Change search
Refine search result
1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Carlsson, Pernilla
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Dagälv, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Presto, Jenny
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Kjellén, Lena
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Heparan sulfate biosynthesis: Characterization of an NDST1 splice variantManuscript (preprint) (Other (popular science, discussion, etc.))
    Abstract [en]

    N-Deacetylase/N-sulfotransferases (NDSTs) are Golgi-located enzymes involved in the biosynthesis of heparan sulfate. They are bifunctional enzymes responsible for N-deacetylation of N-acetylglucosamine residues followed by N-sulfation of the generated free amino groups. In this paper we have identified and characterized a splice variant of NDST1 mRNA. The alternatively spliced mRNA transcript was shown to be present in varying amounts in different adult and embryonic mouse tissues. The protein resulting from translation of the spliced transcript (NDST1S) lacks the C-terminal half of fullength NDST and appears to be devoid of enzyme activity. As shown in HEK 293 cells overexpressing NDST1, a high expression of the splice variant resulted in reduced levels of NDST1. Unexpectedly, the level of N-sulfation was largely unaltered in heparan sulfate produced in NDST1S overexpressing cells while 6-O-sulfation was elevated and 2-O-sulfation was reduced. NDST1S shares the ability of NDST1 to interact with EXT2, one of the components of the heparan sulfate copolymerase. We speculate that NDST1S may alter the composition of the tentaive enzyme complex, the GAGosome, resulting in changes in the structure of heparan sulfate synthesized.

  • 2.
    Dagälv, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Role of Heparan Sulfate N-sulfation in Mouse Embryonic Development2010Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Heparan sulfate (HS) is a sulfated glycosaminoglycan expressed by all cells in the body. It is found at the cell surface and in the extracellular matrix where it binds a large amount of various ligands including growth factors and morphogens. HS is important for building up morphogen gradients during embryonic development and to act as coreceptors for signaling molecules. Many different Golgi enzymes are involved in the biosynthesis of HS. It is known that some of these enzymes interact with each other but not how the whole biosynthesis machinery works or how the cell regulates the structure of the HS that it produces.

    In this thesis, cells and mice deficient in two of these biosynthetic enzymes, glucosaminyl N-deacetylase/N-sulfotransferase-1 (NDST1) and the isoform NDST2 have been studied. NDSTs perform the first modifications during biosynthesis where they replace N-acetyl groups on N-acetyl-glucosamine units with sulfate groups. It is known that deficiency of NDST1 is lethal, while lack of NDST2 only results in abnormal connective tissue type mast cells. Here it is shown that deficiency of both NDST1 and NDST2 is embryonically lethal. The embryonic stem (ES) cells extracted from the inner cell mass of double knockout blastocysts show in addition an impaired differentiation capacity compared to wild-type ES cells and fail completely to differentiate into cardiac muscle cells which NDST1-/-, NDST2-/- and wild-type ES cells all do.

    Cultured mast cells that lack NDST2 produce heparin that is low-sulfated compared to wild-type HS. To our surprise, we could show that mast cells deficient in NDST1 instead produce a more highly sulfated heparin than wild-type cells. We use a model that predicts that the biosynthesis enzymes work together in a multienzyme complex, the GAGosome, to explain our results. We hypothesize that NDST1 has a higher affinity for the GAGosome than NDST2 which only in the absence of NDST1 gets incorporated into the enzyme complex. When all GAGosomes contain NDST2, a more highly sulfated glycosaminoglycan chain will be synthesized.

    A splice variant of NDST1, NDST1S, has also been studied. We could show that NDST1S lacks enzyme activity but that it probably has the capacity to incorporate into GAGosomes. Overexpression of NDST1S results in altered structure of the HS produced by the cells. We speculate that expression of the splice variant during development may be one way to regulate HS structure.

  • 3.
    Dagälv, Anders
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Holmborn, Katarina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Eriksson, Inger
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Ringvall, Maria
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Kjellén, Lena
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Lack of both lethality and defective in vitro differentiation of embryonic stem cells N-deacetylase/N-sulfotransferase 1 and 2 causes early embryonicManuscript (preprint) (Other (popular science, discussion, etc.))
    Abstract [en]

    NDSTs (N-deacetylase/N-sulfotransferases) are enzymes responsible for N-sulfation during heparan sulfate and heparin biosynthesis. While lack of NDST2 results in defective mast cells and NDST1 deficiency causes neonatal death and lung, skeletal and brain defects, lack of both isoforms is not compatible with embryonic development. We here show that NDST1/2-/- embryos die before E6.5 and that embryos dissected out at E5.5 lack parts of the embryo/extraembryonic tissue. Consistent with their in vivo behavior, in vitro cultured NDST1/2 deficient embryos displayed impaired ability of inner cell mass proliferation. In addition, markers for all the three germ layers had a disturbed expression pattern in isolated NDST1/2 deficient embryonic stem (ES) cells. Characterization of heparan sulfate (HS) structure in control ES cells and in ES cells lacking NDST1, NDST2 or both NDST1 and NDST2 revealed big differences. As expected, control cells synthesized HS with the highest degree of sulfation closely followed by HS from NDST2-/- cells, which in turn was more sulfated than HS produced by NDST1-/- cells. HS from NDST1/2-/- cells was almost devoid of sulfate groups. Notably, lack of one NDST isoform did not result in increased expression of any of the others. While all cell types except the NDST1/2-/- cells produced HS with a higher degree of sulfation when allowed to differentiate for 8 days, HS from control cells was still more heavily sulfated than that produced by NDST2-/- cells followed by the HS of NDST1-/- cells. The increase in sulfation was paralleled by increased expression of NDST transcripts and could also be recorded as increased N-sulfotransferase activity of cell lysates. While NDST1/2 deficient ES cells were unable to differentiate into beating cardiomyocytes all NDST1-/- and control embryoid bodies had started to beat after 4 days of culture. Surprisingly, NDST2 deficiency resulted in delayed cardiomyocyte differentiation.

  • 4.
    Dagälv, Anders
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Holmborn, Katarina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Kjellén, Lena
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Åbrink, Magnus
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Lowered Expression of Heparan Sulfate/Heparin Biosynthesis Enzyme N-Deacetylase/N-Sulfotransferase 1 Results in Increased Sulfation of Mast Cell Heparin2011In: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 286, no 52, p. 44433-44440Article in journal (Refereed)
    Abstract [en]

    Deficiency of the heparan sulfate biosynthesis enzyme N-deacetylase/N-sulfotransferase 1 (NDST1) in mice causes severely disturbed heparan sulfate biosynthesis in all organs, whereas lack of NDST2 only affects heparin biosynthesis in mast cells (MCs). To investigate the individual and combined roles of NDST1 and NDST2 during MC development, in vitro differentiated MCs derived from mouse embryos and embryonic stem cells, respectively, have been studied. Whereas MC development will not occur in the absence of both NDST1 and NDST2, lack of NDST2 alone results in the generation of defective MCs. Surprisingly, the relative amount of heparin produced in NDST1(+/-) and NDST1(-/-) MCs is higher (approximate to 30%) than in control MCs where approximate to 95% of the (35)S-labeled glycosaminoglycans produced is chondroitin sulfate. Lowered expression of NDST1 also results in a higher sulfate content of the heparin synthesized and is accompanied by increased levels of stored MC proteases. A model of the GAGosome, a hypothetical Golgi enzyme complex, is used to explain the results.

  • 5.
    Dagälv, Anders
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Åbrink, Magnus
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Kjellén, Lena
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Cell surface mast cell proteoglycans identified as heparin-substituted syndecan-2Manuscript (preprint) (Other (popular science, discussion, etc.))
    Abstract [en]

    Connective tissue type mast cells isolated from the peritoneal cavity of mice and then cultured in vitro have been used to answer the question if one cell at a given time point can synthesize heparan sulfate chains with different structure. Characterization of cell surface proteoglycans made by the cells demonstrated that they were identical to syndecan-2, substituted with heparin chains. Ion exchange chromatography showed that the syndecan heparin chains behaved identically as heparin chains recovered from serglycin, inside the cells. This was also the case when mast cells from NDST2 deficient mice were studied. This time, syndecan-2 as well as serglycin derived polysaccharide chains had a lower but identical charge density. We conclude that mast cells only synthesize one kind of heparan sulfate/heparin chain at a time and that polysaccharide chains of identical structure will be found at the cell surface and inside the cell.

  • 6.
    Forsberg, Maud
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Holmborn, Katarina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Kundu, Soumi
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Cancer and Vascular Biology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Dagälv, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Kjellén, Lena
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Forsberg-Nilsson, Karin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Cancer and Vascular Biology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Undersulfation of Heparan Sulfate Restricts Differentiation Potential of Mouse Embryonic Stem Cells2012In: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 287, no 14, p. 10853-10862Article in journal (Refereed)
    Abstract [en]

    Heparan sulfate proteoglycans, present on cell surfaces and in the extracellular matrix, interact with growth factors and morphogens to influence growth and differentiation of cells. The sulfation pattern of the heparan sulfate chains formed during biosynthesis in the Golgi compartment will determine the interaction potential of the proteoglycan. The glucosaminyl N-deacetylase/N-sulfotransferase (NDST) enzymes have a key role during biosynthesis, greatly influencing total sulfation of the heparan sulfate chains. The differentiation potential of mouse embryonic stem cells lacking both NDST1 and NDST2 was studied using in vitro differentiation protocols, expression of differentiation markers, and assessment of the ability of the cells to respond to growth factors. The results show that NDST1 and NDST2 are dispensable for mesodermal differentiation into osteoblasts but necessary for induction of adipocytes and neural cells. Gene expression analysis suggested a differentiation block at the primitive ectoderm stage. Also, GATA4, a primitive endoderm marker, was expressed by these cells. The addition of FGF4 or FGF2 together with heparin rescued the differentiation potential to neural progenitors and further to mature neurons and glia. Our results suggest that the embryonic stem cells lacking both NDST1 and NDST2, expressing a very low sulfated heparan sulfate, can take the initial step toward differentiation into all three germ layers. Except for their potential for mesodermal differentiation into osteoblasts, the cells are then arrested in a primitive ectoderm and/or endoderm stage.

  • 7. Holley, Rebecca J.
    et al.
    Deligny, Audrey
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Wei, Wei
    Watson, H. Angharad
    Ninonuevo, Milady R.
    Dagälv, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Leary, Julie A.
    Bigger, Brian W.
    Kjellén, Lena
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Merry, Catherine L. R.
    Mucopolysaccharidosis Type I, Unique Structure of Accumulated Heparan Sulfate and Increased N-Sulfotransferase Activity in Mice Lacking alpha-L-iduronidase2011In: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 286, no 43, p. 37515-37524Article in journal (Refereed)
    Abstract [en]

    Mucopolysaccharide (MPS) diseases are characterized by accumulation of glycosaminoglycans (GAGs) due to deficiencies in lysosomal enzymes responsible for GAG breakdown. Using a murine model of MPSI Hurler (MPSIH), we have quantified the heparan sulfate (HS) accumulation resulting from alpha-L-iduronidase (Idua) deficiency. HS levels were significantly increased in liver and brain tissue from 12-week-old Idua(-/-) mice by 87- and 20-fold, respectively. In addition, HS chains were shown to contain significantly increased N-, 2-O-, and 6-O-sulfation. Disaccharide compositional analyses also uncovered an HS disaccharide uniquely enriched in MPSIH, representing the terminal iduronic acid residue capping the non-reducing end of the HS chain, where no further degradation can occur in the absence of Idua. Critically, we identified that excess HS, some of which is colocalized to the Golgi secretory pathway, acts as a positive regulator of HS-sulfation, increasing the N-sulfotransferase activity of HS-modifying N-deacetylase/N-sulfotransferase enzymes. This mechanism may have severe implications during disease progression but, now identified, could help direct improved therapeutic strategies.

  • 8.
    Holmborn, Katarina
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Dagälv, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Kjellén, Lena
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Åbrink, Magnus
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Divergent effects of heparan sulfate/heparin biosynthesis enzymes N-deacetylase/N-sulfotransferase 1 and 2 on Mast cell developmentManuscript (preprint) (Other academic)
    Abstract [en]

    Deficiency of the heparan sulfate (HS) biosynthesis enzyme N-deacetylase/N-sulfotransferase 1 (NDST1) in mice causes severely disturbed HS biosynthesis in all organs, while lack of NDST2 only affects heparin biosynthesis in mast cells (MCs). To investigate the individual and combined roles of NDST1 and NDST2 during MC development, cultured terminally differentiated MCs from adult mice, in vitro differentiated MCs derived from mouse embryos and embryonic stem cells, respectively, have been studied. While MC development will not occur in the absence of both NDST1 and NDST2, lack of NDST2 alone results in the generation of defective MCs. Surprisingly, NDST1 deficiency results in the formation of MCs which compared to wild type MCs contain increased levels of proteases specific for the connective tissue type MCs as well as increased amounts and degree of sulfation of heparin. A model of the GAGosome, a tentative Golgi enzyme complex, is used to explain the results.

  • 9.
    Roy, Ananya
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Ganesh, Goutham
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Sippola, Helena
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Bolin, Sara
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Sawesi, Osama
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Dagälv, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Schlenner, Susan M.
    Feyerabend, Thorsten
    Rodewald, Hans-Reimer
    Kjellen, Lena
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Hellman, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Chemical Biology.
    Åbrink, Magnus
    Mast Cell Chymase Degrades the Alarmins Heat Shock Protein 70, Biglycan, HMGB1, and Interleukin-33 (IL-33) and Limits Danger-induced Inflammation2014In: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 289, no 1, p. 237-250Article in journal (Refereed)
    Abstract [en]

    During infection and tissue damage, virulence factors and alarmins are pro-inflammatory and induce activation of various immune cells including macrophages and mast cells (MCs). Activated MCs instantly release preformed inflammatory mediators, including several proteases. The chymase mouse mast cell protease (MCPT)-4 is thought to be pro-inflammatory, whereas human chymase also degrades pro-inflammatory cytokines, suggesting that chymase instead limits inflammation. Here we explored the contribution of MCPT4 and human chymase to the control of danger-induced inflammation. We found that protein extracts from wild type (WT), carboxypeptidase A3-, and MCPT6-deficient mice and MCs and recombinant human chymase efficiently degrade the Trichinella spiralis virulence factor heat shock protein 70 (Hsp70) as well as endogenous Hsp70. MC-(W-sash)-, serglycin-, NDST2-, and MCPT4-deficient extracts lacked this capacity, indicating that chymase is responsible for the degradation. Chymase, but not MC tryptase, also degraded other alarmins, i.e. biglycan, HMGB1, and IL-33, a degradation that was efficiently blocked by the chymase inhibitor chymostatin. IL-7, IL-22, GM-CSF, and CCL2 were resistant to chymase degradation. MCPT4-deficient conditions ex vivo and in vivo showed no reduction in added Hsp70 and only minor reduction of IL-33. Peritoneal challenge with Hsp70 resulted in increased neutrophil recruitment and TNF- levels in the MCPT4-deficient mice, whereas IL-6 and CCL2 levels were similar to the levels found in WT mice. The rapid and MC chymase-specific degradation of virulence factors and alarmins may depend on the presence of accessible extended recognition cleavage sites in target substrates and suggests a protective and regulatory role of MC chymase during danger-induced inflammation.

  • 10.
    Roy, Ananya
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Neuro-Oncology.
    Sawesi, Osama
    Swedish University of Agricultural Sciences.
    Pettersson, Ulrika A.
    Uppsala University.
    Dagälv, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Wattrang, Eva
    Swedish University of Agricultural Sciences.
    Kjellén, Lena
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Lundén, Anna
    Swedish University of Agricultural Sciences.
    Åbrink, Magnus
    Swedish University of Agricultural Sciences.
    Serglycin proteoglycans limit enteropathy in Trichinella spiralis-infected mice2016In: BMC Immunology, ISSN 1471-2172, E-ISSN 1471-2172, Vol. 17, article id 15Article in journal (Other academic)
    Abstract [en]

    Background: Serglycin proteoglycans are essential for maturation of secretory granules and for the correct granular storage of cationic proteases in hematopoietic cells, e.g. mast cells. However, little is known about the in vivo functions of serglycin proteoglycans during infection. Here we investigated the potential role of serglycin proteoglycans in host defense after infection with the nematode Trichinella spiralis. Results: Twelve days post infection lack of serglycin proteoglycans caused significantly increased enteropathy. The serglycin-deficient mice showed significantly increased intestinal worm burden, reduced recruitment of mast cells to the intestinal crypts, decreased levels of the mast cell proteases MCPT5 and MCPT6 in intestinal tissue, decreased serum levels of TNF-alpha, IL-1 beta, IL-10 and IL-13, increased levels of IL-4 and total IgE in serum, and increased intestinal levels of the neutrophil markers myeloperoxidase and elastase, as compared to wild type mice. At five weeks post infection, increased larvae burden and inflammation were seen in the muscle tissue of the serglycin-deficient mice. Conclusions: Our results demonstrate that the serglycin-deficient mice were more susceptible to T. spiralis infection and displayed an unbalanced immune response compared to wild type mice. These findings point to an essential regulatory role of serglycin proteoglycans in immunity.

1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf