Change search
Refine search result
1 - 21 of 21
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bannbers, Elin
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Women's and Children's Health, Obstetrics and Gynaecology.
    Gingnell, Malin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Women's and Children's Health, Obstetrics and Gynaecology. Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Engman, Jonas
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Morell, Arvid
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Comasco, Erika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Kask, Kristiina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Women's and Children's Health, Obstetrics and Gynaecology.
    Garavan, Hugh
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Women's and Children's Health.
    Wikström, Johan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Sundström Poromaa, Inger
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Women's and Children's Health, Obstetrics and Gynaecology.
    The effect of premenstrual dysphoric disorder and menstrual cycle phase on brain activity during response inhibition2012In: Journal of Affective Disorders, ISSN 0165-0327, E-ISSN 1573-2517, Vol. 142, no 1-3, p. 347-350Article in journal (Refereed)
    Abstract [en]

    BACKGROUND:

    Premenstrual dysphoric disorder (PMDD) has generally not been associated with impulsive behavior. However, some studies suggest that women with PMDD have higher impulsivity scores than healthy controls and that brain activity during response inhibition may vary across the menstrual cycle. Therefore, our aim was to unravel potentially important cognitive aspects of PMDD by investigating brain activity during response inhibition in women with PMDD and healthy controls in relation to menstrual cycle phase.

    METHODS:

    Fourteen PMDD patients and 13 healthy controls performed a Go/NoGo task to measure brain activity during response inhibition by use of event-related functional magnetic resonance imaging.

    RESULTS:

    Women with PMDD displayed decreased activity during both menstrual cycle phases compared to healthy controls in several task-related parietal areas. A significant group by phase interactions was found in the left insula, driven by enhanced activity among healthy controls in the follicular phase and by enhanced insula activity during the luteal phase among PMDD patients.

    LIMITATIONS:

    The limitations of the present study are the relatively limited sample size, the relatively small number of NoGo trials and the lack of a baseline contrast for the NoGo trials.

    CONCLUSIONS:

    During response inhibition women with PMDD have reduced activity in areas associated with attention and motor function which is unrelated to menstrual cycle phase. Insular cortex activity, involved in both affective and cognitive processing, was significantly activated during the luteal phase among PMDD women. These findings are relevant for the understanding of how ovarian steroids influence mood symptoms in women.

  • 2.
    Bannbers, Elin
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Women's and Children's Health.
    Gingnell, Malin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Women's and Children's Health, Obstetrics and Gynaecology. Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Engman, Jonas
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Morell, Arvid
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Sylvén, Sara
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Women's and Children's Health.
    Skalkidou, Alkistis
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Women's and Children's Health.
    Kask, Kristiina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Women's and Children's Health.
    Bäckström, Torbjörn
    Department of Clinical Science, Obstetrics and Gynecology, Umeå University, Umeå, Sweden.
    Wikström, Johan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Sundström Poromaa, Inger
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Women's and Children's Health.
    Prefrontal activity during response inhibition decreases over time in the postpartum period2013In: Behavioural Brain Research, ISSN 0166-4328, E-ISSN 1872-7549, Vol. 241, no 1, p. 132-138Article in journal (Refereed)
    Abstract [en]

    The postpartum period is characterized by complex hormonal changes, but human imaging studies in the postpartum period have thus far predominantly focused on the neural correlates of maternal behavior or postpartum depression, whereas longitudinal studies on neural correlates of cognitive function across the postpartum period in healthy women are lacking. The aim of this study was to longitudinally examine response inhibition, as a measure of executive function, and its neural correlates in healthy postpartum women and non-postpartum controls. Thirteen healthy postpartum women underwent event-related functional magnetic resonance imaging while performing a Go/NoGo task. The first assessment was made within 48hours of delivery, and the second at 4-7 weeks postpartum. In addition, 13 healthy women examined twice during the menstrual cycle were included as non-postpartum controls. In postpartum women region of interest analyses revealed task-related decreased activations in the right inferior frontal gyrus, right anterior cingulate, and bilateral precentral gyri at the late postpartum assessment. Generally, postpartum women displayed lower activity during response inhibition in the bilateral inferior frontal gyri and precentral gyri compared to non-postpartum controls. No differences in response inhibition performance were found between time-points or between groups. In conclusion, this study has discovered that brain activity in prefrontal areas during a response inhibition task decreases throughout the course of the first postpartum weeks and is lower than in non-postpartum controls. Further studies on the normal adaptive brain activity changes that occur during the postpartum period are warranted.

  • 3.
    Bannbers, Elin
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Women's and Children's Health.
    Gingnell, Malin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Women's and Children's Health.
    Engman, Jonas
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Morell, Arvid
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Sylvén, Sara
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Women's and Children's Health.
    Skalkidou, Alkistis
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Women's and Children's Health.
    Kask, Kristiina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Women's and Children's Health.
    Wikström, Johan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science.
    Sundström-Poromaa, Inger
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Women's and Children's Health.
    Prefrontal activity during response inhibition decreases over time in postpartum womenManuscript (preprint) (Other academic)
  • 4.
    Benedict, Christian
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Brooks, Samantha J
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    O'Daly, Owen G
    Almèn, Markus S
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Morell, Arvid
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Åberg, Karin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Gingnell, Malin
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Schultes, Bernd
    Hallschmid, Manfred
    Broman, Jan-Erik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Larsson, Elna-Marie
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Schiöth, Helgi B
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Acute Sleep Deprivation Enhances the Brain's Response to Hedonic Food Stimuli: An fMRI Study2012In: Journal of Clinical Endocrinology and Metabolism, ISSN 0021-972X, E-ISSN 1945-7197, Vol. 97, no 3, p. E443-447Article in journal (Refereed)
    Abstract [en]

    Context:

    There is growing recognition that a large number of individuals living in Western society are chronically sleep deprived. Sleep deprivation is associated with an increase in food consumption and appetite. However, the brain regions that are most susceptible to sleep deprivation-induced changes when processing food stimuli are unknown.

    Objective:

    Our objective was to examine brain activation after sleep and sleep deprivation in response to images of food.

    Intervention:

    Twelve normal-weight male subjects were examined on two sessions in a counterbalanced fashion: after one night of total sleep deprivation and one night of sleep. On the morning after either total sleep deprivation or sleep, neural activation was measured by functional magnetic resonance imaging in a block design alternating between high- and low-calorie food items. Hunger ratings and morning fasting plasma glucose concentrations were assessed before the scan, as were appetite ratings in response to food images after the scan.

    Main Outcome Measures:

    Compared with sleep, total sleep deprivation was associated with an increased activation in the right anterior cingulate cortex in response to food images, independent of calorie content and prescan hunger ratings. Relative to the postsleep condition, in the total sleep deprivation condition, the activation in the anterior cingulate cortex evoked by foods correlated positively with postscan subjective appetite ratings. Self-reported hunger after the nocturnal vigil was enhanced, but importantly, no change in fasting plasma glucose concentration was found.

    Conclusions:

    These results provide evidence that acute sleep loss enhances hedonic stimulus processing in the brain underlying the drive to consume food, independent of plasma glucose levels. These findings highlight a potentially important mechanism contributing to the growing levels of obesity in Western society.

  • 5.
    Engman, Jonas
    et al.
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Frick, Andreas
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Alaie, Iman
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Björkstrand, Johannes
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Ågren, Thomas
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Faria, Vanda
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Gingnell, Malin
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Wallenquist, Ulrika
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Wahlstedt, Kurt
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Larsson, Elna-Marie
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Morell, Arvid
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Fredrikson, Mats
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Furmark, Tomas
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Altered Amygdala but not Default Mode Network Functional Connectivity in Social Anxiety Disorder2013In: Biological Psychiatry, ISSN 0006-3223, E-ISSN 1873-2402, Vol. 73, no 9, p. 79S-79SArticle in journal (Other academic)
  • 6.
    Fahlström, Markus
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Mani, Kevin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Vascular Surgery.
    Nyman, Rickard
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Åberg, Karin
    Bjerner, Tomas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Wanhainen, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Vascular Surgery.
    Morell, Arvid
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Aortastentgraft ingen kontra­indikation för undersökning med MR: Men undersökningskvaliteten kan påverkas, visar litteraturstudie2014In: Läkartidningen, ISSN 0023-7205, E-ISSN 1652-7518, Vol. 111, no 27-28, p. 1184-1187Article in journal (Refereed)
    Abstract [en]

    Endovascular implantation of stent grafts is currently considered the preferred treatment for many aortic pathologies. In Sweden, approximately 900 patients are treated with an aortic stent graft. Stent grafts consists of a metal stent which is manufactured in stainless steel or nitinol covered by a prosthetic graft material. The possibility to perform successful magnetic resonance imaging (MRI) of a patient depends on the metal composition of and the localisation of the stent graft. This article presents the most common types of stent grafts and how they affect patients’ possibility to undergo an MRI examination successfully.

  • 7.
    Falk, Anna
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Fahlström, Markus
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Rostrup, Egill
    Berntsson, Shala
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurology.
    Zetterling, Maria
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurology.
    Morell, Arvid
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Larsson, Henrik B W
    Smits, Anja
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurology.
    Larsson, Elna-Marie
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Discrimination between glioma grades II and III in suspected low-grade gliomas using dynamic contrast-enhanced and dynamic susceptibility contrast perfusion MR imaging: a histogram analysis approach2014In: Neuroradiology, ISSN 0028-3940, E-ISSN 1432-1920, Vol. 56, no 12, p. 1031-1038Article in journal (Refereed)
    Abstract [en]

    Introduction

    Perfusion magnetic resonance imaging (MRI) can be used in the pre-operative assessment of brain tumours. The aim of this prospective study was to identify the perfusion parameters from dynamic contrast-enhanced (DCE) and dynamic susceptibility contrast (DSC) perfusion imaging that could best discriminate between grade II and III gliomas.

    Methods

    MRI (3 T) including morphological ((T2 fluid attenuated inversion recovery (FLAIR) and T1-weighted (T1W)+Gd)) and perfusion (DCE and DSC) sequences was performed in 39 patients with newly diagnosed suspected low-grade glioma after written informed consent in this review board-approved study. Regions of interests (ROIs) in tumour area were delineated on FLAIR images co-registered to DCE and DSC, respectively, in 25 patients with histopathological grade II (n = 18) and III (n  = 7) gliomas. Statistical analysis of differences between grade II and grade III gliomas in histogram perfusion parameters was performed, and the areas under the curves (AUC) from the ROC analyses were evaluated.

    Results

    In DCE, the skewness of transfer constant (k trans) was found superior for differentiating grade II from grade III in all gliomas (AUC 0.76). In DSC, the standard deviation of relative cerebral blood flow (rCBF) was found superior for differentiating grade II from grade III gliomas (AUC 0.80).

    Conclusions

    Histogram parameters from k trans (DCE) and rCBF (DSC) could most efficiently discriminate between grade II and grade III gliomas.

  • 8.
    Frick, Andreas
    et al.
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Engman, Jonas
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Alaie, Iman
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Björkstrand, Johannes
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Faria, Vanda
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Gingnell, Malin
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Wallenquist, Ulrika
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Ågren, Thomas
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Wahlstedt, Kurt
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Larsson, Elna-Marie
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Morell, Arvid
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Fredrikson, Mats
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Furmark, Tomas
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Enlargement of visual processing regions in social anxiety disorder is related to symptom severity2014In: Neuroscience Letters, ISSN 0304-3940, E-ISSN 1872-7972, Vol. 583, p. 114-119Article in journal (Refereed)
    Abstract [en]

    Social anxiety disorder (SAD) is associated with altered brain function and structure, but most structural studies include small samples and findings are mixed. This study compared regional gray matter volume between 48 SAD patients and 29 healthy controls (HC) as well as the relationship between volume and symptom severity. Structural magnetic resonance images from SAD patients and HC were evaluated using standard voxel-based morphometry (VBM) processing in the SPM8 software package. Social anxiety symptom severity was rated in SAD patients by a clinician using the Liebowitz Social Anxiety Scale (LSAS). SAD patients had greater regional gray matter volume in the lingual gyrus and lateral occipital cortex than the controls, and within the SAD group a positive correlation was found between symptom severity and regional gray matter volume in the lingual gyrus and the retrosplenial cortex. These findings replicate and extend earlier reports of enlarged visual processing areas in SAD. Increased gray matter volume in regions involved in visual processing and self-consciousness could underlie, or be the result of, abnormal emotional information processing and self-focused attention previously demonstrated in patients with SAD.

  • 9.
    Frick, Andreas
    et al.
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Engman, Jonas
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Alaie, Iman
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Björkstrand, Johannes
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Gingnell, Malin
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Larsson, Elna-Marie
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Morell, Arvid
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Wahlstedt, Kurt
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Fredrikson, Mats
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Furmark, Tomas
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Predicting Outcome of Combined CBT and SSRI Treatment for Social Anxiety Disorder Using a Machine Learning Approach2014In: Biological Psychiatry, ISSN 0006-3223, E-ISSN 1873-2402, Vol. 75, no 9, p. 357S-357SArticle in journal (Other academic)
  • 10.
    Gingnell, Malin
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Women's and Children's Health, Obstetrics and Gynaecology. Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Morell, Arvid
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Bannbers, Elin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Women's and Children's Health, Obstetrics and Gynaecology.
    Wikström, Johan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Sundström Poromaa, Inger
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Women's and Children's Health, Obstetrics and Gynaecology.
    Menstrual cycle effects on amygdala reactivity to emotional stimulation in premenstrual dysphoric disorder2012In: Hormones and Behavior, ISSN 0018-506X, E-ISSN 1095-6867, Vol. 62, no 4, p. 400-406Article in journal (Refereed)
    Abstract [en]

    Premenstrual dysphoric disorder (PMDD) with luteal phase related anxiety and mood swings compromise quality of life in around 4% of reproductive women. While anxiety is related to amygdala function, prior studies on amygdala reactivity both in healthy controls and women with PMDD are inconsistent with respect to menstrual cycle effects. Here women with PMDD and healthy controls were exposed to emotional faces during the mid-follicular and late luteal phase, and mean blood-oxygen-level dependence (BOLD) signal changes in the amygdala were determined with functional magnetic resonance imaging (fMRI). Women with PMDD had enhanced bilateral amygdala reactivity in the follicular phase in comparison with healthy controls, but there was no difference between groups during the luteal phase. In contrast, healthy controls displayed higher left amygdala reactivity in the luteal than in their follicular phase. However, among women with PMDD follicular phase progesterone serum concentrations were positively correlated with bilateral amygdala reactivity while depression scores were positively correlated with right amygdala reactivity in the luteal phase. In addition, women with PMDD and high scores on trait anxiety had increased right amygdala reactivity in the luteal as compared to the follicular phase. Finally, amygdala reactivity was more prone to habituation in women with PMDD, as they had enhanced amygdala reactivity in comparison with controls at the first, but not the second scanning session. Thus, while the study failed to indicate increased luteal phase amygdala reactivity in women with PMDD, our findings suggest that anxiety proneness and progesterone levels modulate menstrual cycle related amygdala reactivity in women with PMDD.

  • 11.
    Jonsson, Ove
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Anaesthesiology and Intensive Care.
    Morell, Arvid
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Zemgulis, Vitas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Thoracic Surgery.
    Lundström, Elin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Tovedal, Thomas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Anaesthesiology and Intensive Care.
    Myrdal Einarsson, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Thoracic Surgery.
    Thelin, Stefan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Thoracic Surgery.
    Ahlström, Håkan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Björnerud, Atle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Lennmyr, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Anaesthesiology and Intensive Care.
    Minimal Safe Arterial Blood Flow During Selective Antegrade Cerebral Perfusion at 20° Centigrade2011In: Annals of Thoracic Surgery, ISSN 0003-4975, E-ISSN 1552-6259, Vol. 91, no 4, p. 1198-1205Article in journal (Refereed)
    Abstract [en]

    Background

    Selective antegrade cerebral perfusion (SACP) enables surgery on the aortic arch, where cerebral ischemia may cause neurologic sequels. This study aims to identify the minimum arterial flow level to maintain adequate cerebral perfusion during SACP in deep hypothermia in the pig.

    Methods

    Two groups of pigs were subjected to SACP at 20°C α-stat. In group 1 (n = 6), flow was stepwise adjusted from 8-6-4-2-8 mL · kg−1 · min−1 and in group 2 (n = 5), flow was kept constant at 6 mL · kg−1 · min−1. Magnetic resonance imaging and spectroscopy were performed at each flow level together with hemodynamic monitoring and blood gas analysis. The biochemical marker of cerebral damage protein S100β was measured in peripheral blood.

    Results

    Decreased mixed venous oxygen saturation and increased lactate in magnetic resonance spectroscopy was seen as a sign of anaerobic metabolism below 6 mL · kg−1 · min−1. No ischemic damage was seen on diffusion-weighted imaging, but the concentrations of S100β were significantly elevated in group 1 compared with group 2 at the end of the experiment (p < 0.05). Perfusion-weighted imaging showed coherence between flow setting and cerebral perfusion, increase of blood volume across time, and regional differences in perfusion during SACP.

    Conclusions

    The findings suggest an ischemic threshold close to 6 mL · kg−1 · min−1 in the present model. Regional differences in perfusion during SACP may be of pathogenic importance to focal cerebral ischemia.

  • 12.
    Lubberink, Mark
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Tovedal, Thomas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Anaesthesiology and Intensive Care.
    Morell, Arvid
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Golla, Sandeep
    Estrada, Sergio
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Asplund, Veronika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Myrdal, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Thoracic Surgery.
    Thelin, Stefan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Thoracic Surgery.
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Lennmyr, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Anaesthesiology and Intensive Care.
    Measurement of absolute cerebral blood flow during cardiopulmonary bypass and selective cerebral perfusion using [O-15]water and PET2012In: Journal of Cerebral Blood Flow and Metabolism, ISSN 0271-678X, E-ISSN 1559-7016, Vol. 32, no S1, p. S157-S158Article in journal (Other academic)
  • 13.
    Morell, Arvid
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Radiology.
    Perfusion measurements by dynamic susceptibility MRI2010Licentiate thesis, comprehensive summary (Other academic)
  • 14.
    Morell, Arvid
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Quantitative Tracer Based MRI Perfusion: Potentials and Limitations2012Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Tracer based MRI perfusion measurements is a clinically useful tool to assess regional distributions of tissue blood flow and volume. The method may be based on any of the three relaxation mechanisms T1, T1 and T2*, the latter denoted DSC-MRI being the most common. The primary aim of this work was to study the feasibility of obtaining quantitative estimates using these methods.

    1) Feasibility of DSC-MRI for kidneys using an iron oxide based contrast agent and the influence of secondary relaxation effects on the results, part of a clinical phase II trial: The method proved feasible and the underestimation induced by secondary relaxation can be corrected for by using a double echo sequence.

    2) Influence of blood flow rate on risk factors for developing cerebral ischemia during cardio pulmonary bypass, measurements in pig with gadolinium based DSC-MRI: The results indicated an ischemic threshold level at a blood flow rate of approximately 6 ml/kg/min.

    3) The ability of gadolinium based DSC-MRI to detect changes in global blood flow, experimental measurements in pig and numerical simulations: The results support that DSC-MRI can discriminate between global flow levels in the same subject given that all other parameters are kept constant. The results also indicate that calculated perfusion values are highly sensitive to the arterial deconvolution procedure.

    4) Influence of differences in blood/tissue relaxivity and secondary relaxation for a gadolinium based contrast agent, measurements in pig and numerical simulations: The blood/tissue relaxivity ratio is not unity and the situation is complicated by secondary relaxation effects. Deconvolution regularization appears to partly counteract the overestimation induced by difference in blood/tissue relaxivity for DSC-MRI.

    In summary, the fundamental assumption of equal blood and tissue relaxivity is experimentally shown to be invalid and the influence of this discrepancy is substantial. Several factors contribute to measurement errors, a combination of these factors can incidentally lead to additive errors or error cancellation based on a variety of experimental and analysis conditions. Given that the differences in blood/tissue relaxivity cannot readily be accounted for in a clinical setting, absolute perfusion quantification by tracer based MRI remains challenging if not impossible.

  • 15.
    Morell, Arvid
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Radiology.
    Ahlström, Håkan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Radiology.
    Schoenberg, Stefan
    University of Heidelberg, Institute of Clinical Radiology and Nuclear Medicine.
    Abildgaard, Andreas
    Rikshospitalet University Hospital, Department of Radiology.
    Bock, Michael
    German Cancer Research Center (DKFZ), Department of Medical Physics in Radiology.
    Bjørnerud, Atle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Radiology.
    Quantitative renal cortical perfusion in human subjects with magnetic resonance imaging using iron-oxide nanoparticles: influence of T1 shortening2008In: Acta radiologica (Stockholm, Sweden : 1987), ISSN 1600-0455, Vol. 49, no 8, p. 955-62Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: Using conventional contrast agents, the technique of quantitative perfusion by observing the transport of a bolus with magnetic resonance imaging (MRI) is limited to the brain due to extravascular leakage. PURPOSE: To perform quantitative perfusion measurements in humans with an intravascular contrast agent, and to estimate the influence of the T1 relaxivity of the contrast agent on the first-pass response. MATERIAL AND METHODS: Renal cortical perfusion was measured quantitatively in six patients with unilateral renal artery stenosis using a rapid gradient double-echo sequence in combination with an intravenous bolus injection of NC100150 Injection, an intravascular contrast agent based on iron-oxide nanoparticles. The influence of T1 relaxivity was measured by comparing perfusion results based on single- and double-echo data. RESULTS: The mean values of cortical blood flow, cortical blood volume, and mean transit time in the normal kidneys were measured to 339+/-60 ml/min/100 g, 41+/-8 ml/100 g, and 7.3+/-1.0 s, respectively, based on double-echo data. The corresponding results based on single-echo data, which are not compensated for the T1 relaxivity, were 254+/-47 ml/min/100 g, 27+/-3 ml/100 g, and 6+/-1.2 s, respectively. CONCLUSION: The use of a double-echo sequence enabled elimination of confounding T1 effects and consequent systematic underestimation of the perfusion.

  • 16.
    Morell, Arvid
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Jonsson, Ove
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Anaesthesiology and Intensive Care.
    Tovedal, Thomas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Anaesthesiology and Intensive Care.
    Zemgulis, Vitas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Thoracic Surgery.
    Myrdal Einarsson, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Thoracic Surgery.
    Thelin, Stefan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Thoracic Surgery.
    Ahlström, Håkan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Lennmyr, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Anaesthesiology and Intensive Care.
    Bjørnerud, Atle
    Oslo universitet.
    Sensitivity of dynamic susceptibility contrast MRI to change in global flow rateManuscript (preprint) (Other academic)
  • 17.
    Morell, Arvid
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Lennmyr, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Anaesthesiology and Intensive Care.
    Jonsson, Ove
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Thoracic Surgery.
    Tovedal, Thomas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Anaesthesiology and Intensive Care.
    Pettersson, Jean
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Bergquist, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Zemgulis, Vitas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Thoracic Surgery.
    Myrdal Einarsson, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Thoracic Surgery.
    Thelin, Stefan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Thoracic Surgery.
    Ahlström, Håkan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Bjørnerud, Atle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Influence of blood/tissue differences in contrast agent relaxivity on tracer based MR perfusion measurements2015In: Magnetic Resonance Materials in Physics, Biology and Medicine, ISSN 0968-5243, E-ISSN 1352-8661, Vol. 28, no 2, p. 135-147Article in journal (Refereed)
    Abstract [en]

    PURPOSE:

    Perfusion assessment by monitoring the transport of a tracer bolus depends critically on conversion of signal intensity into tracer concentration. Two main assumptions are generally applied for this conversion; (1) contrast agent relaxivity is identical in blood and tissue, (2) change in signal intensity depends only on the primary relaxation effect. The purpose of the study was to assess the validity and influence of these assumptions.

    MATERIALS AND METHODS:

    Blood and cerebral tissue relaxivities r1, r2, and r2* for gadodiamide were measured in four pigs at 1.5 T. Gadolinium concentration was determined by inductively coupled plasma atomic emission spectroscopy. Influence of the relaxivities, secondary relaxation effects and choice of singular value decomposition (SVD) regularization threshold was studied by simulations.

    RESULTS:

    In vivo relaxivities relative to blood concentration [in s-1 mM-1 for blood, gray matter (GM), white matter (WM)] were for r1 (2.614 ± 1.061, 0.010 ± 0.001, 0.004 ± 0.002), r2 (5.088 ± 0.952, 0.091 ± 0.008, 0.059 ± 0.014), and r2* (13.292 ± 3.928, 1.696 ± 0.157, 0.910 ± 0.139). Although substantial, by a nonparametric test for paired samples, the differences were not statistically significant. The GM to WM blood volume ratio was estimated to 2.6 ± 0.9 by r1, 1.6 ± 0.3 by r2, and 1.9 ± 0.2 by r2*. Secondary relaxation was found to reduce the tissue blood flow, as did the SVD regularization threshold.

    CONCLUSION:

    Contrast agent relaxivity is not identical in blood and tissue leading to substantial errors. Further errors are introduced by secondary relaxation effects and the SVD regularization.

  • 18.
    Persson, Jonas
    et al.
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Herlitz, Agneta
    Engman, Jonas
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Morell, Arvid
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Sjölie, Daniel
    Wikström, Johan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Söderlund, Hedvig
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Remembering our origin: Gender differences in spatial memory are reflected in gender differences in hippocampal lateralization2013In: Behavioural Brain Research, ISSN 0166-4328, E-ISSN 1872-7549, Vol. 256, p. 219-228Article in journal (Refereed)
    Abstract [en]

    Gender differences in spatial memory favoring men are frequently reported, and the involvement of the hippocampus in these functions is well-established. However, little is known of whether this behavioral gender difference is mirrored in a gender difference in hippocampal function. Here we assessed hippocampal activity, using functional MRI, while 24 men and women moved through three-dimensional virtual mazes (navigation phase) of varying length, and at the end-point estimated the direction of the starting-point (pointing phase). Men were indeed more accurate than women at estimating direction, and this was especially true in longer mazes. Both genders activated the posterior hippocampus throughout the whole task. During the navigation phase, men showed a larger activation in the right hippocampus than women, while in the pointing phase, women showed a larger activation in the left hippocampus than men. Right-lateralized activation during the navigation phase was associated with greater task performance, and may reflect a spatial strategy that is beneficial in this task. Left-sided activation during the pointing phase might reflect a less efficient post hoc verbal recapitulation of the route. This study is the first to identify neural correlates of the commonly observed male advantage in recalling one's original position, and points to hippocampal lateralization as a possible explanation for this behavioral gender difference.

  • 19.
    Persson, Jonas
    et al.
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Spreng, R Nathan
    Turner, Gary
    Herlitz, Agneta
    Morell, Arvid
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Stening, Eva
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Wahlund, Lars-Olof
    Wikström, Johan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Söderlund, Hedvig
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Sex differences in volume and structural covariance of the anterior and posterior hippocampus2014In: NeuroImage, ISSN 1053-8119, E-ISSN 1095-9572, no 99, p. 215-25Article in journal (Refereed)
    Abstract [en]

    Sex differences in episodic and spatial memory are frequently observed, suggesting that there may be sex-related structural differences in the hippocampus (HC). Earlier findings are inconsistent, possibly due to a known variability along the hippocampal longitudinal axis. Here, we assessed potential sex differences in hippocampal volume and structural covariance with the rest of the brain in young men and women (N=76), considering the anterior (aHC) and posterior (pHC) hippocampus separately. Women exhibited a larger pHC than men adjusted for brain size. Using partial least squares, we identified two significant patterns of structural covariance of the aHC and pHC. The first included brain areas that covaried positively and negatively in volume with both the aHC and pHC in men, but showed greater covariance with the aHC than pHC in women. The second pattern revealed distinct structural covariance of the aHC and pHC that showed a clear difference between men and women: in men the pHC showed reliable structural covariance with the medial and lateral parietal lobes and the prefrontal cortex, whereas in women the aHC showed reliable structural covariance with the anterior temporal lobe bilaterally. This pattern converges with resting state functional connectivity of the aHC and pHC and suggests that these hippocampal sections interact with different brain regions, consistent with a division of labor with regards to episodic and spatial memory. Our findings lend support to a division of the HC into an anterior and posterior part and identify sex as a potential moderating factor when investigating hippocampal structure and connectivity.

  • 20.
    Tovedal, Thomas
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Anaesthesiology and Intensive Care.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Morell, Arvid
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Estrada, Sergio
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET-MRI Platform.
    Golla, Sandeep S V
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Myrdal, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Thoracic Surgery.
    Lindblom, Rickard P. F.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Thoracic Surgery.
    Thelin, Stefan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Thoracic Surgery.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Lennmyr, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Anaesthesiology and Intensive Care.
    Blood Flow Quantitation by Positron Emission Tomography During Selective Antegrade Cerebral Perfusion2017In: Annals of Thoracic Surgery, ISSN 0003-4975, E-ISSN 1552-6259, Vol. 103, no 2, p. 610-616Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: Perfusion strategies during aortic surgery usually comprise hypothermic circulatory arrest (HCA), often combined with selective antegrade cerebral perfusion (SACP) or retrograde cerebral perfusion. Cerebral blood flow (CBF) is a fundamental parameter for which the optimal level has not been clearly defined. We sought to determine the CBF at a pump flow level of 6 mL/kg/min, previously shown likely to provide adequate SACP at 20°C in pigs.

    METHODS: Repeated positron emission tomography (PET) scans were used to quantify the CBF and glucose metabolism throughout HCA and SACP including cooling and rewarming. Eight pigs on cardiopulmonary bypass were assigned to either HCA alone (n = 4) or HCA+SACP (n = 4). The CBF was measured by repeated [(15)O]water PET scans from baseline to rewarming. The cerebral glucose metabolism was examined by [(18)F]fluorodeoxyglucose PET scans after rewarming to 37°C.

    RESULTS: Cooling to 20°C decreased the cortical CBF from 0.31 ± 0.06 at baseline to 0.10 ± 0.02 mL/cm(3)/min (p = 0.008). The CBF was maintained stable by SACP of 6 mL/kg/min during 45 minutes. After rewarming to 37°C, the mean CBF increased to 0.24 ± 0.07 mL/cm(3)/min, without significant differences between the groups at any time-point exclusive of the HCA period. The net cortical uptake (Ki) of [(18)F]fluorodeoxyglucose after rewarming showed no significant difference between the groups.

    CONCLUSIONS: Cooling autoregulated the CBF to 0.10 mL/cm(3)/min, and 45 minutes of SACP at 6 mL/kg/min maintained the CBF in the present model. Cerebral glucose metabolism after rewarming was similar in the study groups.

  • 21.
    Tovedal, Thomas
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Anaesthesiology and Intensive Care.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Morell, Arvid
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Estrada, Sergio
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Lindblom, Rickard
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Thoracic Surgery.
    Thelin, Stefan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Thoracic Surgery.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Physiology.
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Lennmyr, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Anaesthesiology and Intensive Care.
    Blood flow and metabolism during selective cerebral perfusion - a PET studyManuscript (preprint) (Other academic)
1 - 21 of 21
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf