's magnetosheath, in particular behind the quasi‐perpendicular shock. Embedded in these nonlinear structures, intense lion roars are often observed. Lion roars are characterized by whistler wave packets at a frequency ∼100 Hz, which are thought to be generated in the magnetic field minima. In this study, we make use of the high time resolution instruments on board the Magnetospheric MultiScale mission to investigate these waves and the associated electron dynamics in the quasi‐perpendicular magnetosheath on 22 January 2016. We show that despite a core electron parallel anisotropy, lion roars can be generated locally in the range 0.05–0.2fce by the perpendicular anisotropy of electrons in a particular energy range. We also show that intense lion roars can be observed up to higher frequencies due to the sharp nonlinear peaks of the signal, which appear as sharp spikes in the dynamic spectra. As a result, a high sampling rate is needed to estimate correctly their amplitude, and the latter might have been underestimated in previous studies using lower time resolution instruments. We also present for the first‐time 3‐D high time resolution electron velocity distribution functions in mirror modes. We demonstrate that the dynamics of electrons trapped in the mirror mode structures are consistent with the Kivelson and Southwood (1996) model. However, these electrons can also interact with the embedded lion roars: first signatures of electron quasi‐linear pitch angle diffusion and possible signatures of nonlinear interaction with high‐amplitude wave packets are presented. These processes can lead to electron untrapping from mirror modes.

  • 11.
    Breuillard, H.
    et al.
    CNRS, LPP, UMR, Paris, France..
    Le Contel, O.
    CNRS, LPP, UMR, Paris, France..
    Retino, A.
    CNRS, LPP, UMR, Paris, France..
    Chasapis, A.
    Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA..
    Chust, T.
    CNRS, LPP, UMR, Paris, France..
    Mirioni, L.
    CNRS, LPP, UMR, Paris, France..
    Graham, Daniel B.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Wilder, F. D.
    Univ Colorado, LASP, Boulder, CO 80309 USA..
    Cohen, I.
    Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA..
    Vaivads, Andris
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Lindqvist, P. -A
    Royal Inst Technol, Alfven Lab, Stockholm, Sweden.
    Marklund, G. T.
    Royal Inst Technol, Alfven Lab, Stockholm, Sweden..
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX USA..
    Torbert, R. B.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA.;Univ New Hampshire, Dept Phys, Durham, NH 03824 USA..
    Ergun, R. E.
    Univ Colorado, LASP, Boulder, CO 80309 USA..
    Goodrich, K. A.
    Univ Colorado, LASP, Boulder, CO 80309 USA..
    Macri, J.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA.;Univ New Hampshire, Dept Phys, Durham, NH 03824 USA..
    Needell, J.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA.;Univ New Hampshire, Dept Phys, Durham, NH 03824 USA..
    Chutter, M.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA.;Univ New Hampshire, Dept Phys, Durham, NH 03824 USA..
    Rau, D.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA.;Univ New Hampshire, Dept Phys, Durham, NH 03824 USA..
    Dors, I.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA.;Univ New Hampshire, Dept Phys, Durham, NH 03824 USA..
    Russell, C. T.
    Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA..
    Magnes, W.
    Austrian Acad Sci, Space Res Inst IWF, Graz, Austria..
    Strangeway, R. J.
    Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA..
    Bromund, K. R.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Plaschke, F.
    Austrian Acad Sci, Space Res Inst IWF, Graz, Austria..
    Fischer, D.
    Austrian Acad Sci, Space Res Inst IWF, Graz, Austria..
    Leinweber, H. K.
    Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA..
    Anderson, B. J.
    Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA..
    Le, G.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Slavin, J. A.
    Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA..
    Kepko, E. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Baumjohann, W.
    Austrian Acad Sci, Space Res Inst IWF, Graz, Austria..
    Mauk, B.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Fuselier, S. A.
    Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX USA..
    Nakamura, R.
    Austrian Acad Sci, Space Res Inst IWF, Graz, Austria..
    Multispacecraft analysis of dipolarization fronts and associated whistler wave emissions using MMS data2016In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 43, no 14, p. 7279-7286Article in journal (Refereed)
    Abstract [en]

    Dipolarization fronts (DFs), embedded in bursty bulk flows, play a crucial role in Earth's plasma sheet dynamics because the energy input from the solar wind is partly dissipated in their vicinity. This dissipation is in the form of strong low-frequency waves that can heat and accelerate energetic electrons up to the high-latitude plasma sheet. However, the dynamics of DF propagation and associated low-frequency waves in the magnetotail are still under debate due to instrumental limitations and spacecraft separation distances. In May 2015 the Magnetospheric Multiscale (MMS) mission was in a string-of-pearls configuration with an average intersatellite distance of 160km, which allows us to study in detail the microphysics of DFs. Thus, in this letter we employ MMS data to investigate the properties of dipolarization fronts propagating earthward and associated whistler mode wave emissions. We show that the spatial dynamics of DFs are below the ion gyroradius scale in this region (approximate to 500km), which can modify the dynamics of ions in the vicinity of the DF (e.g., making their motion nonadiabatic). We also show that whistler wave dynamics have a temporal scale of the order of the ion gyroperiod (a few seconds), indicating that the perpendicular temperature anisotropy can vary on such time scales.

  • 12.
    Breuillard, H.
    et al.
    Univ Paris Sud, Sorbonne Univ, Ecole Polytech, Lab Phys Plasmas,UMR7648,CNRS, Paris, France.
    Matteini, L.
    UPMC Univ Paris 06, Univ Paris Diderot, PSL Res Univ, LESIA Observ Paris,CNRS, Meudon, France.
    Argall, M. R.
    Univ New Hampshire, Durham, NH 03824 USA.
    Sahraoui, F.
    Univ Paris Sud, Sorbonne Univ, Ecole Polytech, Lab Phys Plasmas,UMR7648,CNRS, Paris, France.
    Andriopoulou, M.
    Austrian Acad Sci, Space Res Inst, Graz, Austria.
    Le Contel, O.
    Univ Paris Sud, Sorbonne Univ, Ecole Polytech, Lab Phys Plasmas,UMR7648,CNRS, Paris, France.
    Retino, A.
    Univ Paris Sud, Sorbonne Univ, Ecole Polytech, Lab Phys Plasmas,UMR7648,CNRS, Paris, France.
    Mirioni, L.
    Univ Paris Sud, Sorbonne Univ, Ecole Polytech, Lab Phys Plasmas,UMR7648,CNRS, Paris, France.
    Huang, S. Y.
    Wuhan Univ, Sch Elect & Informat, Beijing, Peoples R China.
    Gershman, D. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Ergun, R. E.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA.
    Wilder, F. D.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA.
    Goodrich, K. A.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA.
    Ahmadi, N.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA.
    Yordanova, Emiliya
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Vaivads, Andris
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Turner, D. L.
    Aerosp Corp, Space Sci Dept, El Segundo, CA 90245 USA.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Graham, Daniel B.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Lindqvist, P. -A
    Chasapis, A.
    Univ Delaware, Newark, DE USA.
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX USA.
    Torbert, R. B.
    Univ New Hampshire, Durham, NH 03824 USA.
    Russell, C. T.
    Univ Calif Los Angeles, Los Angeles, CA USA.
    Magnes, W.
    Austrian Acad Sci, Space Res Inst, Graz, Austria.
    Strangeway, R. J.
    Plaschke, F.
    Austrian Acad Sci, Space Res Inst, Graz, Austria.
    Moore, T. E.
    Giles, B. L.
    Paterson, W. R.
    Pollock, C. J.
    Lavraud, B.
    Univ Paul Sabatier, CNRS UMR5277, IRAP, Toulouse, France.
    Fuselier, S. A.
    Southwest Res Inst, San Antonio, TX USA.
    Cohen, I. J.
    Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA.
    New Insights into the Nature of Turbulence in the Earth's Magnetosheath Using Magnetospheric MultiScale Mission Data2018In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 859, no 2, article id 127Article in journal (Refereed)
    Abstract [en]

    The Earth's magnetosheath, which is characterized by highly turbulent fluctuations, is usually divided into two regions of different properties as a function of the angle between the interplanetary magnetic field and the shock normal. In this study, we make use of high-time resolution instruments on board the Magnetospheric MultiScale spacecraft to determine and compare the properties of subsolar magnetosheath turbulence in both regions, i. e., downstream of the quasi-parallel and quasi-perpendicular bow shocks. In particular, we take advantage of the unprecedented temporal resolution of the Fast Plasma Investigation instrument to show the density fluctuations down to sub-ion scales for the first time. We show that the nature of turbulence is highly compressible down to electron scales, particularly in the quasi-parallel magnetosheath. In this region, the magnetic turbulence also shows an inertial (Kolmogorov-like) range, indicating that the fluctuations are not formed locally, in contrast with the quasi-perpendicular magnetosheath. We also show that the electromagnetic turbulence is dominated by electric fluctuations at sub-ion scales (f > 1Hz) and that magnetic and electric spectra steepen at the largest-electron scale. The latter indicates a change in the nature of turbulence at electron scales. Finally, we show that the electric fluctuations around the electron gyrofrequency are mostly parallel in the quasi-perpendicular magnetosheath, where intense whistlers are observed. This result suggests that energy dissipation, plasma heating, and acceleration might be driven by intense electrostatic parallel structures/waves, which can be linked to whistler waves.

  • 13.
    Burch, J. L.
    et al.
    Southwest Res Inst, San Antonio, TX USA..
    Torbert, R. B.
    Southwest Res Inst, San Antonio, TX USA.;Univ New Hampshire, Durham, NH 03824 USA..
    Phan, T. D.
    Univ Calif Berkeley, Berkeley, CA 94720 USA..
    Chen, L. -J
    Moore, T. E.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Ergun, R. E.
    Univ Colorado, LASP, Boulder, CO 80309 USA..
    Eastwood, J. P.
    Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London, England..
    Gershman, D. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Cassak, P. A.
    W Virginia Univ, Morgantown, WV 26506 USA..
    Argall, M. R.
    Univ New Hampshire, Durham, NH 03824 USA..
    Wang, S.
    Univ Maryland, College Pk, MD 20742 USA..
    Hesse, M.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Pollock, C. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Nakamura, R.
    Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria..
    Mauk, B. H.
    Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA..
    Fuselier, S. A.
    Southwest Res Inst, San Antonio, TX USA..
    Russell, C. T.
    Univ Calif Los Angeles, Los Angeles, CA USA..
    Strangeway, R. J.
    Univ Calif Los Angeles, Los Angeles, CA USA..
    Drake, J. F.
    Univ Maryland, College Pk, MD 20742 USA..
    Shay, M. A.
    Univ Delaware, Newark, DE USA..
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Lindqvist, P. -A
    Marklund, G.
    Royal Inst Technol, Stockholm, Sweden..
    Wilder, F. D.
    Univ Colorado, LASP, Boulder, CO 80309 USA..
    Young, D. T.
    Southwest Res Inst, San Antonio, TX USA..
    Torkar, K.
    Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria..
    Goldstein, J.
    Southwest Res Inst, San Antonio, TX USA..
    Dorelli, J. C.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Avanov, L. A.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Oka, M.
    Univ Calif Berkeley, Berkeley, CA 94720 USA..
    Baker, D. N.
    Univ Colorado, LASP, Boulder, CO 80309 USA..
    Jaynes, A. N.
    Univ Colorado, LASP, Boulder, CO 80309 USA..
    Goodrich, K. A.
    Univ Colorado, LASP, Boulder, CO 80309 USA..
    Cohen, I. J.
    Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA..
    Turner, D. L.
    Aerosp Corp, El Segundo, CA 90245 USA..
    Fennell, J. F.
    Aerosp Corp, El Segundo, CA 90245 USA..
    Blake, J. B.
    Aerosp Corp, El Segundo, CA 90245 USA..
    Clemmons, J.
    Aerosp Corp, El Segundo, CA 90245 USA..
    Goldman, M.
    Univ Colorado, Boulder, CO 80309 USA..
    Newman, D.
    Univ Colorado, Boulder, CO 80309 USA..
    Petrinec, S. M.
    Lockheed Martin Adv Technol Ctr, Palo Alto, CA USA..
    Trattner, K. J.
    Univ Colorado, LASP, Boulder, CO 80309 USA..
    Lavraud, B.
    Inst Rech Astrophys & Planetol, Toulouse, France..
    Reiff, P. H.
    Rice Univ, Dept Phys & Astron, Houston, TX USA..
    Baumjohann, W.
    Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria..
    Magnes, W.
    Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria..
    Steller, M.
    Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria..
    Lewis, W.
    Southwest Res Inst, San Antonio, TX USA..
    Saito, Y.
    Inst Space & Astronaut Sci, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229, Japan..
    Coffey, V.
    NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA..
    Chandler, M.
    NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA..
    Electron-scale measurements of magnetic reconnection in space2016In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 352, no 6290, p. 1189-+Article, review/survey (Refereed)
    Abstract [en]

    Magnetic reconnection is a fundamental physical process in plasmas whereby stored magnetic energy is converted into heat and kinetic energy of charged particles. Reconnection occurs in many astrophysical plasma environments and in laboratory plasmas. Using measurements with very high time resolution, NASA's Magnetospheric Multiscale (MMS) mission has found direct evidence for electron demagnetization and acceleration at sites along the sunward boundary of Earth's magnetosphere where the interplanetary magnetic field reconnects with the terrestrial magnetic field. We have (i) observed the conversion of magnetic energy to particle energy; (ii) measured the electric field and current, which together cause the dissipation of magnetic energy; and (iii) identified the electron population that carries the current as a result of demagnetization and acceleration within the reconnection diffusion/dissipation region.

  • 14.
    Cao, D.
    et al.
    Beihang Univ, Sch Space & Environm, Beijing, Peoples R China.
    Fu, H. S.
    Beihang Univ, Sch Space & Environm, Beijing, Peoples R China.
    Cao, J. B.
    Beihang Univ, Sch Space & Environm, Beijing, Peoples R China.
    Wang, T. Y.
    Beihang Univ, Sch Space & Environm, Beijing, Peoples R China.
    Graham, Daniel B.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Chen, Z. Z.
    Beihang Univ, Sch Space & Environm, Beijing, Peoples R China.
    Peng, F. Z.
    Beihang Univ, Sch Space & Environm, Beijing, Peoples R China.
    Huang, S. Y.
    Wuhan Univ, Sch Elect & Informat, Wuhan, Peoples R China.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Russell, C. T.
    Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA.
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Lindqvist, P. -A
    Torbert, R. B.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA;Univ New Hampshire, Dept Phys, Durham, NH 03824 USA.
    Ergun, R. E.
    Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA.
    Le Contel, O.
    UPMC, Ecole Polytech, CNRS, Lab Phys Plasmas, Palaiseau, France.
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX USA.
    MMS observations of whistler waves in electron diffusion region2017In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 44, no 9, p. 3954-3962Article in journal (Refereed)
    Abstract [en]

    Whistler waves that can produce anomalous resistivity by affecting electrons' motion have been suggested as one of the mechanisms responsible for magnetic reconnection in the electron diffusion region (EDR). Such type of waves, however, has rarely been observed inside the EDR so far. In this study, we report such an observation by Magnetospheric Multiscale (MMS) mission. We find large-amplitude whistler waves propagating away from the X line with a very small wave-normal angle. These waves are probably generated by the perpendicular temperature anisotropy of the -300eV electrons inside the EDR, according to our analysis of dispersion relation and cyclotron resonance condition; they significantly affect the electron-scale dynamics of magnetic reconnection and thus support previous simulations.

  • 15. Chasapis, A.
    et al.
    Retino, A.
    Sahraoui, F.
    Vaivads, Andris
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Sundkvist, D.
    Greco, A.
    Sorriso-Valvo, L.
    Canu, P.
    Thin Current Sheets and Associated Electron Heating in Turbulent Space Plasma2015In: Astrophysical Journal Letters, ISSN 2041-8205, E-ISSN 2041-8213, Vol. 804, no 1, article id L1Article in journal (Refereed)
    Abstract [en]

    Intermittent structures, such as thin current sheets, are abundant in turbulent plasmas. Numerical simulations indicate that such current sheets are important sites of energy dissipation and particle heating occurring at kinetic scales. However, direct evidence of dissipation and associated heating within current sheets is scarce. Here, we show a new statistical study of local electron heating within proton-scale current sheets by using high-resolution spacecraft data. Current sheets are detected using the Partial Variance of Increments (PVI) method which identifies regions of strong intermittency. We find that strong electron heating occurs in high PVI (>3) current sheets while no significant heating occurs in low PVI cases (<3), indicating that the former are dominant for energy dissipation. Current sheets corresponding to very high PVI (>5) show the strongest heating and most of the time are consistent with ongoing magnetic reconnection. This suggests that reconnection is important for electron heating and dissipation at kinetic scales in turbulent plasmas.

  • 16. Chasapis, A.
    et al.
    Retino, A.
    Sahraoui, F.
    Vaivads, Andris
    Uppsala universitet, Institutet för rymdfysik, Uppsalaavdelningen.
    Khotyaintsev, Yuri V.
    Uppsala universitet, Institutet för rymdfysik, Uppsalaavdelningen.
    Sundkvist, D.
    Greco, A.
    Sorriso-Valvo, L.
    Canu, P.
    Thin Current Sheets and Associated Electron Heating in Turbulent Space Plasma2015In: Astrophysical Journal Letters, ISSN 2041-8205, E-ISSN 2041-8213, Vol. 804, no 1, article id L1Article in journal (Refereed)
    Abstract [en]

    Intermittent structures, such as thin current sheets, are abundant in turbulent plasmas. Numerical simulations indicate that such current sheets are important sites of energy dissipation and particle heating occurring at kinetic scales. However, direct evidence of dissipation and associated heating within current sheets is scarce. Here, we show a new statistical study of local electron heating within proton-scale current sheets by using high-resolution spacecraft data. Current sheets are detected using the Partial Variance of Increments (PVI) method which identifies regions of strong intermittency. We find that strong electron heating occurs in high PVI (>3) current sheets while no significant heating occurs in low PVI cases (<3), indicating that the former are dominant for energy dissipation. Current sheets corresponding to very high PVI (>5) show the strongest heating and most of the time are consistent with ongoing magnetic reconnection. This suggests that reconnection is important for electron heating and dissipation at kinetic scales in turbulent plasmas.

  • 17.
    Chasapis, Alexandros
    et al.
    Univ Delaware, Newark, DC USA..
    Matthaeus, W. H.
    Univ Delaware, Newark, DC USA..
    Parashar, T. N.
    Univ Delaware, Newark, DC USA..
    LeContel, O.
    Lab Phys Plasmas, Paris, France..
    Retino, A.
    Lab Phys Plasmas, Paris, France..
    Breuillard, H.
    Lab Phys Plasmas, Paris, France..
    Khotyaintsev, Yuri
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Vaivads, Andris
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Lavraud, B.
    Univ Toulouse UPS, Inst Rech Astrophys & Plantol, Toulouse, France.;Ctr Natl Rech Sci, UMR 5277, Toulouse, France..
    Eriksson, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Moore, T. E.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX USA..
    Torbert, R. B.
    Univ New Hampshire, Durham, NH 03824 USA..
    Lindqvist, P. -A
    Ergun, R. E.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO USA..
    Marklund, G.
    Royal Inst Technol, Stockholm, Sweden..
    Goodrich, K. A.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO USA..
    Wilder, F. D.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO USA..
    Chutter, M.
    Univ New Hampshire, Durham, NH 03824 USA..
    Needell, J.
    Univ New Hampshire, Durham, NH 03824 USA..
    Rau, D.
    Univ New Hampshire, Durham, NH 03824 USA..
    Dors, I.
    Univ New Hampshire, Durham, NH 03824 USA..
    Russell, C. T.
    Univ Calif Los Angeles, Los Angeles, CA USA..
    Le, G.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Magnes, W.
    Austrian Acad Sci, Space Res Inst, Graz, Austria..
    Strangeway, R. J.
    Univ Calif Los Angeles, Los Angeles, CA USA..
    Bromund, K. R.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Leinweber, H. K.
    Univ Calif Los Angeles, Los Angeles, CA USA..
    Plaschke, F.
    Austrian Acad Sci, Space Res Inst, Graz, Austria..
    Fischer, D.
    Austrian Acad Sci, Space Res Inst, Graz, Austria..
    Anderson, B. J.
    Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA..
    Pollock, C. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Paterson, W. R.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Dorelli, J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Gershman, D. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Avanov, L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Saito, Y.
    Inst Space & Astronaut Sci, Sagamihara, Kanagawa, Japan..
    Electron Heating at Kinetic Scales in Magnetosheath Turbulence2017In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 836, no 2, article id 247Article in journal (Refereed)
    Abstract [en]

    We present a statistical study of coherent structures at kinetic scales, using data from the Magnetospheric Multiscale mission in the Earth's magnetosheath. We implemented the multi-spacecraft partial variance of increments (PVI) technique to detect these structures, which are associated with intermittency at kinetic scales. We examine the properties of the electron heating occurring within such structures. We find that, statistically, structures with a high PVI index are regions of significant electron heating. We also focus on one such structure, a current sheet, which shows some signatures consistent with magnetic reconnection. Strong parallel electron heating coincides with whistler emissions at the edges of the current sheet.

  • 18.
    Chasapis, Alexandros
    et al.
    Univ Delaware, Newark, DE 19716 USA.
    Matthaeus, W. H.
    Univ Delaware, Newark, DE 19716 USA.
    Parashar, T. N.
    Univ Delaware, Newark, DE 19716 USA.
    Wan, M.
    South Univ Sci & Technol China, Shenzhen, Guangdong, Peoples R China.
    Haggerty, C. C.
    Univ Delaware, Newark, DE 19716 USA.
    Pollock, C. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Paterson, W. R.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Dorelli, J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Gershman, D. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Torbert, R. B.
    Univ New Hampshire, Durham, NH 03824 USA.
    Russell, C. T.
    Univ Calif Los Angeles, Los Angeles, CA USA.
    Lindqvist, P. -A
    Khotyaintsev, Yuri
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Moore, T. E.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Ergun, R. E.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA.
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX USA.
    In Situ Observation of Intermittent Dissipation at Kinetic Scales in the Earth's Magnetosheath2018In: Astrophysical Journal Letters, ISSN 2041-8205, E-ISSN 2041-8213, Vol. 856, no 1, article id L19Article in journal (Refereed)
    Abstract [en]

    We present a study of signatures of energy dissipation at kinetic scales in plasma turbulence based on observations by the Magnetospheric Multiscale mission (MMS) in the Earth's magnetosheath. Using several intervals, and taking advantage of the high-resolution instrumentation on board MMS, we compute and discuss several statistical measures of coherent structures and heating associated with electrons, at previously unattainable scales in space and time. We use the multi-spacecraft Partial Variance of Increments (PVI) technique to study the intermittent structure of the magnetic field. Furthermore, we examine a measure of dissipation and its behavior with respect to the PVI as well as the current density. Additionally, we analyze the evolution of the anisotropic electron temperature and non-Maxwellian features of the particle distribution function. From these diagnostics emerges strong statistical evidence that electrons are preferentially heated in subproton-scale regions of strong electric current density, and this heating is preferentially in the parallel direction relative to the local magnetic field. Accordingly, the conversion of magnetic energy into electron kinetic energy occurs more strongly in regions of stronger current density, a finding consistent with several kinetic plasma simulation studies and hinted at by prior studies using lower resolution Cluster observations.

  • 19. Chen, L. -J
    et al.
    Hesse, M.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA..
    Wang, S.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.;Univ Maryland, Dept Astron, College Pk, MD 20742 USA..
    Gershman, D.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.;Univ Maryland, Dept Astron, College Pk, MD 20742 USA..
    Ergun, R. E.
    Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA..
    Burch, J.
    Southwest Res Inst, San Antonio, TX USA..
    Bessho, N.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.;Univ Maryland, Dept Astron, College Pk, MD 20742 USA..
    Torbert, R. B.
    Southwest Res Inst, San Antonio, TX USA.;Univ New Hampshire, Dept Phys, Durham, NH 03824 USA..
    Giles, B.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA..
    Webster, J.
    Rice Univ, Dept Phys & Astron, Houston, TX USA..
    Pollock, C.
    Denali Sci, Healy, AK USA..
    Dorelli, J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA..
    Moore, T.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA..
    Paterson, W.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA..
    Lavraud, B.
    Univ Toulouse, Inst Rech Astrophys & Planetol, Toulouse, France.;CNRS, UMR 5277, Toulouse, France..
    Strangeway, R.
    Univ Calif Los Angeles, Earth Planetary & Space Sci, Los Angeles, CA USA..
    Russell, C.
    Univ Calif Los Angeles, Earth Planetary & Space Sci, Los Angeles, CA USA..
    Khotyaintsev, Yuri
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Lindqvist, P. -A
    Avanov, L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.;Univ Maryland, Dept Astron, College Pk, MD 20742 USA..
    Electron diffusion region during magnetopause reconnection with an intermediate guide field: Magnetospheric multiscale observations2017In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 122, no 5, p. 5235-5246Article in journal (Refereed)
    Abstract [en]

    An electron diffusion region (EDR) in magnetic reconnection with a guide magnetic field approximately 0.2 times the reconnecting component is encountered by the four Magnetospheric Multiscale spacecraft at the Earth's magnetopause. The distinct substructures in the EDR on both sides of the reconnecting current sheet are visualized with electron distribution functions that are 2 orders of magnitude higher cadence than ever achieved to enable the following new findings: (1) Motion of the demagnetized electrons plays an important role to sustain the reconnection current and contributes to the dissipation due to the nonideal electric field, (2) the finite guide field dominates over the Hall magnetic field in an electron-scale region in the exhaust and modifies the electron flow dynamics in the EDR, (3) the reconnection current is in part carried by inflowing field-aligned electrons in the magnetosphere part of the EDR, and (4) the reconnection electric field measured by multiple spacecraft is uniform over at least eight electron skin depths and corresponds to a reconnection rate of approximately 0.1. The observations establish the first look at the structure of the EDR under a weak but not negligible guide field.

  • 20. Chen, L. -J
    et al.
    Wang, S.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA;Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
    Hesse, M.
    Univ Bergen, Dept Phys & Technol, Bergen, Norway.
    Ergun, R. E.
    Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA.
    Moore, T.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
    Giles, B.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
    Bessho, N.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA;Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
    Russell, C.
    Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA.
    Burch, J.
    Southwest Res Inst, San Antonio, TX USA.
    Torbert, R. B.
    Southwest Res Inst, San Antonio, TX USA;Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA.
    Genestreti, K. J.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA.
    Paterson, W.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
    Pollock, C.
    Denali Sci, Healy, AK USA.
    Lavraud, B.
    Univ Toulouse UPS, Inst Rech Astrophys & Planetol, CNRS, CNES, Toulouse, France.
    Le Contel, O.
    Univ Paris Sud, Lab Phys Plasmas UMR7648, Ecole Polytech, CNRS,Sorbonne Univ,Observ Paris, Paris, France.
    Strangeway, R.
    Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Lindqvist, P. -A
    Electron Diffusion Regions in Magnetotail Reconnection Under Varying Guide Fields2019In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 46, no 12, p. 6230-6238Article in journal (Refereed)
    Abstract [en]

    Kinetic structures of electron diffusion regions (EDRs) under finite guide fields in magnetotail reconnection are reported. The EDRs with guide fields 0.14-0.5 (in unit of the reconnecting component) are detected by the Magnetospheric Multiscale spacecraft. The key new features include the following: (1) cold inflowing electrons accelerated along the guide field and demagnetized at the magnetic field minimum while remaining a coherent population with a low perpendicular temperature, (2) wave fluctuations generating strong perpendicular electron flows followed by alternating parallel flows inside the reconnecting current sheet under an intermediate guide field, and (3) gyrophase bunched electrons with high parallel speeds leaving the X-line region. The normalized reconnection rates for the three EDRs range from 0.05 to 0.3. The measurements reveal that finite guide fields introduce new mechanisms to break the electron frozen-in condition. Plain Language Summary Magnetic reconnection plays a crucial role in the dynamics of the terrestrial magnetotail. For reconnection to occur, the plasma must decouple from the magnetic field. The bounce motion of particles in the magnetotail current sheet is regarded as a key to this decoupling for cases when the current sheet has no magnetic field along the direction of the current. This paper reports that while bounce motion remains relevant when a finite magnetic field is present along the current, new mechanisms to decouple electrons from the magnetic field are introduced, and new open questions unfold. The observations are based on measurements from the Magnetospheric Multiscale mission. The mission's unprecedented high cadence electron data make possible the revelation of the new mechanisms. The results reported in this paper expand the frontiers of our knowledge on magnetotail reconnection and have major implications on the fundamental physics of magnetic reconnection in all plasma systems where binary collisions are not effective, including solar, astrophysical, and laboratory plasmas. Rapid dissemination of the results will set the ground for advances in magnetic reconnection research.

  • 21. Chen, L. -J
    et al.
    Wang, S.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA;Univ Maryland, Dept Astron, College Pk, MD 20747 USA.
    Wilson, L. B. , I I I
    Schwartz, S.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80305 USA.
    Bessho, N.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA;Univ Maryland, Dept Astron, College Pk, MD 20747 USA.
    Moore, T.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
    Gershman, D.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
    Giles, B.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
    Malaspina, D.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80305 USA.
    Wilder, F. D.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80305 USA.
    Ergun, R. E.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80305 USA.
    Hesse, M.
    Univ Bergen, N-5020 Bergen, Norway.
    Lai, H.
    Univ Calif Los Angeles, Los Angeles, CA 90095 USA.
    Russell, C.
    Univ Calif Los Angeles, Los Angeles, CA 90095 USA.
    Strangeway, R.
    Univ Calif Los Angeles, Los Angeles, CA 90095 USA.
    Torbert, R. B.
    Southwest Res Inst, San Antonio, TX 78238 USA.
    Vinas, A. F.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
    Burch, J.
    Southwest Res Inst, San Antonio, TX 78238 USA.
    Lee, S.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
    Pollock, C.
    Denali Sci, Healy, AK 99743 USA.
    Dorelli, J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
    Paterson, W.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
    Ahmadi, N.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80305 USA.
    Goodrich, K.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80305 USA.
    Lavraud, B.
    Univ Toulouse UPS, Inst Rech Astrophys & Planetol, CNRS, CNES, F-31028 Toulouse 4, France.
    Le Contel, O.
    Univ Paris Sud, Observ Paris, Lab Phys Plasmas, UMR7648,CNRS,Ecole Polytech,Sorbonne Univ, F-91128 Palaiseau, France.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Lindqvist, P. -A
    Boardsen, S.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA;Univ Maryland, Dept Astron, College Pk, MD 20747 USA.
    Wei, H.
    Univ Calif Los Angeles, Los Angeles, CA 90095 USA.
    Le, A.
    Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
    Avanov, L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA;Univ Maryland, Dept Astron, College Pk, MD 20747 USA.
    Electron Bulk Acceleration and Thermalization at Earth's Quasiperpendicular Bow Shock2018In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 120, no 22, article id 225101Article in journal (Refereed)
    Abstract [en]

    Electron heating at Earth's quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. The relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating.

  • 22.
    Chen, Z. Z.
    et al.
    Beihang Univ, Sch Space & Environm, Beijing, Peoples R China.
    Fu, H. S.
    Beihang Univ, Sch Space & Environm, Beijing, Peoples R China.
    Liu, C. M.
    Beihang Univ, Sch Space & Environm, Beijing, Peoples R China.
    Wang, T. Y.
    STFC, RAL Space, Didcot, Oxon, England.
    Ergun, R. E.
    Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA.
    Cozzani, G.
    UPMC, Ecole Polytech, CNRS, Lab Phys Plasmas, Palaiseau, France.
    Huang, S. Y.
    Wuhan Univ, Sch Elect Informat, Wuhan, Hubei, Peoples R China.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Le Contel, O.
    UPMC, Ecole Polytech, CNRS, Lab Phys Plasmas, Palaiseau, France.
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX USA.
    Electron-Driven Dissipation in a Tailward Flow Burst2019In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 46, no 11, p. 5698-5706Article in journal (Refereed)
    Abstract [en]

    Traditionally, the magnetotail flow burst outside the diffusion region is known to carry ions and electrons together (V-i = V-e), with the frozen-in condition well satisfied (E + V-e x B = 0). Such picture, however, may not be true, based on our analyses of the high-resolution MMS (Magnetospheric Multiscale mission) data. We find that inside the flow burst the electrons and ions can be decoupled (V-e not equal V-i), with the electron speed 5 times larger than the ion speed. Such super-Alfvenic electron jet, having scale of 10 d(i) (ion inertial length) in X-GSM direction, is associated with electron demagnetization (E + V-e x B not equal 0), electron agyrotropy (crescent distribution), and O-line magnetic topology but not associated with the flow reversal and X-line topology; it can cause strong energy dissipation and electron heating. We quantitatively analyze the dissipation and find that it is primarily attributed to lower hybrid drift waves. These results emphasize the non-MHD (magnetohydrodynamics) behaviors of magnetotail flow bursts and the role of lower hybrid drift waves in dissipating energies.

  • 23.
    Cozzani, Giulia
    et al.
    Univ Paris Sud, Sorbonne Univ, Observ Paris, Lab Phys Plasmas,CNRS,Ecole Polytech, F-91128 Palaiseau, France;Univ Pisa, Dipartimento Fis E Fermi, I-56127 Pisa, Italy.
    Retino, A.
    Univ Paris Sud, Sorbonne Univ, Observ Paris, Lab Phys Plasmas,CNRS,Ecole Polytech, F-91128 Palaiseau, France.
    Califano, F.
    Univ Pisa, Dipartimento Fis E Fermi, I-56127 Pisa, Italy.
    Alexandrova, A.
    Univ Paris Sud, Sorbonne Univ, Observ Paris, Lab Phys Plasmas,CNRS,Ecole Polytech, F-91128 Palaiseau, France.
    Contel, O. Le
    Univ Paris Sud, Sorbonne Univ, Observ Paris, Lab Phys Plasmas,CNRS,Ecole Polytech, F-91128 Palaiseau, France.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Vaivads, Andris
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Fu, H. S.
    Beihang Univ, Sch Space & Environm, Beijing 100083, Peoples R China.
    Catapano, F.
    Univ Paris Sud, Sorbonne Univ, Observ Paris, Lab Phys Plasmas,CNRS,Ecole Polytech, F-91128 Palaiseau, France;Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, CS, Italy.
    Breuillard, H.
    Univ Paris Sud, Sorbonne Univ, Observ Paris, Lab Phys Plasmas,CNRS,Ecole Polytech, F-91128 Palaiseau, France;Univ Orleans, UMR 7328, CNRS, Lab Phys & Chim Environm & Espace, F-45071 Orleans, France.
    Ahmadi, N.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA.
    Lindqvist, P-A
    KTH Royal Inst Technol, SE-10044 Stockholm, Sweden.
    Ergun, R. E.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA.
    Torbert, R. B.
    Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA.
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
    Russell, C. T.
    Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA.
    Nakamura, R.
    Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria.
    Fuseher, S.
    Southwest Res Inst, San Antonio, TX 78238 USA;Univ Texas San Antonio, San Antonio, TX 78238 USA.
    Mauk, B. H.
    Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA.
    Moore, T.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX 78238 USA.
    In situ spacecraft observations of a structured electron diffusion region during magnetopause reconnection2019In: Physical review. E, ISSN 2470-0045, E-ISSN 2470-0053, Vol. 99, no 4, article id 043204Article in journal (Refereed)
    Abstract [en]

    The electron diffusion region (EDR) is the region where magnetic reconnection is initiated and electrons are energized. Because of experimental difficulties, the structure of the EDR is still poorly understood. A key question is whether the EDR has a homogeneous or patchy structure. Here we report Magnetospheric Multiscale (MMS) spacecraft observations providing evidence of inhomogeneous current densities and energy conversion over a few electron inertial lengths within an EDR at the terrestrial magnetopause, suggesting that the EDR can be rather structured. These inhomogenenities are revealed through multipoint measurements because the spacecraft separation is comparable to a few electron inertial lengths, allowing the entire MMS tetrahedron to be within the EDR most of the time. These observations are consistent with recent high-resolution and low-noise kinetic simulations.

  • 24.
    Dimmock, Andrew P.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Russell, Christopher T.
    Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA 90095 USA.
    Sagdeev, Roald Z.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA.
    Krasnoselskikh, Vladimir
    Univ Orleans, CNRS, LPC2E, Orleans, France;Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA.
    Walker, Simon N.
    Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield, S Yorkshire, England.
    Carr, Christopher
    Imperial Coll London, London SW7 2AZ, England.
    Dandouras, Iannis
    Univ Toulouse, IRAP, CNRS, UPS,CNES, Toulouse, France.
    Escoubet, C. Philippe
    European Space Agcy, European Space Res & Technol Ctr ESA ESTEC, Noordwijk, Netherlands.
    Ganushkina, Natalia
    Finnish Meteorol Inst, Helsinki, Finland;Univ Michigan, Ann Arbor, MI 48109 USA.
    Gedalin, Michael
    Ben Gurion Univ Negev, Dept Phys, Beer Sheva, Israel.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Aryan, Homayon
    Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield, S Yorkshire, England;NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
    Pulkkinen, Tuija, I
    Univ Michigan, Ann Arbor, MI 48109 USA;Aalto Univ, Sch Elect Engn, Dept Elect & Nanoengn, Espoo, Finland.
    Balikhin, Michael A.
    Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield, S Yorkshire, England.
    Direct evidence of nonstationary collisionless shocks in space plasmas2019In: Science Advances, E-ISSN 2375-2548, Vol. 5, no 2, article id eaau9926Article in journal (Refereed)
    Abstract [en]

    Collisionless shocks are ubiquitous throughout the universe: around stars, supernova remnants, active galactic nuclei, binary systems, comets, and planets. Key information is carried by electromagnetic emissions from particles accelerated by high Mach number collisionless shocks. These shocks are intrinsically nonstationary, and the characteristic physical scales responsible for particle acceleration remain unknown. Quantifying these scales is crucial, as it affects the fundamental process of redistributing upstream plasma kinetic energy into other degrees of freedom-particularly electron thermalization. Direct in situ measurements of nonstationary shock dynamics have not been reported. Thus, the model that best describes this process has remained unknown. Here, we present direct evidence demonstrating that the transition to nonstationarity is associated with electron-scale field structures inside the shock ramp.

  • 25.
    Divin, A.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Vaivads, Andris
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Markidis, S.
    Lapenta, G.
    Evolution of the lower hybrid drift instability at reconnection jet front2015In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 120, no 4, p. 2675-2690Article in journal (Refereed)
    Abstract [en]

    We investigate current-driven modes developing at jet fronts during collisionless reconnection. Initial evolution of the reconnection is simulated using conventional 2-D setup starting from the Harris equilibrium. Three-dimensional PIC calculations are implemented at later stages, when fronts are fully formed. Intense currents and enhanced wave activity are generated at the fronts because of the interaction of the fast flow plasma and denser ambient current sheet plasma. The study reveals that the lower hybrid drift instability develops quickly in the 3-D simulation. The instability produces strong localized perpendicular electric fields, which are several times larger than the convective electric field at the front, in agreement with Time History of Events and Macroscale Interactions during Substorms observations. The instability generates waves, which escape the front edge and propagate into the undisturbed plasma ahead of the front. The parallel electron pressure is substantially larger in the 3-D simulation compared to that of the 2-D. In a time similar to Omega(-1)(ci), the instability forms a layer, which contains a mixture of the jet plasma and current sheet plasma. The results confirm that the lower hybrid drift instability is important for the front evolution and electron energization.

  • 26.
    Divin, Andrey
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Vaivads, Andris
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Lower hybrid drift instability at a dipolarization front2015In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 120, no 2, p. 1124-1132Article in journal (Refereed)
    Abstract [en]

    We present observations of a reconnection jet front detected by the Cluster satellites in the magnetotail of Earth, which are commonly referred to as dipolarization fronts. We investigate in detail electric field structures observed at the front which have frequency in the lower hybrid range and amplitudes reaching 40mV/m. We determine the frequency and phase velocity of these structures in the reference frame of the front and identify them as a manifestation of the lower hybrid drift instability (LHDI) excited at the sharp density gradient at the front. The LHDI is observed in the nonlinear stage of its evolution as the electrostatic potential of the structures is comparable to approximate to 10% of the electron temperature. The front appears to be a coherent structure on ion and MHD scales, suggesting existence of a dynamic equilibrium between excitation of the LHDI and recovery of the steep density gradient at the front.

  • 27.
    Divin, Andrey
    et al.
    Uppsala universitet, Institutet för rymdfysik, Uppsalaavdelningen.
    Khotyaintsev, Yuri V.
    Uppsala universitet, Institutet för rymdfysik, Uppsalaavdelningen.
    Vaivads, Andris
    Uppsala universitet, Institutet för rymdfysik, Uppsalaavdelningen.
    André, Mats
    Uppsala universitet, Institutet för rymdfysik, Uppsalaavdelningen.
    Lower hybrid drift instability at a dipolarization front2015In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 120, no 2, p. 1124-1132Article in journal (Refereed)
    Abstract [en]

    We present observations of a reconnection jet front detected by the Cluster satellites in the magnetotail of Earth, which are commonly referred to as dipolarization fronts. We investigate in detail electric field structures observed at the front which have frequency in the lower hybrid range and amplitudes reaching 40mV/m. We determine the frequency and phase velocity of these structures in the reference frame of the front and identify them as a manifestation of the lower hybrid drift instability (LHDI) excited at the sharp density gradient at the front. The LHDI is observed in the nonlinear stage of its evolution as the electrostatic potential of the structures is comparable to approximate to 10% of the electron temperature. The front appears to be a coherent structure on ion and MHD scales, suggesting existence of a dynamic equilibrium between excitation of the LHDI and recovery of the steep density gradient at the front.

  • 28.
    Divin, Andrey
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Vaivads, Andris
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Toledo-Redondo, S.
    European Space Agcy, ESAC, Sci Directorate, Madrid, Spain..
    Markidis, S.
    KTH Royal Inst Technol, Dept Computat Sci & Technol, Stockholm, Sweden..
    Lapenta, G.
    Katholieke Univ Leuven, Ctr Math Plasma Astrophys, Dept Math, Leuven, Belgium..
    Three-scale structure of diffusion region in the presence of cold ions2016In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 121, no 12, p. 12001-12013Article in journal (Refereed)
    Abstract [en]

    Kinetic simulations and spacecraft observations typically display the two-scale structure of collisionless diffusion region (DR), with electron and ion demagnetization scales governing the spatial extent of the DR. Recent in situ observations of the nightside magnetosphere, as well as investigation of magnetic reconnection events at the Earth's magnetopause, discovered the presence of a population of cold (tens of eV) ions of ionospheric origin. We present two-dimensional particle-in-cell simulations of collisionless magnetic reconnection in multicomponent plasma with ions consisting of hot and cold populations. We show that a new cold ion diffusion region scale is introduced in between that of hot ions and electrons. Demagnetization scale of cold ion population is several times (similar to 4-8) larger than the initial cold ion gyroradius. Cold ions are accelerated and thermalized during magnetic reconnection and form ion beams moving with velocities close to the Alfven velocity.

  • 29.
    Duan, Suping
    et al.
    Chinese Acad Sci, Natl Space Sci Ctr, State Key Lab Space Weather, Beijing, Peoples R China..
    Dai, Lei
    Chinese Acad Sci, Natl Space Sci Ctr, State Key Lab Space Weather, Beijing, Peoples R China..
    Wang, Chi
    Chinese Acad Sci, Natl Space Sci Ctr, State Key Lab Space Weather, Beijing, Peoples R China..
    He, Zhaohai
    Chinese Acad Sci, Natl Space Sci Ctr, State Key Lab Space Weather, Beijing, Peoples R China..
    Cai, Chunlin
    Chinese Acad Sci, Natl Space Sci Ctr, State Key Lab Space Weather, Beijing, Peoples R China..
    Zhang, Y. C.
    Chinese Acad Sci, Natl Space Sci Ctr, State Key Lab Space Weather, Beijing, Peoples R China..
    Dandouras, I.
    Univ Toulouse, UPS OMP, IRAP, Toulouse, France.;CNRS, IRAP, Toulouse, France..
    Reme, H.
    Univ Toulouse, UPS OMP, IRAP, Toulouse, France.;CNRS, IRAP, Toulouse, France..
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Oxygen Ions O+ Energized by Kinetic Alfven Eigenmode During Dipolarizations of Intense Substorms2017In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 122, no 11, p. 11256-11273Article in journal (Refereed)
    Abstract [en]

    Singly charged oxygen ions, O+, energized by kinetic Alfven wave eigenmode (KAWE) in the plasma sheet boundary layer during dipolarizations of two intense substorms, 10: 07 UT on 31 August 2004 and 18: 24 UT on 14 September 2004, are investigated by Cluster spacecraft in the magnetotail. It is found that after the beginning of the expansion phase of substorms, O+ ions are clearly energized in the direction perpendicular to the magnetic field with energy larger than 1 keV in the near-Earth plasma sheet during magnetic dipolarizations. The pitch angle distribution of these energetic O+ ions is significantly different from that of O+ ions with energy less than 1 keV before substorm onset that is in the quasi-parallel direction along the magnetic field. The KAWE with the large perpendicular unipolar electric field, E-z similar to -20 mV/m, significantly accelerates O+ ions in the direction perpendicular to the background magnetic field. We present good evidences that O+ ion origin from the ionosphere along the magnetic field line in the northward lobe can be accelerated in the perpendicular direction during substorm dipolarizations. The change of the move direction of O+ ions is useful for O+ transferring from the lobe into the central plasma sheet in the magnetotail. Thus, KAWE can play an important role in O+ ion transfer process from the lobe into the plasma sheet during intense substorms.

  • 30.
    Eastwood, J. P.
    et al.
    Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London, England..
    Phan, T. D.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Cassak, P. A.
    W Virginia Univ, Dept Phys & Astron, Morgantown, WV 26506 USA..
    Gershman, D. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.;Univ Maryland, Dept Astron, College Pk, MD 20742 USA..
    Haggerty, C.
    Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA..
    Malakit, K.
    Mahidol Univ, Dept Phys, Bangkok 10700, Thailand..
    Shay, M. A.
    Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA..
    Mistry, R.
    Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London, England..
    Oieroset, M.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Russell, C. T.
    Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA..
    Slavin, J. A.
    Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA..
    Argall, M. R.
    Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA..
    Avanov, L. A.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.;Univ Maryland, Dept Astron, College Pk, MD 20742 USA..
    Burch, J. L.
    SW Res Inst, San Antonio, TX USA..
    Chen, L. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.;Univ Maryland, Dept Astron, College Pk, MD 20742 USA..
    Dorelli, J. C.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Ergun, R. E.
    Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA..
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Khotyaintsev, Yuri
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Lavraud, B.
    Univ Toulouse, Inst Rech Astrophys & Planetol, Toulouse, France.;CNRS, UMR 5277, Toulouse, France..
    Lindqvist, P. A.
    Royal Inst Technol, Sch Elect Engn, Stockholm, Sweden..
    Moore, T. E.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Nakamura, R.
    Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria..
    Paterson, W.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Pollock, C.
    Denali Sci, Healy, AK USA..
    Strangeway, R. J.
    Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA..
    Torbert, R. B.
    Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA.;SW Res Inst, San Antonio, TX USA..
    Wang, S.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.;Univ Maryland, Dept Astron, College Pk, MD 20742 USA..
    Ion-scale secondary flux ropes generated by magnetopause reconnection as resolved by MMS2016In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 43, no 10, p. 4716-4724Article in journal (Refereed)
    Abstract [en]

    New Magnetospheric Multiscale (MMS) observations of small-scale (similar to 7 ion inertial length radius) flux transfer events (FTEs) at the dayside magnetopause are reported. The 10 km MMS tetrahedron size enables their structure and properties to be calculated using a variety of multispacecraft techniques, allowing them to be identified as flux ropes, whose flux content is small (similar to 22 kWb). The current density, calculated using plasma and magnetic field measurements independently, is found to be filamentary. Intercomparison of the plasma moments with electric and magnetic field measurements reveals structured non-frozen-in ion behavior. The data are further compared with a particle-in-cell simulation. It is concluded that these small-scale flux ropes, which are not seen to be growing, represent a distinct class of FTE which is generated on the magnetopause by secondary reconnection.

  • 31.
    Ergun, R. E.
    et al.
    Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80303 USA.;Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80303 USA..
    Goodrich, K. A.
    Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80303 USA.;Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80303 USA..
    Wilder, F. D.
    Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80303 USA..
    Holmes, J. C.
    Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80303 USA.;Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80303 USA..
    Stawarz, J. E.
    Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80303 USA.;Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80303 USA..
    Eriksson, S.
    Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80303 USA..
    Sturner, A. P.
    Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80303 USA.;Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80303 USA..
    Malaspina, D. M.
    Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80303 USA..
    Usanova, M. E.
    Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80303 USA..
    Torbert, R. B.
    Univ New Hampshire, Durham, NH 03824 USA.;Southwest Res Inst, San Antonio, TX 78238 USA..
    Lindqvist, P. -A
    Khotyaintsev, Yuri
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX 78238 USA..
    Strangeway, R. J.
    Univ Calif Los Angeles, Los Angeles, CA 90095 USA..
    Russell, C. T.
    Univ Calif Los Angeles, Los Angeles, CA 90095 USA..
    Pollock, C. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA..
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA..
    Hesse, M.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA..
    Chen, L. J.
    Univ Maryland, College Pk, MD 20742 USA..
    Lapenta, G.
    Leuven Univ, Leuven, Belgium..
    Goldman, M. V.
    Univ Colorado, Dept Phys, Boulder, CO 80303 USA..
    Newman, D. L.
    Univ Colorado, Dept Phys, Boulder, CO 80303 USA..
    Schwartz, S. J.
    Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80303 USA.;Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London, England..
    Eastwood, J. P.
    Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London, England..
    Phan, T. D.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Mozer, F. S.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Drake, J.
    Univ Maryland, College Pk, MD 20742 USA..
    Shay, M. A.
    Univ Delaware, Newark, DE 19716 USA..
    Cassak, P. A.
    W Virginia Univ, Morgantown, WV 26506 USA..
    Nakamura, R.
    Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria..
    Marklund, G.
    KTH Royal Inst Technol, Stockholm, Sweden..
    Magnetospheric Multiscale Satellites Observations of Parallel Electric Fields Associated with Magnetic Reconnection2016In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 116, no 23, article id 235102Article in journal (Refereed)
    Abstract [en]

    We report observations from the Magnetospheric Multiscale satellites of parallel electric fields (E-vertical bar vertical bar) associated with magnetic reconnection in the subsolar region of the Earth's magnetopause. E-vertical bar vertical bar events near the electron diffusion region have amplitudes on the order of 100 mV/m, which are significantly larger than those predicted for an antiparallel reconnection electric field. This Letter addresses specific types of E-vertical bar vertical bar events, which appear as large-amplitude, near unipolar spikes that are associated with tangled, reconnected magnetic fields. These E-vertical bar vertical bar events are primarily in or near a current layer near the separatrix and are interpreted to be double layers that may be responsible for secondary reconnection in tangled magnetic fields or flux ropes. These results are telling of the three-dimensional nature of magnetopause reconnection and indicate that magnetopause reconnection may be often patchy and/or drive turbulence along the separatrix that results in flux ropes and/or tangled magnetic fields.

  • 32.
    Ergun, R. E.
    et al.
    Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA.;Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA..
    Holmes, J. C.
    Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA.;Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA..
    Goodrich, K. A.
    Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA.;Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA..
    Wilder, F. D.
    Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA..
    Stawarz, J. E.
    Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA.;Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA..
    Eriksson, S.
    Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA..
    Newman, D. L.
    Univ Colorado, Dept Phys, Boulder, CO 80309 USA..
    Schwartz, S. J.
    Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA.;Imperial Coll London, Blackett Lab, London, England..
    Goldman, M. V.
    Univ Colorado, Dept Phys, Boulder, CO 80309 USA..
    Sturner, A. P.
    Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA.;Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA..
    Malaspina, D. M.
    Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA..
    Usanova, M. E.
    Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA..
    Torbert, R. B.
    Univ New Hampshire, Dept Phys, Durham, NH 03824 USA.;Southwest Res Inst, San Antonio, TX USA..
    Argall, M.
    Univ New Hampshire, Dept Phys, Durham, NH 03824 USA..
    Lindqvist, P-A
    Khotyaintsev, Yuri
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX USA..
    Strangeway, R. J.
    Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA..
    Russell, C. T.
    Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA..
    Pollock, C. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Dorelli, J. J. C.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Avanov, L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Hesse, M.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Chen, L. J.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    Lavraud, B.
    Univ Toulouse, Inst Rech Astrophys & Planetol, Toulouse, France.;CNRS, Toulouse, France..
    Le Contel, O.
    Lab Phys Plasmas, Palaiseau, France..
    Retino, A.
    Lab Phys Plasmas, Palaiseau, France..
    Phan, T. D.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Eastwood, J. P.
    Imperial Coll London, Blackett Lab, London, England..
    Oieroset, M.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Drake, J.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    Shay, M. A.
    Univ Delaware, Dept Phys & Astron, Bartol Res Inst, Newark, DE 19716 USA..
    Cassak, P. A.
    West Virginia Univ, Dept Phys & Astron, Morgantown, WV USA..
    Nakamura, R.
    Austrian Acad Sci, Space Res Inst, Graz, Austria..
    Zhou, M.
    Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA USA..
    Ashour-Abdalla, M.
    Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA USA..
    Andre, M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Magnetospheric Multiscale observations of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the magnetopause2016In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 43, no 11, p. 5626-5634Article in journal (Refereed)
    Abstract [en]

    We report observations from the Magnetospheric Multiscale satellites of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the Earth's magnetopause. The observed waves have parallel electric fields (E-||) with amplitudes on the order of 100mV/m and display nonlinear characteristics that suggest a possible net E-||. These waves are observed within the ion diffusion region and adjacent to (within several electron skin depths) the electron diffusion region. They are in or near the magnetosphere side current layer. Simulation results support that the strong electrostatic linear and nonlinear wave activities appear to be driven by a two stream instability, which is a consequence of mixing cold (<10eV) plasma in the magnetosphere with warm (similar to 100eV) plasma from the magnetosheath on a freshly reconnected magnetic field line. The frequent observation of these waves suggests that cold plasma is often present near the magnetopause.

  • 33.
    Eriksson, Elin
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Vaivads, Andris
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Alm, Love
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Graham, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Khotyaintsev, Yuri
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Electron acceleration in a magnetotail reconnection outflow region using Magnetospheric MultiScale dataManuscript (preprint) (Other academic)
  • 34.
    Eriksson, Elin
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Vaivads, Andris
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Graham, Daniel B.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Divin, Andrey
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division. Physics Department, St. Petersburg State University, St. Petersburg, Russia.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Yordanova, Emiliya
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Electron Energization at a Reconnecting Magnetosheath Current Sheet2018In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 45, no 16Article in journal (Refereed)
    Abstract [en]

    We present observations of electron energization within a sub-ion-scale magnetosheath current sheet (CS). A number of signatures indicate ongoing reconnection, including the thickness of the CS (∼0.7 ion inertial length), nonzero normal magnetic field, Hall magnetic fields with electrons carrying the Hall currents, and electron heating. We observe localized electron acceleration and heating parallel to the magnetic field at the edges of the CS. Electrostatic waves observed in these regions have low phase velocity and small wave potentials and thus cannot provide the observed acceleration and heating. Instead, we find that the electrons are accelerated by a parallel potential within the separatrix regions. Similar acceleration has been reported based on magnetopause and magnetotail observations.Thus, despite the different plasma conditions in magnetosheath, magnetopause, and magnetotail,the acceleration mechanism and corresponding heating of electrons is similar.

  • 35.
    Eriksson, Elin
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Space Plasma Physics.
    Vaivads, Andris
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Graham, Daniel. B.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Khotyaintsev, Yuri
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Yordanova, Emiliya
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Hietala, H.
    Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA USA..
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Avanov, L. A.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Dorelli, J. C.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Gershman, D. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.;Univ Maryland, Dept Astron, College Pk, MD 20742 USA..
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Lavraud, B.
    CNRS, IRAP, Toulouse, France..
    Paterson, W. R.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Pollock, C. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Saito, Y.
    JAXA, Chofu, Tokyo, Japan..
    Magnes, W.
    Austrian Acad Sci, Space Res Inst, Graz, Austria..
    Russell, C.
    Torbert, R.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Ergun, R.
    Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA..
    Lindqvist, P-A
    Burch, J.
    Southwest Res Inst, San Antonio, TX USA..
    Strong current sheet at a magnetosheath jet: Kinetic structure and electron acceleration2016In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 121, no 10, p. 9608-9618Article in journal (Refereed)
    Abstract [en]

    Localized kinetic-scale regions of strong current are believed to play an important role in plasma thermalization and particle acceleration in turbulent plasmas. We present a detailed study of a strong localized current, 4900 nA m(-2), located at a fast plasma jet observed in the magnetosheath downstream of a quasi-parallel shock. The thickness of the current region is similar to 3 ion inertial lengths and forms at a boundary separating magnetosheath-like and solar wind-like plasmas. On ion scales the current region has the shape of a sheet with a significant average normal magnetic field component but shows strong variations on smaller scales. The dynamic pressure within the magnetosheath jet is over 3 times the solar wind dynamic pressure. We suggest that the current sheet is forming due to high velocity shears associated with the jet. Inside the current sheet we observe local electron acceleration, producing electron beams, along the magnetic field. However, there is no clear sign of ongoing reconnection. At higher energies, above the beam energy, we observe a loss cone consistent with part of the hot magnetosheath-like electrons escaping into the colder solar wind-like plasma. This suggests that the acceleration process within the current sheet is similar to the one that occurs at shocks, where electron beams and loss cones are also observed. Therefore, electron beams observed in the magnetosheath do not have to originate from the bow shock but can also be generated locally inside the magnetosheath.

  • 36.
    Eriksson, Elin
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Vaivads, Andris
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Khotyaintsev, Yuri. V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Khotyayintsev, V. M.
    Taras Shevchenko Natl Univ Kyiv, Dept Theoret Phys, Kiev, Ukraine..
    Andre, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Statistics and accuracy of magnetic null identification in multispacecraft data2015In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 42, p. 6883-6889Article in journal (Refereed)
    Abstract [en]

    Complex magnetic topologies are ubiquitous in astrophysical plasmas. Analyzing magnetic nulls, regions of vanishing magnetic field, is one way to characterize 3-D magnetic topologies. Magnetic nulls are believed to be important in 3-D reconnection and turbulence. In the vicinity of a null, plasma particles become unmagnetized and can be accelerated to high energies by electric fields. We present the first statistical study of the occurrence of magnetic nulls and their types in the Earth's nightside magnetosphere. We are able to identify the nulls both in the tail and in the magnetopause current sheets. On average, we find one null for every few current sheet crossings. We show that the type identification of magnetic nulls may be sensitive to local fluctuations in the magnetic field. We develop and demonstrate a method to estimate the reliability of the magnetic null type identification.

  • 37.
    Eriksson, Elin
    et al.
    Uppsala universitet, Institutionen för fysik och astronomi.
    Vaivads, Andris
    Uppsala universitet, Institutet för rymdfysik, Uppsalaavdelningen.
    Khotyaintsev, Yuri. V.
    Uppsala universitet, Institutet för rymdfysik, Uppsalaavdelningen.
    Khotyayintsev, V. M.
    Taras Shevchenko Natl Univ Kyiv, Dept Theoret Phys, Kiev, Ukraine..
    Andre, Mats
    Uppsala universitet, Institutet för rymdfysik, Uppsalaavdelningen.
    Statistics and accuracy of magnetic null identification in multispacecraft data2015In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 42, p. 6883-6889Article in journal (Refereed)
    Abstract [en]

    Complex magnetic topologies are ubiquitous in astrophysical plasmas. Analyzing magnetic nulls, regions of vanishing magnetic field, is one way to characterize 3-D magnetic topologies. Magnetic nulls are believed to be important in 3-D reconnection and turbulence. In the vicinity of a null, plasma particles become unmagnetized and can be accelerated to high energies by electric fields. We present the first statistical study of the occurrence of magnetic nulls and their types in the Earth's nightside magnetosphere. We are able to identify the nulls both in the tail and in the magnetopause current sheets. On average, we find one null for every few current sheet crossings. We show that the type identification of magnetic nulls may be sensitive to local fluctuations in the magnetic field. We develop and demonstrate a method to estimate the reliability of the magnetic null type identification.

  • 38. Eriksson, S.
    et al.
    Lapenta, G.
    Newman, D. L.
    Phan, T. D.
    Gosling, J. T.
    Lavraud, B.
    Khotyaintsev, Yu. V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Carr, C. M.
    Markidis, S.
    Goldman, M. V.
    On Multiple Reconnection X-Lines and Tripolar Perturbations of Strong Guide Magnetic Fields2015In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 805, no 1, article id 43Article in journal (Refereed)
    Abstract [en]

    We report new multi-spacecraft Cluster observations of tripolar guide magnetic field perturbations at a solar wind reconnection exhaust in the presence of a guide field B-M. which is almost four times as strong as the reversing field B-L. The novel tripolar field consists of two narrow regions of depressed B-M, with an observed 7%-14% Delta B-M magnitude relative to the external field, which are found adjacent to a wide region of enhanced BM within the exhaust. A stronger reversing field is associated with each B-M depression. A kinetic reconnection simulation for realistic solar wind conditions and the observed strong guide field reveals that tripolar magnetic fields preferentially form across current sheets in the presence of multiple X-lines as magnetic islands approach one another and merge into fewer and larger islands. The simulated Delta B-M/Delta X-N over the normal width Delta X-N between a B-M minimum and the edge of the external region agree with the normalized values observed by Cluster. We propose that a tripolar guide field perturbation may be used to identify candidate regions containing multiple X-lines and interacting magnetic islands at individual solar wind current sheets with a strong guide field.

  • 39.
    Eriksson, S.
    et al.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA..
    Lavraud, B.
    Univ Toulouse, Inst Rech Astrophys & Planetol, Toulouse, France.;CNRS, UMR 5277, Toulouse, France..
    Wilder, F. D.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA..
    Stawarz, J. E.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA..
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX USA..
    Baumjohann, W.
    Austrian Acad Sci, Space Res Inst, Graz, Austria..
    Ergun, R. E.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA..
    Lindqvist, P. -A
    Magnes, W.
    Austrian Acad Sci, Space Res Inst, Graz, Austria..
    Pollock, C. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Russell, C. T.
    Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA.;Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA..
    Saito, Y.
    Inst Space & Astronaut Sci, Sagamihara, Kanagawa, Japan..
    Strangeway, R. J.
    Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA.;Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA..
    Torbert, R. B.
    Univ New Hampshire, Dept Phys, Durham, NH 03824 USA.;Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Gershman, D. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Dorelli, J. C.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Schwartz, S. J.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA.;Imperial Coll London, Blackett Lab, London, England..
    Avanov, L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Grimes, E.
    Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA.;Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA..
    Vernisse, Y.
    Univ Toulouse, Inst Rech Astrophys & Planetol, Toulouse, France.;CNRS, UMR 5277, Toulouse, France..
    Sturner, A. P.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA..
    Phan, T. D.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Marklund, G. T.
    Royal Inst Technol, Stockholm, Sweden..
    Moore, T. E.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Paterson, W. R.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Goodrich, K. A.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA..
    Magnetospheric Multiscale observations of magnetic reconnection associated with Kelvin-Helmholtz waves2016In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 43, no 11, p. 5606-5615Article in journal (Refereed)
    Abstract [en]

    The four Magnetospheric Multiscale (MMS) spacecraft recorded the first direct evidence of reconnection exhausts associated with Kelvin-Helmholtz (KH) waves at the duskside magnetopause on 8 September 2015 which allows for local mass and energy transport across the flank magnetopause. Pressure anisotropy-weighted Walen analyses confirmed in-plane exhausts across 22 of 42 KH-related trailing magnetopause current sheets (CSs). Twenty-one jets were observed by all spacecraft, with small variations in ion velocity, along the same sunward or antisunward direction with nearly equal probability. One exhaust was only observed by the MMS-1,2 pair, while MMS-3,4 traversed a narrow CS (1.5 ion inertial length) in the vicinity of an electron diffusion region. The exhausts were locally 2-D planar in nature as MMS-1,2 observed almost identical signatures separated along the guide-field. Asymmetric magnetic and electric Hall fields are reported in agreement with a strong guide-field and a weak plasma density asymmetry across the magnetopause CS.

  • 40.
    Farrugia, C. J.
    et al.
    Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA.
    Cohen, I. J.
    Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA.
    Vasquez, B. J.
    Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA.
    Lugaz, N.
    Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA.
    Alm, Love
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Torbert, R. B.
    Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA.
    Argall, M. R.
    Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA.
    Paulson, K.
    Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA.
    Lavraud, B.
    UPMC Univ Paris 06, Univ Paris Sud, Ecole Polytech, LPP,UMR7648,CNRS,Observ Paris, Paris, France.
    Gershman, D. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Gratton, F. T.
    Acad Nacl Ciencias Buenos Aires, Buenos Aires, DF, Argentina.
    Matsui, H.
    Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA.
    Rogers, A.
    Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA.
    Forbes, T. G.
    Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA.
    Payne, D.
    Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA.
    Ergun, R. E.
    Univ Colorado, Boulder, CO 80309 USA.
    Mauk, B.
    Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA.
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX USA.
    Russell, C. T.
    Univ Calif Los Angeles, Los Angeles, CA USA.
    Strangeway, R. J.
    Univ Calif Los Angeles, Los Angeles, CA USA.
    Shuster, J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Nakamura, R.
    Space Res Inst, Graz, Austria.
    Fuselier, S. A.
    Southwest Res Inst, San Antonio, TX USA;Univ Texas San Antonio, San Antonio, TX USA.
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Lindqvist, P. A.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Marklund, Göran T.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Petrinec, S. M.
    Lockheed Martin Adv Technol Ctr, Palo Alto, CA USA.
    Pollock, C. J.
    West Virginia Univ, Morgantown, WV USA.
    Effects in the Near-Magnetopause Magnetosheath Elicited by Large-Amplitube Alfvenic Fluctuations Terminating in a Field and Flow Discontinuity2018In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 123, no 11, p. 8983-9004Article in journal (Refereed)
    Abstract [en]

    In this paper we report on a sequence of large-amplitude Alfvenic fluctuations terminating in a field and flow discontinuity and their effects on electromagnetic fields and plasmas in the near-magnetopause magnetosheath. An arc-polarized structure in the magnetic field was observed by the Time History of Events and Macroscale Interactions during Substorms-C in the solar wind, indicative of nonlinear Alfven waves. It ends with a combined tangential discontinuity/vortex sheet, which is strongly inclined to the ecliptic plane and at which there is a sharp rise in the density and a drop in temperature. Several effects resulting from this structure were observed by the Magnetospheric Multiscale spacecraft in the magnetosheath close to the subsolar point (11:30 magnetic local time) and somewhat south of the geomagnetic equator (-33 degrees magnetic latitude): (i) kinetic Alfven waves; (ii) a peaking of the electric and magnetic field strengths where E . J becomes strong and negative (-1 nW/m(3)) just prior to an abrupt dropout of the fields; (iii) evolution in the pitch angle distribution of energetic (a few tens of kilo-electron-volts) ions (H+, Hen+, and On+) and electrons inside a high-density region, which we attribute to gyrosounding of the tangential discontinuity/vortex sheet structure passing by the spacecraft; (iv) field-aligned acceleration of ions and electrons that could be associated with localized magnetosheath reconnection inside the high-density region; and (v) variable and strong flow changes, which we argue to be unrelated to reconnection at partial magnetopause crossings and likely result from deflections of magnetosheath flow by a locally deformed, oscillating magnetopause.

  • 41.
    Farrugia, C. J.
    et al.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Lugaz, N.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Alm, L.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Vasquez, B.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Argall, M. R.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Kucharek, H.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Matsui, H.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Torbert, R. B.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Lavraud, B.
    Univ Toulouse, Inst Rech Astrophys, Toulouse, France..
    Le Contel, O.
    UPMC Univ Paris 06, Univ Paris Sud, Lab Phys Plasmas, UMR7648,CNRS,Ecole Polytech,Observ Paris, Paris, France..
    Cohen, I. J.
    Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA..
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX USA..
    Russell, C. T.
    Univ Calif Los Angeles, Los Angeles, CA USA..
    Strangeway, R. J.
    Univ Calif Los Angeles, Los Angeles, CA USA..
    Shuster, J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Dorelli, J. C.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Eastwood, J. P.
    Imperial Coll London, Blackett Lab, London, England..
    Ergun, R. E.
    Univ Colorado Boulder, Lab Atmospher & Space Phys, Boulder, CO USA..
    Fuselier, S. A.
    Southwest Res Inst, San Antonio, TX USA.;Univ Texas San Antonio, Dept Phys, San Antonio, TX USA..
    Gershman, D. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Lindqvist, P. A.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Marklund, G. T.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Paulson, K. W.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Petrinec, S. M.
    Lockheed Martin Adv Technol Ctr, Palo Alto, CA USA..
    Phan, T. D.
    Space Sci Lab, Berkeley, CA USA..
    Pollock, C. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    MMS Observations of Reconnection at Dayside Magnetopause Crossings During Transitions of the Solar Wind to Sub-Alfvenic Flow2017In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 122, no 10, p. 9934-9951Article in journal (Refereed)
    Abstract [en]

    We present MMS observations during two dayside magnetopause crossings under hitherto unexamined conditions: (i) when the bow shock is weakening and the solar wind transitioning to sub-Alfvenic flow and (ii) when it is reforming. Interplanetary conditions consist of a magnetic cloud with (i) a strong B (similar to 20 nT) pointing south and (ii) a density profile with episodic decreases to values of similar to 0.3 cm(-3) followed by moderate recovery. During the crossings the magnetosheath magnetic field is stronger than the magnetosphere field by a factor of similar to 2.2. As a result, during the outbound crossing through the ion diffusion region, MMS observed an inversion of the relative positions of the X and stagnation (S) lines from that typically the case: the S line was closer to the magnetosheath side. The S line appears in the form of a slow expansion fan near which most of the energy dissipation is taking place. While in the magnetosphere between the crossings, MMS observed strong field and flow perturbations, which we argue to be due to kinetic Alfven waves. During the reconnection interval, whistler mode waves generated by an electron temperature anisotropy (T-e perpendicular to > T-e parallel to) were observed. Another aim of the paper is to distinguish bow shock-induced field and flow perturbations from reconnection-related signatures. The high-resolution MMS data together with 2-D hybrid simulations of bow shock dynamics helped us to distinguish between the two sources. We show examples of bow shock-related effects (such as heating) and reconnection effects such as accelerated flows satisfying the Walen relation.

  • 42. Forsyth, C.
    et al.
    Fazakerley, A. N.
    Walsh, A. P.
    Watt, C. E. J.
    Garza, K. J.
    Owen, C. J.
    Constantinescu, D.
    Dandouras, I.
    Fornacon, K. -H
    Lucek, E.
    Marklund, G. T.
    Sadeghi, S. S.
    Khotyaintsev, Yuri
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Masson, A.
    Doss, N.
    Temporal evolution and electric potential structure of the auroral acceleration region from multispacecraft measurements2012In: Journal of Geophysical Research, ISSN 0148-0227, E-ISSN 2156-2202, Vol. 117, p. A12203-Article in journal (Refereed)
    Abstract [en]

    Bright aurorae can be excited by the acceleration of electrons into the atmosphere in violation of ideal magnetohydrodynamics. Modeling studies predict that the accelerating electric potential consists of electric double layers at the boundaries of an acceleration region but observations suggest that particle acceleration occurs throughout this region. Using multispacecraft observations from Cluster, we have examined two upward current regions on 14 December 2009. Our observations show that the potential difference below C4 and C3 changed by up to 1.7 kV between their respective crossings, which were separated by 150 s. The field-aligned current density observed by C3 was also larger than that observed by C4. The potential drop above C3 and C4 was approximately the same in both crossings. Using a novel technique of quantitively comparing the electron spectra measured by Cluster 1 and 3, which were separated in altitude, we determine when these spacecraft made effectively magnetically conjugate observations, and we use these conjugate observations to determine the instantaneous distribution of the potential drop in the AAR. Our observations show that an average of 15% of the potential drop in the AAR was located between C1 at 6235 km and C3 at 4685 km altitude, with a maximum potential drop between the spacecraft of 500 V, and that the majority of the potential drop was below C3. Assuming a spatial invariance along the length of the upward current region, we discuss these observations in terms of temporal changes and the vertical structure of the electrostatic potential drop and in the context of existing models and previous single- and multispacecraft observations. Citation: Forsyth, C., et al. (2012), Temporal evolution and electric potential structure of the auroral acceleration region from multispacecraft measurements, J. Geophys. Res., 117, A12203, doi: 10.1029/2012JA017655.

  • 43.
    Fu, H. S.
    et al.
    Beihang Univ, Sch Space & Environm, Beijing, Peoples R China.
    Cao, J. B.
    Beihang Univ, Sch Space & Environm, Beijing, Peoples R China.
    Cao, D.
    Beihang Univ, Sch Space & Environm, Beijing, Peoples R China.
    Wang, Z.
    Beihang Univ, Sch Space & Environm, Beijing, Peoples R China.
    Vaivads, Andris
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX USA.
    Huang, S. Y.
    Wuhan Univ, Sch Elect & Informat, Wuhan, Hubei, Peoples R China.
    Evidence of Magnetic Nulls in Electron Diffusion Region2019In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 46, no 1, p. 48-54Article in journal (Refereed)
    Abstract [en]

    Theoretically, magnetic reconnection—the process responsible for solar flares and magnetospheric substorms—occurs at the X‐line or radial null in the electron diffusion region (EDR). However, whether this theory is correct is unknown, because the radial null (X‐line) has never been observed inside the EDR due to the lack of efficient techniques and the scarcity of EDR measurements. Here we report such evidence, using data from the recent MMS mission and the newly developed First‐Order Taylor Expansion (FOTE) Expansion technique. We investigate 12 EDR candidates at the Earth's magnetopause and find radial nulls (X‐lines) in all of them. In some events, spacecraft are only 3 km (one electron inertial length) away from the null. We reconstruct the magnetic topology of these nulls and find it agrees well with theoretical models. These nulls, as reconstructed for the first time inside the EDR by the FOTE technique, indicate that the EDR is active and the reconnection process is ongoing.

    Plain Language Summary: Magnetic reconnection is a key process responsible for many explosive phenomena in nature such as solar flares and magnetospheric substorms. Theoretically, such process occurs at the X‐line or radial null in the electron diffusion region (EDR). However, whether this theory is correct is still unknown, because the radial null (X‐line) has never been observed inside the EDR due to the lack of efficient technique and the scarcity of EDR measurements. Here we report such evidence, using data from the recent MMS mission and the newly developed FOTE technique.

  • 44.
    Fu, H. S.
    et al.
    Beihang Univ, Sch Space & Environm, Beijing, Peoples R China.
    Cao, J. B.
    Beihang Univ, Sch Space & Environm, Beijing, Peoples R China.
    Cao, D.
    Beihang Univ, Sch Space & Environm, Beijing, Peoples R China.
    Wang, Z.
    Beihang Univ, Sch Space & Environm, Beijing, Peoples R China.
    Vaivads, Andris
    KTH, School of Electrical Engineering and Computer Science (EECS), Space and Plasma Physics. Uppsala universitet, Institutet för rymdfysik, Uppsalaavdelningen.
    Khotyaintsev, Yuri V.
    Uppsala universitet, Institutet för rymdfysik, Uppsalaavdelningen.
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX USA.
    Huang, S. Y.
    Wuhan Univ, Sch Elect & Informat, Wuhan, Hubei, Peoples R China.
    Evidence of Magnetic Nulls in Electron Diffusion Region2019In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 46, no 1, p. 48-54Article in journal (Refereed)
    Abstract [en]

    Theoretically, magnetic reconnection—the process responsible for solar flares and magnetospheric substorms—occurs at the X‐line or radial null in the electron diffusion region (EDR). However, whether this theory is correct is unknown, because the radial null (X‐line) has never been observed inside the EDR due to the lack of efficient techniques and the scarcity of EDR measurements. Here we report such evidence, using data from the recent MMS mission and the newly developed First‐Order Taylor Expansion (FOTE) Expansion technique. We investigate 12 EDR candidates at the Earth's magnetopause and find radial nulls (X‐lines) in all of them. In some events, spacecraft are only 3 km (one electron inertial length) away from the null. We reconstruct the magnetic topology of these nulls and find it agrees well with theoretical models. These nulls, as reconstructed for the first time inside the EDR by the FOTE technique, indicate that the EDR is active and the reconnection process is ongoing.

    Plain Language Summary: Magnetic reconnection is a key process responsible for many explosive phenomena in nature such as solar flares and magnetospheric substorms. Theoretically, such process occurs at the X‐line or radial null in the electron diffusion region (EDR). However, whether this theory is correct is still unknown, because the radial null (X‐line) has never been observed inside the EDR due to the lack of efficient technique and the scarcity of EDR measurements. Here we report such evidence, using data from the recent MMS mission and the newly developed FOTE technique.

  • 45. Fu, H. S.
    et al.
    Cao, J. B.
    Cully, C. M.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Vaivads, Andris
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Angelopoulos, V.
    Zong, Q. -G
    Santolik, O.
    Macusova, E.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Liu, W. L.
    Lu, H. Y.
    Zhou, M.
    Huang, S. Y.
    Zhima, Z.
    Whistler-mode waves inside flux pileup region: Structured or unstructured?2014In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 119, no 11, p. 9089-9100Article in journal (Refereed)
    Abstract [en]

    During reconnection, a flux pileup region (FPR) is formed behind a dipolarization front in an outflow jet. Inside the FPR, the magnetic field magnitude and Bz component increase and the whistler-mode waves are observed frequently. As the FPR convects toward the Earth during substorms, it is obstructed by the dipolar geomagnetic field to form a near-Earth FPR. Unlike the structureless emissions inside the tail FPR, we find that the whistler-mode waves inside the near-Earth FPR can exhibit a discrete structure similar to chorus. Both upper band and lower band chorus are observed, with the upper band having a larger propagation angle (and smaller wave amplitude) than the lower band. Most chorus elements we observed are rising-tone type, but some are falling-tone type. We notice that the rising-tone chorus can evolve into falling-tone chorus within <3s. One of the factors that may explain why the waves are unstructured inside the tail FPR but become discrete inside the near-Earth FPR is the spatial inhomogeneity of magnetic field: we find that such inhomogeneity is small inside the near-Earth FPR but large inside the tail FPR.

  • 46. Fu, H. S.
    et al.
    Cao, J. B.
    Cully, C. M.
    Khotyaintsev, Yuri V.
    Uppsala universitet, Institutet för rymdfysik, Uppsalaavdelningen.
    Vaivads, Andris
    Uppsala universitet, Institutet för rymdfysik, Uppsalaavdelningen.
    Angelopoulos, V.
    Zong, Q. -G
    Santolik, O.
    Macusova, E.
    André, Mats
    Uppsala universitet, Institutet för rymdfysik, Uppsalaavdelningen.
    Liu, W. L.
    Lu, H. Y.
    Zhou, M.
    Huang, S. Y.
    Zhima, Z.
    Whistler-mode waves inside flux pileup region: Structured or unstructured?2014In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 119, no 11, p. 9089-9100Article in journal (Refereed)
    Abstract [en]

    During reconnection, a flux pileup region (FPR) is formed behind a dipolarization front in an outflow jet. Inside the FPR, the magnetic field magnitude and Bz component increase and the whistler-mode waves are observed frequently. As the FPR convects toward the Earth during substorms, it is obstructed by the dipolar geomagnetic field to form a near-Earth FPR. Unlike the structureless emissions inside the tail FPR, we find that the whistler-mode waves inside the near-Earth FPR can exhibit a discrete structure similar to chorus. Both upper band and lower band chorus are observed, with the upper band having a larger propagation angle (and smaller wave amplitude) than the lower band. Most chorus elements we observed are rising-tone type, but some are falling-tone type. We notice that the rising-tone chorus can evolve into falling-tone chorus within <3s. One of the factors that may explain why the waves are unstructured inside the tail FPR but become discrete inside the near-Earth FPR is the spatial inhomogeneity of magnetic field: we find that such inhomogeneity is small inside the near-Earth FPR but large inside the tail FPR.

  • 47.
    Fu, H. S.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Cao, J. B.
    Khotyaintsev, Yu. V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Sitnov, M. I.
    Runov, A.
    Fu, S. Y.
    Hamrin, M.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Retino, A.
    Ma, Y. D.
    Lu, H. Y.
    Wei, X. H.
    Huang, S. Y.
    Dipolarization fronts as a consequence of transient reconnection: In situ evidence2013In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 40, no 23, p. 6023-6027Article in journal (Refereed)
    Abstract [en]

    Dipolarization fronts (DFs) are frequently detected in the Earth's magnetotail from XGSM = −30 RE to XGSM = −7 RE. How these DFs are formed is still poorly understood. Three possible mechanisms have been suggested in previous simulations: (1) jet braking, (2) transient reconnection, and (3) spontaneous formation. Among these three mechanisms, the first has been verified by using spacecraft observation, while the second and third have not. In this study, we show Cluster observation of DFs inside reconnection diffusion region. This observation provides in situ evidence of the second mechanism: Transient reconnection can produce DFs. We suggest that the DFs detected in the near-Earth region (XGSM > −10 RE) are primarily attributed to jet braking, while the DFs detected in the mid- or far-tail region (XGSM < −15 RE) are primarily attributed to transient reconnection or spontaneous formation. In the jet-braking mechanism, the high-speed flow “pushes” the preexisting plasmas to produce the DF so that there is causality between high-speed flow and DF. In the transient-reconnection mechanism, there is no causality between high-speed flow and DF, because the frozen-in condition is violated.

  • 48.
    Fu, H. S.
    et al.
    Beihang Univ, Sch Space & Environm, Beijing 100191, Peoples R China..
    Cao, J. B.
    Beihang Univ, Sch Space & Environm, Beijing 100191, Peoples R China..
    Vaivads, Andris
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Andre, M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Dunlop, M.
    Beihang Univ, Sch Space & Environm, Beijing 100191, Peoples R China..
    Liu, W. L.
    Beihang Univ, Sch Space & Environm, Beijing 100191, Peoples R China..
    Lu, H. Y.
    Beihang Univ, Sch Space & Environm, Beijing 100191, Peoples R China..
    Huang, S. Y.
    Wuhan Univ, Sch Elect & Informat, Wuhan 430072, Peoples R China..
    Ma, Y. D.
    Beihang Univ, Sch Space & Environm, Beijing 100191, Peoples R China..
    Eriksson, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Space Plasma Physics.
    Identifying magnetic reconnection events using the FOTE method2016In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 121, no 2, p. 1263-1272Article in journal (Refereed)
    Abstract [en]

    A magnetic reconnection event detected by Cluster is analyzed using three methods: Single-spacecraft Inference based on Flow-reversal Sequence (SIFS), Multispacecraft Inference based on Timing a Structure (MITS), and the First-Order Taylor Expansion (FOTE). Using the SIFS method, we find that the reconnection structure is an X line; while using the MITS and FOTE methods, we find it is a magnetic island (O line). We compare the efficiency and accuracy of these three methods and find that the most efficient and accurate approach to identify a reconnection event is FOTE. In both the guide and nonguide field reconnection regimes, the FOTE method is equally applicable. This study for the first time demonstrates the capability of FOTE in identifying magnetic reconnection events; it would be useful to the forthcoming Magnetospheric Multiscale (MMS) mission. ion

  • 49.
    Fu, H. S.
    et al.
    Beihang Univ, Sch Space & Environm, Beijing 100191, Peoples R China..
    Cao, J. B.
    Beihang Univ, Sch Space & Environm, Beijing 100191, Peoples R China..
    Vaivads, Andris
    Uppsala universitet, Institutet för rymdfysik, Uppsalaavdelningen.
    Khotyaintsev, Yuri V.
    Uppsala universitet, Institutet för rymdfysik, Uppsalaavdelningen.
    Andre, M.
    Uppsala universitet, Institutet för rymdfysik, Uppsalaavdelningen.
    Dunlop, M.
    Beihang Univ, Sch Space & Environm, Beijing 100191, Peoples R China..
    Liu, W. L.
    Beihang Univ, Sch Space & Environm, Beijing 100191, Peoples R China..
    Lu, H. Y.
    Beihang Univ, Sch Space & Environm, Beijing 100191, Peoples R China..
    Huang, S. Y.
    Wuhan Univ, Sch Elect & Informat, Wuhan 430072, Peoples R China..
    Ma, Y. D.
    Beihang Univ, Sch Space & Environm, Beijing 100191, Peoples R China..
    Eriksson, Elin
    Uppsala universitet, Institutet för rymdfysik, Uppsalaavdelningen.
    Identifying magnetic reconnection events using the FOTE method2016In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 121, no 2, p. 1263-1272Article in journal (Refereed)
    Abstract [en]

    A magnetic reconnection event detected by Cluster is analyzed using three methods: Single-spacecraft Inference based on Flow-reversal Sequence (SIFS), Multispacecraft Inference based on Timing a Structure (MITS), and the First-Order Taylor Expansion (FOTE). Using the SIFS method, we find that the reconnection structure is an X line; while using the MITS and FOTE methods, we find it is a magnetic island (O line). We compare the efficiency and accuracy of these three methods and find that the most efficient and accurate approach to identify a reconnection event is FOTE. In both the guide and nonguide field reconnection regimes, the FOTE method is equally applicable. This study for the first time demonstrates the capability of FOTE in identifying magnetic reconnection events; it would be useful to the forthcoming Magnetospheric Multiscale (MMS) mission. ion

  • 50. Fu, H. S.
    et al.
    Cao, J. B.
    Zhima, Z.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Angelopoulos, V.
    Santolik, O.
    Omura, Y.
    Taubenschuss, Ulrich
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Chen, L.
    Huang, S. Y.
    First observation of rising-tone magnetosonic waves2014In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 41, no 21, p. 7419-7426Article in journal (Refereed)
    Abstract [en]

    Magnetosonic (MS) waves are linearly polarized emissions confined near the magnetic equator with wave normal angle near 90 degrees and frequency below the lower hybrid frequency. Such waves, also termed equatorial noise, were traditionally known to be "temporally continuous" in their time-frequency spectrogram. Here we show for the first time that MS waves actually have discrete wave elements with rising-tone features in their spectrogram. The frequency sweep rate of MS waves, similar to 1 Hz/s, is between that of chorus and electromagnetic ion cyclotron (EMIC) waves. For the two events we analyzed, MS waves occur outside the plasmapause and cannot penetrate into the plasmasphere; their power is smaller than that of chorus. We suggest that the rising-tone feature of MS waves is a consequence of nonlinear wave-particle interaction, as is the case with chorus and EMIC waves.

1234 1 - 50 of 196
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf