Change search
Refine search result
12 1 - 50 of 89
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. An, Junghwa
    et al.
    Bechet, Arnaud
    Berggren, Åsa
    Brown, Sarah K.
    Bruford, Michael W.
    Cai, Qingui
    Cassel-Lundhagen, Anna
    Cezilly, Frank
    Chen, Song-Lin
    Cheng, Wei
    Choi, Sung-Kyoung
    Ding, X.Y.
    Fan, Yong
    Feldheim, Kevin A.
    Feng, Z.Y.
    Friesen, Vicki L.
    Gaillard, Maria
    Galaraza, Juan A.
    Gallo, Leonardo
    Ganeshaiah, K. N.
    Geraci, Julia
    Gibbons, John G.
    Grant, William S.
    Grauvogel, Zac
    Gustafsson, Stefan
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Evolutionary Functional Genomics.
    Guyon, Jeffrey R.
    Han, L.
    Heath, Daniel D.
    Hemmilä, Sofia
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Evolutionary Functional Genomics.
    Hogan, Derek
    Hou, B. W.
    Jakse, Jernej
    Javornik, Branka
    Kanuch, Peter
    Kim, Kyung-Kil
    Kim, Kyung-Seok
    Kim, Sang-Gyu
    Kim, Sang-In
    Kim, Woo-Jin
    Kim, Yi-Kyung
    Klich, Maren A.
    Kreiser, Brian R.
    Kwan, Ye-Seul
    Lam, Athena W.
    Lasater, Kelly
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Evolutionary Functional Genomics.
    Lee, Hang
    Lee, Yun-Sun
    Li, D. L.
    Li, Shao-Jing
    Li, W. Y.
    Liao, Xiaolin
    Liber, Zlatko
    Lin, Lin
    Liu, Shaoying
    Luo, Xin-Hui
    Ma, Y. H.
    Ma, Yajun
    Marchelli, Paula
    Min, Mi-Sook
    Moccia, Maria Domenica
    Mohana, Kumara P.
    Moore, Marcelle
    Morris-Pocock, James A.
    Park, Han-Chan
    Pfunder, Monika
    Ivan, Radosavljevic
    Ravikanth, G.
    Roderick, George K.
    Rokas, Antonis
    Sacks, Benjamin N.
    Saski, Christopher A.
    Satovic, Zlatko
    Schoville, Sean D.
    Sebastiani, Federico
    Sha, Zhen-Xia
    Shin, Eun-Ha
    Soliani, Carolina
    Sreejayan, N.
    Sun, Zhengxin
    Tao, Yong
    Taylor, Scott A.
    Templin, William D.
    Shaanker, R. Uma
    Vasudeva, R.
    Vendramin, Giovanni G.
    Walter, Ryan P.
    Wang, Gui-Zhong
    Wang, Ke-Jian
    Wang, Y. Q.
    Wattier, Rémi A.
    Wei, Fuwen
    Widmer, Alex
    Woltmann, Stefan
    Won, Yong-Jin
    Wu, Jing
    Xie, M. L.
    Xu, Genbo
    Xu, Xiao-Jun
    Ye, Hai-Hui
    Zhan, Xiangjiang
    Zhang, F.
    Zhong, J.
    Permanent Genetic Resources added to Molecular Ecology Resources Database 1 October 2009-30 November 20092010In: Molecular Ecology Resources, ISSN 1755-098X, Vol. 10, no 2, p. 404-408Article in journal (Refereed)
    Abstract [en]

    This article documents the addition of 411 microsatellite marker loci and 15 pairs of Single Nucleotide Polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Acanthopagrus schlegeli, Anopheles lesteri, Aspergillus clavatus, Aspergillus flavus, Aspergillus fumigatus, Aspergillus oryzae, Aspergillus terreus, Branchiostoma japonicum, Branchiostoma belcheri, Colias behrii, Coryphopterus personatus, Cynogolssus semilaevis, Cynoglossus semilaevis, Dendrobium officinale, Dendrobium officinale, Dysoxylum malabaricum, Metrioptera roeselii, Myrmeciza exsul, Ochotona thibetana, Neosartorya fischeri, Nothofagus pumilio, Onychodactylus fischeri, Phoenicopterus roseus, Salvia officinalis L., Scylla paramamosain, Silene latifo, Sula sula, and Vulpes vulpes. These loci were cross-tested on the following species: Aspergillus giganteus, Colias pelidne, Colias interior, Colias meadii, Colias eurytheme, Coryphopterus lipernes, Coryphopterus glaucofrenum, Coryphopterus eidolon, Gnatholepis thompsoni, Elacatinus evelynae, Dendrobium loddigesii Dendrobium devonianum, Dysoxylum binectariferum, Nothofagus antarctica, Nothofagus dombeyii, Nothofagus nervosa, Nothofagus obliqua, Sula nebouxii, and Sula variegata. This article also documents the addition of 39 sequencing primer pairs and 15 allele specific primers or probes for Paralithodes camtschaticus.

  • 2.
    Bartoszek, Krzysztof
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics.
    Glemin, Sylvain
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution. CNRS Univ Montpellier IRD EPHE, UMR ISEM 5554, Montpellier, France..
    Kaj, Ingemar
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics.
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Using the Ornstein-Uhlenbeck process to model the evolution of interacting populations2017In: Journal of Theoretical Biology, ISSN 0022-5193, E-ISSN 1095-8541, Vol. 429, p. 35-45Article in journal (Refereed)
    Abstract [en]

    The Ornstein-Uhlenbeck (OU) process plays a major role in the analysis of the evolution of phenotypic traits along phylogenies. The standard OU process includes random perturbations and stabilizing selection and assumes that species evolve independently. However, evolving species may interact through various ecological process and also exchange genes especially in plants. This is particularly true if we want to study phenotypic evolution among diverging populations within species. In this work we present a straightforward statistical approach with analytical solutions that allows for the inclusion of adaptation and migration in a common phylogenetic framework, which can also be useful for studying local adaptation among populations within the same species. We furthermore present a detailed simulation study that clearly indicates the adverse effects of ignoring migration. Similarity between species due to migration could be misinterpreted as very strong convergent evolution without proper correction for these additional dependencies. Finally, we show that our model can be interpreted in terms of ecological interactions between species, providing a general framework for the evolution of traits between "interacting" species or populations.

  • 3.
    Berlin, Sofia
    et al.
    Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences.
    Fogelqvist, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Lagercrantz, Ulf
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Rönnberg-Wästljung, Ann Christin
    Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences.
    Polymorphism and divergence of two willow species, Salix viminalis L. and Salix schwerinii E. Wolf2011In: G3: Genes, Genomes, Genetics, ISSN 2160-1836, E-ISSN 2160-1836, Vol. 1, no 5, p. 387-400Article in journal (Refereed)
    Abstract [en]

    We investigated species divergence, present and past gene flow, levels of nucleotide polymorphism, and linkage disequilibrium in two willows from the plant genus Salix. Salix belongs together with Populus to the Salicaceae family; however, most population genetic studies of Salicaceae have been performed in Populus, the model genus in forest biology. Here we present a study on two closely related willow species Salix viminalis and S. schwerinii, in which we have resequenced 33 and 32 nuclear gene segments representing parts of 18 nuclear loci in 24 individuals for each species. We used coalescent simulations and estimated the split time to around 600,000 years ago and found that there is currently limited gene flow between the species. Mean intronic nucleotide diversity across gene segments was slightly higher in S. schwerinii (πi = 0.00849) than in S. viminalis (πi = 0.00655). Compared with other angiosperm trees, the two willows harbor intermediate levels of silent polymorphisms. The decay of linkage disequilibrium was slower in S. viminalis compared with S. schwerinii, and we speculate that this is due to different demographic histories as S. viminalis has been partly domesticated in Europe.

  • 4.
    Bodare, Sofia
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Ravikanth, Gudasalamani
    Ashoka Trust Res Ecol & Environm, Bangalore 560064, Karnataka, India.;Univ Agr Sci, Sch Ecol & Conservat, Bangalore 560065, Karnataka, India..
    Ismail, Sascha A.
    Swiss Fed Inst Technol, Dept Environm Syst Sci, Ecosyst Management, Univ Str 16, CH-8092 Zurich, Switzerland..
    Patel, Mohana Kumara
    Univ Agr Sci, Sch Ecol & Conservat, Bangalore 560065, Karnataka, India..
    Spanu, Ilaria
    CNR, Inst Biosci & Bioresources, Via Madonna del Piano 10, I-50019 Florence, Italy..
    Vasudeva, Ramesh
    Univ Agr Sci, Dept Forest Biol, Coll Forestry, Sirsi 581401, Karnataka, India..
    Shaanker, Ramanan Uma
    Ashoka Trust Res Ecol & Environm, Bangalore 560064, Karnataka, India.;Univ Agr Sci, Sch Ecol & Conservat, Bangalore 560065, Karnataka, India.;Univ Agr Sci, Dept Crop Physiol, Bangalore 560065, Karnataka, India..
    Vendramin, Giovanni Giuseppe
    CNR, Inst Biosci & Bioresources, Via Madonna del Piano 10, I-50019 Florence, Italy..
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Tsuda, Yoshiaki
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution. Univ Tsukuba, Sugadaira Montane Res Ctr, 1278-294 Sugadairakogen, Ueda, Nagano 3862204, Japan..
    Fine- and local- scale genetic structure of Dysoxylum malabaricum, a late-successional canopy tree species in disturbed forest patches in the Western Ghats, India2017In: Conservation Genetics, ISSN 1566-0621, E-ISSN 1572-9737, Vol. 18, no 1, p. 1-15Article in journal (Refereed)
    Abstract [en]

    Dysoxylum malabaricum (white cedar) is an economically important tree species, endemic to the Western Ghats, India, which is the world's most densely populated biodiversity hotspot. In this study, we used variation at ten nuclear simple sequence repeat loci to investigate genetic diversity and fine scale spatial genetic structure (FSGS) in seedlings and adults of D. malabaricum from four forest patches in the northern part of the Western Ghats. When genetic variation was compared between seedlings and adults across locations, significant differences were detected in allelic richness, observed heterozygosity, fixation index (F (IS)), and relatedness (P < 0.05). Reduced genetic diversity and increased relatedness at the seedling stage might be due to fragmentation and disturbance. There was no FSGS at the adult stage and FSGS was limited to shorter distance classes at the seedling stage. However, there was clear spatial genetic structure at the landscape level (< 50 km), regardless of age class, due to limited gene flow between forest patches. A comparison of the distributions of size classes in the four locations with published data from a more southern area, showed that large trees (diameter at breast height, DBH, > 130 cm) are present in the southern sacred forests but not in the northern forest reserves. This pattern is likely due to stronger harvesting pressure in the north compared to the south, because in the north there are no cultural taboos regulating the extraction of natural resources. The implications for forest conservation in this biodiversity hotspot are discussed.

  • 5.
    Bodare, Sofia
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Evolutionary Functional Genomics. Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Stocks, Michael
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Yang, J-C
    Taiwan Forestry Research Institute.
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Origin and demographic history of the endemic Taiwan spruce (Picea morrisonicola)2013In: Ecology and Evolution, ISSN 2045-7758, E-ISSN 2045-7758, Vol. 3, no 10, p. 3320-3333Article in journal (Refereed)
    Abstract [en]

    Taiwan spruce (Picea morrisonicola) is a vulnerable conifer species endemic to the island of Taiwan. A warming climate and competition from subtropical tree species has limited the range of Taiwan spruce to the higher altitudes of the island. Using seeds sampled from an area in the central mountain range of Taiwan, 15 nuclear loci were sequenced in order to measure genetic variation and to assess the long-term genetic stability of the species. Genetic diversity is low and comparable to other spruce species with limited ranges such as Picea breweriana, Picea chihuahuana, and Picea schrenkiana. Importantly, analysis using approximate Bayesian computation (ABC) provides evidence for a drastic decline in the effective population size approximately 0.3–0.5 million years ago (mya). We used simulations to show that this is unlikely to be a false-positive result due to the limited sample used here. To investigate the phylogenetic origin of Taiwan spruce, additional sequencing was performed in the Chinese spruce Picea wilsonii and combined with previously published data for three other mainland China species, Picea purpurea, Picea likiangensis, and P. schrenkiana. Analysis of population structure revealed that P. morrisonicola clusters most closely with P. wilsonii, and coalescent analyses using the program MIMAR dated the split to 4–8 mya, coincidental to the formation of Taiwan. Considering the population decrease that occurred after the split, however, led to a much more recent origin.

  • 6.
    Bodare, Sofia
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Tsuda, Yoshiaki
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Ravikanth, G
    Ashoka Trust for Research in Ecology and the Environment.
    Uma Shaanker, R
    Ashoka Trust for Research in Ecology and the Environment.
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Genetic structure and demographic history of the endangered tree species, Dysoxylum  malabaricum (Meliaceae) in Western Ghats, India: Implications for conservation in a  biodiversity hotspot2013In: Ecology and Evolution, ISSN 2045-7758, E-ISSN 2045-7758, Vol. 3, no 10, p. 3233-3248Article in journal (Other academic)
    Abstract [en]

    The impact of fragmentation by human activities on genetic diversity of forest trees is an important concern in forest conservation, especially in tropical forests. Dysoxylummalabaricum (white cedar) is an economically important tree species, endemic to theWestern Ghats, India, one of the world's eight most important biodiversity hotspots. As D.malabaricum is under pressure of disturbance and fragmentation together with overharvesting, conservation efforts are required in this species. In this study, range-widegenetic structure of twelve D.malabaricum populations was evaluated to assess the impact ofhuman activities on genetic diversity and infer the species' evolutionary history, using both nuclear and chloroplast (cp) DNA simple sequence repeats (SSR). As genetic diversity and population structure did not differ among seedling, juvenile and adult age classes, reproductive success among the old-growth trees and long distance seed dispersal by hornbills were suggested to contribute to maintain genetic diversity. The fixation index (F-IS) was significantly correlated with latitude, with a higher level of inbreeding in the northern populations, possibly reflecting a more severe ecosystem disturbance in those populations. Both nuclear and cpSSRs revealed northern and southern genetic groups with some discordance of their distributions; however, they did not correlate with any of the two geographic gaps known as genetic barriers to animals. Approximate Bayesian computation-based inference from nuclear SSRs suggested that population divergence occurred beforethe last glacial maximum. Finally we discussed the implications of these results, in particularthe presence of a clear pattern of historical genetic subdivision, on conservation policies.

  • 7.
    Brousseau, Louise
    et al.
    INRA, Domaine St Paul, URFM Ecol Forets Mediterraneennes UR629, Site Agroparc CS,Site Agroparc CS 40509, F-84914 Avignon 9, France.;Natl Res Council IBBR CNR, Div Florence, Inst Biosci & BioResources, Via Madonna Piano 10, I-50019 Sesto Fiorentino, FI, France..
    Postolache, Dragos
    Natl Res Council IBBR CNR, Div Florence, Inst Biosci & BioResources, Via Madonna Piano 10, I-50019 Sesto Fiorentino, FI, France.;Scuola Super Sant Anna, Piazza Martiri Liberta 33, I-56127 Pisa, Italy.;Natl Inst Forest Res & Dev INCDS, Res Stn Simeria, Str Biscaria 1, Simeria 335900, Romania..
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Drouzas, Andreas D.
    Aristotle Univ Thessaloniki, Sch Biol, GR-54124 Thessaloniki, Greece..
    Källman, Thomas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Leonarduzzi, Cristina
    Natl Res Council IBBR CNR, Div Florence, Inst Biosci & BioResources, Via Madonna Piano 10, I-50019 Sesto Fiorentino, FI, France.;Natl 3 Res Council Corso Calatafimi, Div Palermo, Inst Biosci & BioResources, Natl Res Council IBBR CNR, I-90129 Palermo, PA, Italy..
    Liepelt, Sascha
    Univ Marburg, Fac Biol, Conservat Biol, Karl von Frisch Str, D-35032 Marburg, Germany..
    Piotti, Andrea
    Natl Res Council IBBR CNR, Div Florence, Inst Biosci & BioResources, Via Madonna Piano 10, I-50019 Sesto Fiorentino, FI, France..
    Popescu, Flaviu
    Natl Inst Forest Res & Dev INCDS, Res Stn Simeria, Str Biscaria 1, Simeria 335900, Romania..
    Roschanski, Anna M.
    Univ Marburg, Fac Biol, Conservat Biol, Karl von Frisch Str, D-35032 Marburg, Germany.;Leibniz Inst Plant Genet & Crop Plant Res IPK, Genebank Collect North, Inselstr 9, D-23999 Malchow Poel, Germany..
    Zhelev, Peter
    Univ Forestry, 10 Kl Ohridsky Blvd, Sofia 1797, Bulgaria..
    Fady, Bruno
    INRA, Domaine St Paul, URFM Ecol Forets Mediterraneennes UR629, Site Agroparc CS,Site Agroparc CS 40509, F-84914 Avignon 9, France..
    Vendramin, Giovanni Giuseppe
    Natl Res Council IBBR CNR, Div Florence, Inst Biosci & BioResources, Via Madonna Piano 10, I-50019 Sesto Fiorentino, FI, France..
    Local Adaptation in European Firs Assessed through Extensive Sampling across Altitudinal Gradients in Southern Europe2016In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 11, no 7, article id e0158216Article in journal (Refereed)
    Abstract [en]

    Background Local adaptation is a key driver of phenotypic and genetic divergence at loci responsible for adaptive traits variations in forest tree populations. Its experimental assessment requires rigorous sampling strategies such as those involving population pairs replicated across broad spatial scales. Methods A hierarchical Bayesian model of selection (HBM) that explicitly considers both the replication of the environmental contrast and the hierarchical genetic structure among replicated study sites is introduced. Its power was assessed through simulations and compared to classical 'within-site' approaches (FDIST, BAYESCAN) and a simplified, within-site, version of the model introduced here (SBM). Results HBM demonstrates that hierarchical approaches are very powerful to detect replicated patterns of adaptive divergence with low false-discovery (FDR) and false-non-discovery (FNR) rates compared to the analysis of different sites separately through within-site approaches. The hypothesis of local adaptation to altitude was further addressed by analyzing replicated Abies alba population pairs (low and high elevations) across the species' southern distribution range, where the effects of climatic selection are expected to be the strongest. For comparison, a single population pair from the closely related species A. cephalonica was also analyzed. The hierarchical model did not detect any pattern of adaptive divergence to altitude replicated in the different study sites. Instead, idiosyncratic patterns of local adaptation among sites were detected by within-site approaches. Conclusion Hierarchical approaches may miss idiosyncratic patterns of adaptation among sites, and we strongly recommend the use of both hierarchical (multi-site) and classical (within-site) approaches when addressing the question of adaptation across broad spatial scales.

  • 8.
    Chen, Jun
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Glemin, Sylvain
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution. Uppsala University, Science for Life Laboratory, SciLifeLab. Univ Montpellier, CNRS, IRD, Inst Sci Evolut,EPHE,UMR 5554, Montpellier, France..
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Genetic Diversity and the Efficacy of Purifying Selection across Plant and Animal Species2017In: Molecular biology and evolution, ISSN 0737-4038, E-ISSN 1537-1719, Vol. 34, no 6, p. 1417-1428Article in journal (Refereed)
    Abstract [en]

    A central question in evolutionary biology is why some species have more genetic diversity than others and a no less important question is why selection efficacy varies among species. Although these questions have started to be tackled in animals, they have not been addressed to the same extent in plants. Here, we estimated nucleotide diversity at synonymous, pi(S), and nonsynonymous sites, pi(N), and a measure of the efficacy of selection, the ratio pi(N)/pi(S), in 34 animal and 28 plant species using full genome data. We then evaluated the relationship of nucleotide diversity and selection efficacy with effective population size, the distribution of fitness effect and life history traits. In animals, our data confirm that longevity and propagule size are the variables that best explain the variation in pi(S) among species. In plants longevity also plays a major role as well as mating system. As predicted by the nearly neutral theory of molecular evolution, the log of pi(N)/pi(S) decreased linearly with the log of pi(S) but the slope was weaker in plants than in animals. This appears to be due to a higher mutation rate in long lived plants, and the difference disappears when pi(S) is rescaled by the mutation rate. Differences in the distribution of fitness effect of new mutations also contributed to variation in pi(N)/pi(S) among species.

  • 9.
    Chen, Jun
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Källman, Thomas
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Ma, Xiaofei
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Gyllenstrand, Niclas
    Zaina, Giusi
    Morgante, Michele
    Bousquet, Jean
    Eckert, Andrew
    Wegrzyn, Jill
    Neale, David
    Lagercrantz, Ulf
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Disentangling the Roles of History and Local Selection in Shaping Clinal Variation of Allele Frequencies and Gene Expression in Norway Spruce (Picea abies)2012In: Genetics, ISSN 0016-6731, E-ISSN 1943-2631, Vol. 191, no 3, p. 865-881Article in journal (Refereed)
    Abstract [en]

    Understanding the genetic basis of local adaptation is challenging due to the subtle balance among conflicting evolutionary forces that are involved in its establishment and maintenance. One system with which to tease apart these difficulties is clines in adaptive characters. Here we analyzed genetic and phenotypic variation in bud set, a highly heritable and adaptive trait, among 18 populations of Norway spruce (Picea abies), arrayed along a latitudinal gradient ranging from 47°N to 68°N. We confirmed that variation in bud set is strongly clinal, using a subset of five populations. Genotypes for 137 single-nucleotide polymorphisms (SNPs) chosen from 18 candidate genes putatively affecting bud set and 308 control SNPs chosen from 264 random genes were analyzed for patterns of genetic structure and correlation to environment. Population genetic structure was low (F(ST) = 0.05), but latitudinal patterns were apparent among Scandinavian populations. Hence, part of the observed clinal variation should be attributable to population demography. Conditional on patterns of genetic structure, there was enrichment of SNPs within candidate genes for correlations with latitude. Twenty-nine SNPs were also outliers with respect to F(ST). The enrichment for clinal variation at SNPs within candidate genes (i.e., SNPs in PaGI, PaPhyP, PaPhyN, PaPRR7, and PaFTL2) indicated that local selection in the 18 populations, and/or selection in the ancestral populations from which they were recently derived, shaped the observed cline. Validation of these genes using expression studies also revealed that PaFTL2 expression is significantly associated with latitude, thereby confirming the central role played by this gene in the control of phenology in plants.

  • 10.
    Chen, Jun
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Källman, Thomas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Ma, Xiao-Fei
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution. Chinese Acad Sci, Key Lab Stress Physiol & Ecol Cold & Arid Reg, Lanzhou, Peoples R China..
    Zaina, Giusi
    Univ Udine, Dept Agr Food Environm & Anim Sci, I-33100 Udine, Italy..
    Morgante, Michele
    Univ Udine, Dept Agr Food Environm & Anim Sci, I-33100 Udine, Italy..
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Identifying Genetic Signatures of Natural Selection Using Pooled Population Sequencing in Picea abies2016In: G3: Genes, Genomes, Genetics, ISSN 2160-1836, E-ISSN 2160-1836, Vol. 6, no 7, p. 1979-1989Article in journal (Refereed)
    Abstract [en]

    The joint inference of selection and past demography remain a costly and demanding task. We used next generation sequencing of two pools of 48 Norway spruce mother trees, one corresponding to the Fennoscandian domain, and the other to the Alpine domain, to assess nucleotide polymorphism at 88 nuclear genes. These genes are candidate genes for phenological traits, and most belong to the photoperiod pathway. Estimates of population genetic summary statistics from the pooled data are similar to previous estimates, suggesting that pooled sequencing is reliable. The nonsynonymous SNPs tended to have both lower frequency differences and lower F-ST values between the two domains than silent ones. These results suggest the presence of purifying selection. The divergence between the two domains based on synonymous changes was around 5 million yr, a time similar to a recent phylogenetic estimate of 6 million yr, but much larger than earlier estimates based on isozymes. Two approaches, one of them novel and that considers both F-ST and difference in allele frequencies between the two domains, were used to identify SNPs potentially under diversifying selection. SNPs from around 20 genes were detected, including genes previously identified as main target for selection, such as PaPRR3 and PaGI.

  • 11.
    Chen, Jun
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Li, Lili
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Milesi, Pascal
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Jansson, Gunnar
    Forestry Res Inst Sweden Skogforsk, Uppsala, Sweden.
    Berlin, Mats
    Forestry Res Inst Sweden Skogforsk, Uppsala, Sweden.
    Karlsson, Bo
    Forestry Res Inst Sweden Skogforsk, Ekebo, Sweden.
    Aleksic, Jelena
    Univ Belgrade, Inst Mol Genet & Genet Engn, Belgrade, Serbia.
    Vendramin, Giovanni G.
    CNR, Natl Res Council IBBR, Div Florence, Inst Biosci & BioResources, Sesto Fiorentino, Italy.
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Genomic data provide new insights on the demographic history and the extent of recent material transfers in Norway spruce2019In: Evolutionary Applications, ISSN 1752-4571, E-ISSN 1752-4571, Vol. 12, no 8, p. 1539-1551Article in journal (Refereed)
    Abstract [en]

    Primeval forests are today exceedingly rare in Europe, and transfer of forest reproductive material for afforestation and improvement has been very common, especially over the last two centuries. This can be a serious impediment when inferring past population movements in response to past climate changes such as the last glacial maximum (LGM), some 18,000 years ago. In the present study, we genotyped 1,672 individuals from three Picea species (P. abies, P. obovata, and P. omorika) at 400K SNPs using exome capture to infer the past demographic history of Norway spruce (P. abies) and estimate the amount of recent introduction used to establish the Norway spruce breeding program in southern Sweden. Most of these trees belong to P. abies and originate from the base populations of the Swedish breeding program. Others originate from populations across the natural ranges of the three species. Of the 1,499 individuals stemming from the breeding program, a large proportion corresponds to recent introductions from mainland Europe. The split of P. omorika occurred 23 million years ago (mya), while the divergence between P. obovata and P. abies began 17.6 mya. Demographic inferences retrieved the same main clusters within P. abies than previous studies, that is, a vast northern domain ranging from Norway to central Russia, where the species is progressively replaced by Siberian spruce (P. obovata) and two smaller domains, an Alpine domain and a Carpathian one, but also revealed further subdivision and gene flow among clusters. The three main domains divergence was ancient (15 mya), and all three went through a bottleneck corresponding to the LGM. Approximately 17% of P. abies Nordic domain migrated from P. obovata ~103K years ago, when both species had much larger effective population sizes. Our analysis of genomewide polymorphism data thus revealed the complex demographic history of Picea genus in Western Europe and highlighted the importance of material transfer in Swedish breeding program.

  • 12.
    Chen, Jun
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Tsuda, Yoshiaki
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Stocks, Michael
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Kallman, Thomas
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Xu, Nannan
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Karkkainen, Katri
    Huotari, Tea
    Semerikov, Vladimir L.
    Vendramin, Giovanni G.
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Clinal Variation at Phenology-Related Genes in Spruce: Parallel Evolution in FTL2 and Gigantea?2014In: Genetics, ISSN 0016-6731, E-ISSN 1943-2631, Vol. 197, no 3, p. 1025-1038Article in journal (Refereed)
    Abstract [en]

    Parallel clines in different species, or in different geographical regions of the same species, are an important source of information on the genetic basis of local adaptation. We recently detected latitudinal clines in SNPs frequencies and gene expression of candidate genes for growth cessation in Scandinavian populations of Norway spruce (Picea abies). Here we test whether the same clines are also present in Siberian spruce (P. obovata), a close relative of Norway spruce with a different Quaternary history. We sequenced nine candidate genes and 27 control loci and genotyped 14 SSR loci in six populations of P. obovata located along the Yenisei river from latitude 56 N to latitude 67 N. In contrast to Scandinavian Norway spruce that both departs from the standard neutral model (SNM) and shows a clear population structure, Siberian spruce populations along the Yenisei do not depart from the SNM and are genetically unstructured. Nonetheless, as in Norway spruce, growth cessation is significantly clinal. Polymorphisms in photoperiodic (FTL2) and circadian clock (Gigantea, GI, PRR3) genes also show significant clinal variation and/or evidence of local selection. In GI, one of the variants is the same as in Norway spruce. Finally, a strong cline in gene expression is observed for FTL2, but not for GI. These results, together with recent physiological studies, confirm the key role played by FTL2 and circadian clock genes in the control of growth cessation in spruce species and suggest the presence of parallel adaptation in these two species.

  • 13.
    Chen, Jun
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Uebbing, Severin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Evolutionary Biology.
    Gyllenstrand, Niclas
    Department of Plant Biology and Forest Genetics, Swedish University of Agriculture Science.
    Lagercrantz, Ulf
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Källman, Thomas
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Sequencing of the needle transcriptome from Norway spruce (Picea abies Karst L.) reveals lower substitution rates, but similar selective constraints in gymnosperms compared to angiosperms2012In: BMC Genomics, ISSN 1471-2164, E-ISSN 1471-2164, Vol. 13, p. 589-Article in journal (Other academic)
    Abstract [en]

    Background: A detailed knowledge about which genes are expressed in which tissues and at which developmental stage is important for understanding both the function of genes and their evolution. For the vast majority of species, transcriptomes are still largely uncharacterized and even in those where substantial information is available it is often in the form of partially sequenced transcriptomes. With the development of next generation sequencing, a single experiment can now give both a snap-shot of the transcribed part of a species genome and simultaneously estimate levels of gene expression.

    Results: mRNA from actively growing needles of Norway spruce (Picea abies) was sequenced using next generation sequencing technology. In total, close to 70 million fragments with a length of 76 bp were sequenced resulting in 5 Gbp of raw data. A de novo assembly of these reads were, together with publicly available expressed sequence tag (EST) data from Norway spruce, used to create a reference transcriptome. Of the 38,419 PUTs (putative unique transcripts) longer than 150 bp in this reference assembly, 59% show similarity to ESTs from other spruce species and of the remaining PUTs, 3,704 show similarity to protein sequences from other plant species, leaving 4,167 PUTs with limited similarity to currently available plant proteins. By predicting coding frames and comparing not only the Norway spruce PUTs, but also PUTs from the close relatives Picea glauca and Picea sitchensis to both Pinus taeda and Taxus mairei, we obtained estimates of synonymous and non-synonymous divergence among conifer species. In addition, we detected close to 15,000 SNPs of high quality and estimated gene expression difference between samples collected during dark and light conditions.

    Conclusions: Our study yielded a large number of single nucleotide polymorphisms as well as estimates of gene expression on transcriptome scale. In agreement with a recent study we find that the synonymous substitution rate per year (0.6 × 10-09 and 1.1 × 10-09) is an order of magnitude smaller than values reported for angiosperm herbs, but if one takes generation time in to account, most of this difference disappear. The estimates of the non-synonymous over the synonymous divergence (dN/dS ratio) reported here is in general much lower than 1 and only a few genes showed a ratio larger than 1.

  • 14.
    Corcoran, Padraic
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology. Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England.
    Anderson, Jennifer L
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Systematic Biology.
    Jacobson, David J
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology.
    Sun, Yu
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Evolution.
    Ni, Peixiang
    BGI HongKong, Hong Kong, Hong Kong, Peoples R China.
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Johannesson, Hanna
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Systematic Biology.
    Introgression maintains the genetic integrity of the mating-type determining chromosome of the fungus Neurospora tetrasperma.2016In: Genome Research, ISSN 1088-9051, E-ISSN 1549-5469, Vol. 26, no 4, p. 486-498Article in journal (Refereed)
    Abstract [en]

    Genome evolution is driven by a complex interplay of factors, including selection, recombination, and introgression. The regions determining sexual identity are particularly dynamic parts of eukaryotic genomes that are prone to molecular degeneration associated with suppressed recombination. In the fungus Neurospora tetrasperma, it has been proposed that this molecular degeneration is counteracted by the introgression of nondegenerated DNA from closely related species. In this study, we used comparative and population genomic analyses of 92 genomes from eight phylogenetically and reproductively isolated lineages of N. tetrasperma, and its three closest relatives, to investigate the factors shaping the evolutionary history of the genomes. We found that suppressed recombination extends across at least 6 Mbp (similar to 63%) of the mating-type (mat) chromosome in N. tetrasperma and is associated with decreased genetic diversity, which is likely the result primarily of selection at linked sites. Furthermore, analyses of molecular evolution revealed an increased mutational load in this region, relative to recombining regions. However, comparative genomic and phylogenetic analyses indicate that the mat chromosomes are temporarily regenerated via introgression from sister species; six of eight lineages show introgression into one of their mat chromosomes, with multiple Neurospora species acting as donors. The introgressed tracts have been fixed within lineages, suggesting that they confer an adaptive advantage in natural populations, and our analyses support the presence of selective sweeps in at least one lineage. Thus, these data strongly support the previously hypothesized role of introgression as a mechanism for the maintenance of mating-type determining chromosomal regions.

  • 15.
    Corcoran, Pádraic
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Evolutionary Biology.
    Dettman, Jeremy
    University of Ottawa.
    Sun, Yu
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Evolutionary Biology.
    Luque, Eva
    Universidad de Sevilla.
    Corrochano, Luis
    Universidad de Sevilla.
    Taylor, John
    University of California Berkeley.
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Johannesson, Hanna
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Evolutionary Biology.
    A global multilocus analysis of the model fungus Neurospora reveals a single recent origin of a novel genetic system2014In: Molecular Phylogenetics and Evolution, ISSN 1055-7903, E-ISSN 1095-9513, Vol. 78, p. 136-147Article in journal (Refereed)
    Abstract [en]

    The large diversity of mating systems observed in the fungal kingdom underlines the importance of mating system change in fungal evolution. The selfing species Neurospora tetrasperma has evolved a novel method of achieving self-fertility by a mating system referred to as pseudohomothallism. However, little is known about the origin of N. tetrasperma and its relationship to the self-sterile, heterothallic, Neurospora species. In this study, we used a combination of phylogenetic and population genetic analyses to reconstruct the evolutionary history of N. tetrasperma and its heterothallic relatives. We sequenced 9 unlinked nuclear loci from 106 strains of N. tetrasperma sampled from across the globe, and a sample of 28 heterothallic strains of Neurospora. Our analyses provide strong support for monophyly of N. tetrasperma, but reject the monophyly of N. crassa. We estimate that N. tetrasperma is of a recent origin and that it diverged from the heterothallic species ~1 million years ago. We also extend previous findings on the diversification within the N. tetrasperma clade, with 10 lineages identified. Taken together, these findings indicate that N. tetrasperma is younger than has been previously reported and that a rapid diversification of lineages has occurred within the N. tetrasperma clade.

  • 16.
    Cornille, Amandine
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics.
    Salcedo, A.
    Univ Toronto, Dept Ecol & Evolutionary Biol, 25 Willcocks St, Toronto, ON M6R 1M3, Canada..
    Kryvokhyzha, Dmytro
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Glemin, Sylvain
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Holm, Karl
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Wright, S. I.
    Univ Toronto, Dept Ecol & Evolutionary Biol, 25 Willcocks St, Toronto, ON M6R 1M3, Canada..
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Genomic signature of successful colonization of Eurasia by the allopolyploid shepherd's purse (Capsella bursa-pastoris)2016In: Molecular Ecology, ISSN 0962-1083, E-ISSN 1365-294X, Vol. 25, no 2, p. 616-629Article in journal (Refereed)
    Abstract [en]

    Polyploidization is a dominant feature of flowering plant evolution. However, detailed genomic analyses of the interpopulation diversification of polyploids following genome duplication are still in their infancy, mainly because of methodological limits, both in terms of sequencing and computational analyses. The shepherd's purse (Capsella bursa-pastoris) is one of the most common weed species in the world. It is highly self-fertilizing, and recent genomic data indicate that it is an allopolyploid, resulting from hybridization between the ancestors of the diploid species Capsella grandiflora and Capsella orientalis. Here, we investigated the genomic diversity of C.bursa-pastoris, its population structure and demographic history, following allopolyploidization in Eurasia. To that end, we genotyped 261 C.bursa-pastoris accessions spread across Europe, the Middle East and Asia, using genotyping-by-sequencing, leading to a total of 4274 SNPs after quality control. Bayesian clustering analyses revealed three distinct genetic clusters in Eurasia: one cluster grouping samples from Western Europe and Southeastern Siberia, the second one centred on Eastern Asia and the third one in the Middle East. Approximate Bayesian computation (ABC) supported the hypothesis that C.bursa-pastoris underwent a typical colonization history involving low gene flow among colonizing populations, likely starting from the Middle East towards Europe and followed by successive human-mediated expansions into Eastern Asia. Altogether, these findings bring new insights into the recent multistage colonization history of the allotetraploid C.bursa-pastoris and highlight ABC and genotyping-by-sequencing data as promising but still challenging tools to infer demographic histories of selfing allopolyploids.

  • 17. Das, S
    et al.
    Lagercrantz, Ulf
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics, Evolutionary Functional Genomics. Evolutionär Funktionsgenomik.
    Lascoux, Martin
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics, Evolutionary Functional Genomics. Evolutionär Funktionsgenomik.
    Black mustard2006In: Genome mapping and molecular breeding in plants: Oilseeds, Springer, , 2006Chapter in book (Refereed)
  • 18. Douglas, Gavin M.
    et al.
    Gos, Gesseca
    Steige, Kim A.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Evolutionary Biology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Salcedo, Adriana
    Holm, Karl
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Josephs, Emily B.
    Arunkumar, Ramesh
    Agren, J. Arvid
    Hazzouri, Khaled M.
    Wang, Wei
    Platts, Adrian E.
    Williamson, Robert J.
    Neuffer, Barbara
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Slotte, Tanja
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Evolutionary Biology.
    Wright, Stephen I.
    Hybrid origins and the earliest stages of diploidization in the highly successful recent polyploid Capsella bursa-pastoris2015In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 112, no 9, p. 2806-2811Article in journal (Refereed)
    Abstract [en]

    Whole-genome duplication (WGD) events have occurred repeatedly during flowering plant evolution, and there is growing evidence for predictable patterns of gene retention and loss following polyploidization. Despite these important insights, the rate and processes governing the earliest stages of diploidization remain poorly understood, and the relative importance of genetic drift, positive selection, and relaxed purifying selection in the process of gene degeneration and loss is unclear. Here, we conduct whole-genome resequencing in Capsella bursa-pastoris, a recently formed tetraploid with one of the most widespread species distributions of any angiosperm. Whole-genome data provide strong support for recent hybrid origins of the tetraploid species within the past 100,000-300,000 y from two diploid progenitors in the Capsella genus. Major-effect inactivating mutations are frequent, but many were inherited from the parental species and show no evidence of being fixed by positive selection. Despite a lack of large-scale gene loss, we observe a decrease in the efficacy of natural selection genome-wide due to the combined effects of demography, selfing, and genome redundancy from WGD. Our results suggest that the earliest stages of diploidization are associated with quantitative genome-wide decreases in the strength and efficacy of selection rather than rapid gene loss, and that non-functionalization can receive a "head start" through a legacy of deleterious variants and differential expression originating in parental diploid populations.

  • 19. Du, Fang K.
    et al.
    Peng, Xiao Li
    Liu, Jian Quan
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Hu, Feng Sheng
    Petit, Remy J.
    Direction and extent of organelle DNA introgression between two spruce species in the Qinghai-Tibetan Plateau2011In: New Phytologist, ISSN 0028-646X, E-ISSN 1469-8137, Vol. 192, no 4, p. 1024-1033Article in journal (Refereed)
    Abstract [en]

    A recent model has shown that, during range expansion of one species in a territory already occupied by a related species, introgression should take place preferentially from the resident species towards the invading species and genome components experiencing low rates of gene flow should introgress more readily than those experiencing high rates of gene flow. Here, we use molecular markers from two organelle genomes with contrasted rates of gene flow to test these predictions by examining genetic exchanges between two morphologically distinct spruce Picea species growing in the Qinghai-Tibetan Plateau. The haplotypes from both mitochondrial (mt) DNA and chloroplast (cp) DNA cluster into two distinct lineages that differentiate allopatric populations of the two species. By contrast, in sympatry, the species share the same haplotypes, suggesting interspecific genetic exchanges. As predicted by the neutral model, all sympatric populations of the expanding species had received their maternally inherited mtDNA from the resident species, whereas for paternally inherited cpDNA introgression is more limited and not strictly unidirectional. Our results underscore cryptic introgressions of organelle DNAs in plants and the importance of considering rates of gene flow and range shifts to predict direction and extent of interspecific genetic exchanges.

  • 20. Dymshakova, O. S.
    et al.
    Semerikov, V. L.
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    AFLP analysis to estimate the genetic contribution of parents to progeny from hybridization between Saxifraga sibirica L. and S. cernua L.2012In: Russian journal of ecology, ISSN 1067-4136, E-ISSN 1608-3334, Vol. 43, no 5, p. 347-351Article in journal (Refereed)
    Abstract [en]

    It is shown that the method of amplified fragment length polymorphism (AFLP) can be used to estimate the contribution of parent plants to the genome of the progeny from artificial crosses between Saxifraga cernua and S. sibirica. According to Nei's (1972) genetic distances between plant groups, F-1 plants are intermediate between the parent species but closer to S. cernua, probably because its genome size is twice that of S. sibirica. Conversely, B-1 plants proved to be closer to S. sibirica, because the hybrid progeny were crossed back to this species.

  • 21.
    Fogelqvist, Johan
    et al.
    Swedish Univ Agr Sci, Uppsala BioCtr, Linnean Ctr Plant Biol, Dept Plant Biol, SE-75007 Uppsala, Sweden..
    Verkhozina, Alla V.
    Siberian Inst Plant Physiol & Biochem, Irkutsk 664033, Russia..
    Katyshev, Alexander I.
    Siberian Inst Plant Physiol & Biochem, Irkutsk 664033, Russia..
    Pucholt, Pascal
    Swedish Univ Agr Sci, Uppsala BioCtr, Linnean Ctr Plant Biol, Dept Plant Biol, SE-75007 Uppsala, Sweden..
    Dixelius, Christina
    Swedish Univ Agr Sci, Uppsala BioCtr, Linnean Ctr Plant Biol, Dept Plant Biol, SE-75007 Uppsala, Sweden..
    Ronnberg-Wastljung, Ann Christin
    Swedish Univ Agr Sci, Uppsala BioCtr, Linnean Ctr Plant Biol, Dept Plant Biol, SE-75007 Uppsala, Sweden..
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Berlin, Sofia
    Swedish Univ Agr Sci, Uppsala BioCtr, Linnean Ctr Plant Biol, Dept Plant Biol, SE-75007 Uppsala, Sweden..
    Genetic and morphological evidence for introgression between three species of willows2015In: BMC Evolutionary Biology, ISSN 1471-2148, E-ISSN 1471-2148, Vol. 15, article id 193Article in journal (Refereed)
    Abstract [en]

    Background: Hybridization and introgression are said to occur relatively frequently in plants, and in particular among different species of willows. However, data on the actual frequency of natural hybridization and introgression is rare. Here, we report the first fine-scale genetic analysis of a contact zone shared between the three basket willow species, Salix dasyclados, S. schwerinii and S. viminalis in the vicinity of the Lake Baikal in Southern Siberia. Individuals were sampled in fourteen populations and classified as pure species or hybrids based on a set of morphological characters. They were then genotyped at 384 nuclear SNP and four chloroplast SSR loci. The STRUCTURE and NewHybrids softwares were used to estimate the frequency and direction of hybridization using genotypic data at the nuclear SNP loci. Results: As many as 19 % of the genotyped individuals were classified as introgressed individuals and these were mainly encountered in the centre of the contact zone. All introgressed individuals were backcrosses to S. viminalis or S. schwerinii and no F1 or F2 hybrids were found. The rest of the genotyped individuals were classified as pure species and formed two clusters, one with S. schwerinii individuals and the other with S. viminalis and S. dasyclados individuals. The two clusters were significantly genetically differentiated, with F-ST = 0.333 (0.282-0.382, p < 0.001). In contrast, for the chloroplast haplotypes, no genetic differentiation was observed as they were completely shared between the species. Based on morphological classification only 5 % of the individuals were classified as introgressed individuals, which was much less than what was detected using genotypic data. Conclusions: We have discovered a new willow hybrid zone with relatively high frequency of introgressed individuals. The low frequency of F1 hybrids indicates that ongoing hybridization is limited, which could be because of the presence of reproductive barriers or simply because the conditions are not favorable for hybridization. We further conclude that in order to get a complete picture of the species composition of a hybrid zone it is necessary to use a combination of morphological characters and genetic data from both nuclear and chloroplast markers.

  • 22. Gerber, Sophie
    et al.
    Chadoeuf, Joel
    Gugerli, Felix
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Buiteveld, Joukje
    Cottrell, Joan
    Dounavi, Aikaterini
    Fineschi, Silvia
    Forrest, Laura L.
    Fogelqvist, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Goicoechea, Pablo G.
    Jensen, Jan Svejgaard
    Salvini, Daniela
    Vendramin, Giovanni G.
    Kremer, Antoine
    High Rates of Gene Flow by Pollen and Seed in Oak Populations across Europe2014In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 9, no 1, p. e85130-Article in journal (Refereed)
    Abstract [en]

    Gene flow is a key factor in the evolution of species, influencing effective population size, hybridisation and local adaptation. We analysed local gene flow in eight stands of white oak (mostly Quercus petraea and Q. robur, but also Q. pubescens and Q. faginea) distributed across Europe. Adult trees within a given area in each stand were exhaustively sampled (range [239, 754], mean 423), mapped, and acorns were collected ([17,147], 51) from several mother trees ([3,47], 23). Seedlings ([65,387], 178) were harvested and geo-referenced in six of the eight stands. Genetic information was obtained from screening distinct molecular markers spread across the genome, genotyping each tree, acorn or seedling. All samples were thus genotyped at 5-8 nuclear microsatellite loci. Fathers/parents were assigned to acorns and seedlings using likelihood methods. Mating success of male and female parents, pollen and seed dispersal curves, and also hybridisation rates were estimated in each stand and compared on a continental scale. On average, the percentage of the wind-borne pollen from outside the stand was 60%, with large variation among stands (21-88%). Mean seed immigration into the stand was 40%, a high value for oaks that are generally considered to have limited seed dispersal. However, this estimate varied greatly among stands (20-66%). Gene flow was mostly intraspecific, with large variation, as some trees and stands showed particularly high rates of hybridisation. Our results show that mating success was unevenly distributed among trees. The high levels of gene flow suggest that geographically remote oak stands are unlikely to be genetically isolated, questioning the static definition of gene reserves and seed stands.

  • 23. González-Martínez, SC
    et al.
    Dillon, S
    Garnier-Géré, P
    Krutovsky, KV
    Alía, R
    Burgarella, C
    Eckert, A
    García-Gil, MR
    Grivet, D
    Heuetz, M
    Jaramillo-Correa, JP
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Neale, DB
    Savolainen, O
    Tsumura, Y
    Vendramin, GG
    Patterns of Nucleotide Diversity and Association Mapping2011In: Genetics, Genomics and Breeding of Conifers / [ed] Christophe Plomion, Jersey: Science Publishers Inc., 2011, p. 239-275Chapter in book (Refereed)
  • 24.
    Hantemirova, E. V.
    et al.
    Russian Acad Sci, Inst Plant & Anim Ecol, Ural Branch, 8 Marta Str,202, Ekaterinburg 620144, Russia..
    Heinze, B.
    Austrian Fed Res Ctr Forests, Dept Forest Genet, Seckendorff Gudent Weg 8, A-1130 Vienna, Austria..
    Knyazeva, S. G.
    Russian Acad Sci, Forest Inst, Siberian Branch, Krasnojarsk Akademgorodo 660036, Russia..
    Musaev, A. M.
    Russian Acad Sci, Dagestan Sci Ctr, Mt Bot Garden, 45 M Gadgiev St, Makhachkala 367000, Republic Of Dag, Russia..
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Semerikov, V. L.
    Russian Acad Sci, Inst Plant & Anim Ecol, Ural Branch, 8 Marta Str,202, Ekaterinburg 620144, Russia..
    A new Eurasian phylogeographical paradigm?: Limited contribution of southern populations to the recolonization of high latitude populations in Juniperus communis L.(Cupressaceae)2017In: Journal of Biogeography, ISSN 0305-0270, E-ISSN 1365-2699, Vol. 44, no 2, p. 271-282Article in journal (Refereed)
    Abstract [en]

    AimThe aims of this population genetics study of the common juniper across Eurasia were to (1) assess the contribution of southern mountain ranges to the post-glacial recolonization of high latitudes and (2) test whether recent expansion or high gene flow could explain the low genetic differentiation in Northern Eurasia. LocationNorthern Eurasia and mountain regions of Central Europe and Asia. MethodsSix hundred and twenty-two individuals were sampled in 42 populations. Two chloroplast DNA (cpDNA) fragments were investigated (trnT-trnL and 16S-trnA). Analyses of the distribution of haplotypes across the continent included a suite of phylogeographical and phylogenetic tests. Putative geographical distribution in the past was reconstructed using environmental niche modelling. ResultsEighty-four haplotypes clustered into four main clades (GL1-GL4). The largest clade, GL3, corresponds to populations from the Alps, northern Europe, Western Caucasus and Siberia. These populations were moderately differentiated (28%) compared to the total range (76%) and Fu's F-s statistic was negative, indicating a population expansion. Some haplotypes within GL3 form subclades with a restricted geographical distribution, suggesting a local origin of the mutation and limited dispersal. In line with these findings, modelling of ecological niches found no significant reduction in the expected range during the LGM. Remarkably, populations from the eastern part of North Caucasus, the Himalayas, Tien Shan and south Siberia were distinctly different from populations in the rest of the range. Main conclusionsAs in Siberian larch species, the pattern of genetic diversity at cpDNA across the natural range of J. communis suggests that colonization of northern Europe and Siberia started from a limited area and predated the last glaciation. It is likely that juniper survived the subsequent glacial epoch at high latitudes in cryptic refugia serving as secondary centres of recolonization. Southern mountain refugia contribution to the recolonization of high latitudes was, at best, limited.

  • 25.
    Hemmilä, Sofia
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Evolutionary Functional Genomics.
    Mohana Kumara, P.
    Ravikanth, G.
    Gustafsson, Stefan
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Evolutionary Functional Genomics.
    Sreejayan, N.
    Vasudeva, R.
    Ganeshaiah, K. N.
    Uma Shaanker, R.
    Lascoux, Martin
    Development of polymorphic microsatellite loci in the endangered tree species Dysoxylum malabaricum2010Manuscript (preprint) (Other academic)
    Abstract [en]

    Dysoxylum malabaricum Bedd. (Meliaceae) is an economically important tree species occurring in the Western Ghats, a mega-diversity hotspot in southern India. In this paper, we report the development of fifteen microsatellite markers for D. malabaricum. The microsatellite primers development of fifteen microsatellite markers for D. malabaricum. The microsatellite primers screened had 2-9 alleles per locus and the observed and expected heterozygosity ranged from 0.07 to 1.00 and 0.07 to 0.9 respectively. Seven microsatellites cross amplified in the related species Dysoxylum binectariferum and showed good polymorphism. These are the first microsatellites described for D. malabaricum and they will be used to study population structure and genetic diversity.

  • 26.
    Huang, Hui-Run
    et al.
    Chinese Acad Sci, South China Bot Garden, Key Lab Plant Resources Conservat & Sustainable U, Guangzhou 510650, Guangdong, Peoples R China;Chinese Acad Sci, Guangdong Prov Key Lab Appl Bot, South China Bot Garden, Guangzhou 510650, Guangdong, Peoples R China.
    Liu, Jia-Jia
    Chinese Acad Sci, South China Bot Garden, Key Lab Plant Resources Conservat & Sustainable U, Guangzhou 510650, Guangdong, Peoples R China;Chinese Acad Sci, Guangdong Prov Key Lab Appl Bot, South China Bot Garden, Guangzhou 510650, Guangdong, Peoples R China.
    Xu, Yong
    Chinese Acad Sci, South China Bot Garden, Key Lab Plant Resources Conservat & Sustainable U, Guangzhou 510650, Guangdong, Peoples R China;Chinese Acad Sci, Guangdong Prov Key Lab Appl Bot, South China Bot Garden, Guangzhou 510650, Guangdong, Peoples R China.
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Ge, Xue-Jun
    Chinese Acad Sci, South China Bot Garden, Key Lab Plant Resources Conservat & Sustainable U, Guangzhou 510650, Guangdong, Peoples R China;Chinese Acad Sci, Guangdong Prov Key Lab Appl Bot, South China Bot Garden, Guangzhou 510650, Guangdong, Peoples R China.
    Wright, Stephen I.
    Univ Toronto, Dept Ecol & Evolutionary Biol, Toronto, ON M5S 3B2, Canada.
    Homeologue-specific expression divergence in the recently formed tetraploid Capsella bursa-pastoris (Brassicaceae)2018In: New Phytologist, ISSN 0028-646X, E-ISSN 1469-8137, Vol. 220, no 2, p. 624-635Article in journal (Refereed)
    Abstract [en]

    Following allopolyploid formation, extensive genome evolution occurs, with the eventual loss of many homeologous gene copies. Although this process of diploidization has occurred many times independently, the evolutionary forces determining the probability and rate of gene loss remain poorly understood. Here, we conduct genome and transcriptome sequencing in a broad sample of Chinese accessions of Capsella bursa-pastoris, a recently formed allotetraploid. Our whole genome data reveal three groups of these accessions: an Eastern group from low-altitude regions, a Western group from high-altitude regions, and a much more differentiated Northwestern group. Population differentiation in total expression was limited among closely related populations; by contrast, the relative expression of the two homeologous copies closely mirrors the genome-wide SNP divergence. Consistent with this, we observe a negative correlation between expression changes in the two homeologues. However, genes showing population genomic evidence for adaptive evolution do not show an enrichment for expression divergence between homeologues, providing no clear evidence for adaptive shifts in relative gene expression. Overall, these patterns suggest that neutral drift may contribute to the population differentiation in the expression of the homeologues, and drive eventual gene loss over longer periods of time.

  • 27. Huang, Hui-Run
    et al.
    Yan, Peng-Cheng
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Ge, Xue-Jun
    Flowering time and transcriptome variation in Capsella bursa-pastoris (Brassicaceae)2012In: New Phytologist, ISSN 0028-646X, E-ISSN 1469-8137, Vol. 194, no 3, p. 676-689Article, review/survey (Refereed)
    Abstract [en]

    Flowering is a major developmental transition and its timing in relation to environmental conditions is of crucial importance to plant fitness. Understanding the genetic basis of flowering time variation is important to determining how plants adapt locally. Here, we investigated flowering time variation of Capsella bursa-pastoris collected from different latitudes in China. We also used a digital gene expression ( DGE) system to generate partial gene expression profiles for 12 selected samples. We found that flowering time was highly variable and most strongly correlated with day length and winter temperature. Significant differences in gene expression between early-and late-flowering samples were detected for 72 candidate genes for flowering time. Genes related to circadian rhythms were significantly overrepresented among the differentially expressed genes. Our data suggest that circadian rhythms and circadian clock genes play an important role in the evolution of flowering time, and C. bursa-pastoris plants exhibit expression differences for candidate genes likely to affect flowering time across the broad range of environments they face in China.

  • 28. Jarvinen, Pia
    et al.
    Palme, Anna
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics, Evolutionary Functional Genomics. Evolutionär funktionsgenomik.
    Morales, Luis Orlando
    Lenanpää, Mika
    Kenainen, Marku
    Sopanen, Tuomas
    Lascoux, Martin
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics, Evolutionary Functional Genomics. Evolutionär funktionsgenomik.
    Phylogenetics relationships of Betula species (Betulaceae) based on nuclear ADH and chloroplast MatK sequences2004In: American Journal of Botany, Vol. 91, p. 1834-1845Article in journal (Refereed)
  • 29.
    Kaj, I
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics. Faculty of Science and Technology, Department of Evolution, Genomics and Systematics, Evolutionary Functional Genomics.
    Krone, SM
    Lascoux, M
    Faculty of Science and Technology, Department of Evolution, Genomics and Systematics, Evolutionary Functional Genomics. Evolutionär funktionsgenomik.
    Coalescent theory for seed bank models2001In: Journal of Applied Probability, ISSN 0021-9002, Vol. 38, no 2, p. 285-300Article in journal (Refereed)
    Abstract [en]

    We study the genealogical structure of samples from a population for which any given generation is made up of direct descendants from several previous generations. These occur in nature when there are seed banks or egg banks allowing an individual to leav

  • 30.
    Kaj, I
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics. Faculty of Science and Technology, Department of Evolution, Genomics and Systematics, Evolutionary Functional Genomics. Matematisk statistik.
    Lascoux, M
    Faculty of Science and Technology, Department of Evolution, Genomics and Systematics, Evolutionary Functional Genomics. evolutionär funktionsgenomik.
    Probability of identity by descent in metapopulations1999In: Genetics, Vol. 152, no 3, p. 1217-1228Article in journal (Refereed)
    Abstract [en]

    Equilibrium probabilities of identity by descent (IBD), for pairs of genes within individuals, for genes between individuals within subpopulations, and for genes between subpopulations are calculated in metapopulation models with fixed or varying colony sizes. A continuous-time analog to the Moran model was used in either case. For fixed-colony size both propagule and migrant pool models were considered. The varying population size model is based on a birth-death-immigration (BDI) process, to which migration between colonies is added. Wright's F statistics are calculated and compared to previous results. Adding between-island migration to the BDI model can have an important effect on the equilibrium probabilities of IBD and on Wright's index.

  • 31.
    Kaj, Ingemar
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics.
    Glemin, Sylvain
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Tahir, Daniah
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics.
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Analysis of diversity-dependent species evolution using concepts in population geneticsManuscript (preprint) (Other academic)
    Abstract [en]

    In this work, we consider a two-type species model with trait dependent speciation, extinction and transition rates under an evolutionary time scale. The scaling approach and the diffusion approximation techniques which are widely used in mathematical population genetics provide background and tools to assist in the study of species dynamics, and help explore the analogy between trait dependent species diversication and the evolution of allele frequencies in the population genetics setting. The analytical framework specied is then applied to models incorporating diversity-dependence, in order to infer effective results from processes in which the net growth of species depends on their current population sizes.

  • 32.
    Kruskopf-Österberg, M
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics, Evolutionary Functional Genomics. Evolutionär funktionsgenomik.
    Shavorskaya, O
    Lascoux, M
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics, Evolutionary Functional Genomics. evolutionär funktionsgenomik.
    Lagercrantz, U
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics, Evolutionary Functional Genomics. evolutionär funktionsgenomik.
    Naturally occurring indel variation in the B. nigra COL1 gene is associated with variation in flowering time.2002In: Genetics, Vol. 161, p. 299-306Article in journal (Refereed)
  • 33.
    Kryvokhyzha, Dmytro
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Holm, Karl
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Chen, Jun
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Cornille, Amandine
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Glemin, Sylvain
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution. Univ Montpellier, CNRS IRD EPHE, ISEM UMR 5554, Inst Sci Evolut, Pl Eugene Bataillon, F-34075 Montpellier, France..
    Wright, Stephen I.
    Univ Toronto, Dept Ecol & Evolut, 25 Willcocks St, Toronto, ON M5S 3B2, Canada..
    Lagercrantz, Ulf
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    The influence of population structure on gene expression and flowering time variation in the ubiquitous weed Capsella bursa-pastoris (Brassicaceae)2016In: Molecular Ecology, ISSN 0962-1083, E-ISSN 1365-294X, Vol. 25, no 5, p. 1106-1121Article in journal (Refereed)
    Abstract [en]

    Population structure is a potential problem when testing for adaptive phenotypic differences among populations. The observed phenotypic differences among populations can simply be due to genetic drift, and if the genetic distance between them is not considered, the differentiation may be falsely interpreted as adaptive. Conversely, adaptive and demographic processes might have been tightly associated and correcting for the population structure may lead to false negatives. Here, we evaluated this problem in the cosmopolitan weed Capsella bursa-pastoris. We used RNA-Seq to analyse gene expression differences among 24 accessions, which belonged to a much larger group that had been previously characterized for flowering time and circadian rhythm and were genotyped using genotyping-by-sequencing (GBS) technique. We found that clustering of accessions for gene expression retrieved the same three clusters that were obtained with GBS data previously, namely Europe, the Middle East and Asia. Moreover, the three groups were also differentiated for both flowering time and circadian rhythm variation. Correction for population genetic structure when analysing differential gene expression analysis removed all differences among the three groups. This may suggest that most differences are neutral and simply reflect population history. However, geographical variation in flowering time and circadian rhythm indicated that the distribution of adaptive traits might be confounded by population structure. To bypass this confounding effect, we compared gene expression differentiation between flowering ecotypes within the genetic groups. Among the differentially expressed genes, FLOWERING LOCUS C was the strongest candidate for local adaptation in regulation of flowering time.

  • 34.
    Kryvokhyzha, Dmytro
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Milesi, Pascal
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Duan, Tianlin
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Orsucci, Marion
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Wright, Stephen I.
    Univ Toronto, Dept Ecol & Evolutionary Biol, Toronto, ON, Canada.
    Glemin, Sylvain
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution. Uppsala University, Science for Life Laboratory, SciLifeLab. Univ Rennes, CNRS, ECOBIO Ecosyst Biodivers Evolut UMR 6553, Rennes, France.
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Towards the new normal: Transcriptomic convergence and genomic legacy of the two subgenomes of an allopolyploid weed (Capsella bursa-pastoris)2019In: PLoS Genetics, ISSN 1553-7390, E-ISSN 1553-7404, Vol. 15, no 5, article id e1008131Article in journal (Refereed)
    Abstract [en]

    Allopolyploidy has played a major role in plant evolution but its impact on genome diversity and expression patterns remains to be understood. Some studies found important genomic and transcriptomic changes in allopolyploids, whereas others detected a strong parental legacy and more subtle changes. The allotetraploid C. bursa-pastoris originated around 100,000 years ago and one could expect the genetic polymorphism of the two subgenomes to follow similar trajectories and their transcriptomes to start functioning together. To test this hypothesis, we sequenced the genomes and the transcriptomes (three tissues) of allotetraploid C. bursa-pastoris and its parental species, the outcrossing C. grandiflora and the self-fertilizing C. orientalis. Comparison of the divergence in expression between subgenomes, on the one hand, and divergence in expression between the parental species, on the other hand, indicated a strong parental legacy with a majority of genes exhibiting a conserved pattern and cis-regulation. However, a large proportion of the genes that were differentially expressed between the two subgenomes, were also under trans-regulation reflecting the establishment of a new regulatory pattern. Parental dominance varied among tissues: expression in flowers was closer to that of C. orientalis and expression in root and leaf to that of C. grandiflora. Since deleterious mutations accumulated preferentially on the C. orientalis subgenome, the bias in expression towards C. orientalis observed in flowers indicates that expression changes could be adaptive and related to the selfing syndrome, while biases in the roots and leaves towards the C. grandiflora subgenome may be reflective of the differential genetic load.

  • 35.
    Kryvokhyzha, Dmytro
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Salcedo, Adriana
    Univ Toronto, Dept Ecol & Evolut, Toronto, ON, Canada.
    Eriksson, Mimmi C.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution. Uppsala University, Science for Life Laboratory, SciLifeLab. Univ Gothenburg, Dept Biol & Environm Sci, Gothenburg, Sweden.
    Duan, Tianlin
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Tawari, Nilesh
    ASTAR, Genome Inst Singapore, Computat & Syst Biol Grp, Singapore, Singapore.
    Chen, Jun
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Guerrina, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Kreiner, Julia M.
    Univ Toronto, Dept Ecol & Evolut, Toronto, ON, Canada.
    Kent, Tyler V.
    Univ Toronto, Dept Ecol & Evolut, Toronto, ON, Canada.
    Lagercrantz, Ulf
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Stinchcombe, John R.
    Univ Toronto, Dept Ecol & Evolut, Toronto, ON, Canada.
    Glemin, Sylvain
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution. Uppsala University, Science for Life Laboratory, SciLifeLab. Univ Rennes 1, CNRS, UMR 6553, ECOBIO,Ecosyst,Biodivers,Evolut, F-35000 Rennes, France.
    Wright, Stephen I.
    Univ Toronto, Dept Ecol & Evolut, Toronto, ON, Canada.
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Parental legacy, demography, and admixture influenced the evolution of the two subgenomes of the tetraploid Capsella bursa-pastoris (Brassicaceae)2019In: PLoS Genetics, ISSN 1553-7390, E-ISSN 1553-7404, Vol. 15, no 2, article id e1007949Article in journal (Refereed)
    Abstract [en]

    Allopolyploidy is generally perceived as a major source of evolutionary novelties and as an instantaneous way to create isolation barriers. However, we do not have a clear understanding of how two subgenomes evolve and interact once they have fused in an allopolyploid species nor how isolated they are from their relatives. Here, we address these questions by analyzing genomic and transcriptomic data of allotetraploid Capsella bursa-pastoris in three differentiated populations, Asia, Europe, and the Middle East. We phased the two subgenomes, one descended from the outcrossing and highly diverse Capsella grandiflora (Cbp(Cg)) and the other one from the selfing and genetically depauperate Capsella orientalis (Cbp(Co)). For each subgenome, we assessed its relationship with the diploid relatives, temporal changes of effective population size (N-e), signatures of positive and negative selection, and gene expression patterns. In all three regions, N-e of the two subgenomes decreased gradually over time and the Cbp(Co) subgenome accumulated more deleterious changes than Cbp(Cg). There were signs of widespread admixture between C. bursa-pastoris and its diploid relatives. The two subgenomes were impacted differentially depending on geographic region suggesting either strong interploidy gene flow or multiple origins of C. bursa-pastoris. Selective sweeps were more common on the Cbp(Cg) subgenome in Europe and the Middle East, and on the Cbp(Co) subgenome in Asia. In contrast, differences in expression were limited with the Cbp(Cg) subgenome slightly more expressed than Cbp(Co) in Europe and the Middle-East. In summary, after more than 100,000 generations of co-existence, the two subgenomes of C. bursa-pastoris still retained a strong signature of parental legacy but their evolutionary trajectory strongly varied across geographic regions. Author summary Allopolyploid species have two or more sets of chromosomes that originate from hybridization of different species. It remains largely unknown how the two genomes evolve in the same organism and how strongly their evolutionary trajectory depends on the initial differences between the two parental species and the specific demographic history of the newly formed allopolyploid species. To address these questions, we analyzed the genomic and gene expression variation of the shepherd's purse, a recent allopolyploid species, in three regions of its natural range. After approximate to 100,000 generations of co-existence within the same species, the two subgenomes had still retained part of the initial difference between the two parental species in the number of deleterious mutations reflecting a history of mating system differences. This difference, as well as differences in patterns of positive selection and levels of gene expression, also strongly depended on the specific histories of the three regions considered. Most strikingly, and unexpectedly, the allopolyploid species showed signs of hybridization with different diploid relatives or multiple origins in different parts of its range. Regardless if it was hybridization or multiple origins, this profoundly altered the relationship between the two subgenomes in different regions. Hence, our study illustrates how both the genomic structure and ecological arena interact to determine the evolutionary trajectories of allopolyploid species.

  • 36.
    Källman, Thomas
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    De Mita, Stéphane
    INRA Nancy, 54280 Champenoux, France.
    Larsson, Hanna
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Gyllenstrand, Niclas
    Dept. of Plant Biology and Forest Genetics, Swedish Agricultural University, Uppsala, Sweden.
    Heuertz, Myriam
    Forest Research Centre INIA-CIFOR, 28040, Madrid, Spain.
    Parducci, Laura
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Suyama, Yoshihisa
    Graduate School of Agricultural Science, Tohoku University, Japan.
    Lagercrantz, Ulf
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Patterns of nucleotide diversity at photoperiod related genes in the conifer Norway spruce [Picea abies (L.) (Karst)]2014In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 9, no 5, p. e95306-Article in journal (Refereed)
    Abstract [en]

    The ability of plants to track seasonal changes is largely dependent on genes assigned to the photoperiod pathway, and variation in those genes is thereby important for adaptation to local day length conditions. Extensive physiological data in several temperate conifer species suggest that populations are adapted to local light conditions, but data on the genes underlying this adaptation are more limited. Here we present nucleotide diversity data from 19 genes putatively involved in photoperiodic response in Norway spruce (Picea abies). Based on similarity to model plants the genes were grouped into three categories according to their presumed position in the photoperiod pathway: photoreceptors, circadian clock genes, and downstream targets. An HKA (Hudson, Kreitman and Aquade) test showed a significant excess of diversity at photoreceptor genes, but no departure from neutrality at circadian genes and downstream targets. Departures from neutrality were also tested with Tajima's D and Fay and Wu's H statistics under three demographic scenarios: the standard neutral model, a population expansion model, and a more complex population split model. Only one gene, the circadian clock gene PaPRR3 with a highly positive Tajima's D value, deviates significantly from all tested demographic scenarios. As the PaPRR3 gene harbours multiple non-synonymous variants it appears as an excellent candidate gene for control of photoperiod response in Norway spruce

  • 37.
    Lafon-Placette, Clement
    et al.
    Swedish Univ Agr Sci, Dept Plant Biol, Uppsala, Sweden;Linnean Ctr Plant Biol, Uppsala, Sweden;Charles Univ Prague, Dept Bot, Prague, Czech Republic.
    Hatorangan, Marcelinus R.
    Swedish Univ Agr Sci, Dept Plant Biol, Uppsala, Sweden;Linnean Ctr Plant Biol, Uppsala, Sweden.
    Steige, Kim A.
    Stockholm Univ, Dept Ecol Environm & Plant Sci, Sci Life Lab, Stockholm, Sweden;Univ Cologne, Inst Bot, Bioctr, Cologne, Germany.
    Cornille, Amandine
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Slotte, Tanja
    Stockholm Univ, Dept Ecol Environm & Plant Sci, Sci Life Lab, Stockholm, Sweden.
    Kohler, Claudia
    Swedish Univ Agr Sci, Dept Plant Biol, Uppsala, Sweden;Linnean Ctr Plant Biol, Uppsala, Sweden.
    Paternally expressed imprinted genes associate with hybridization barriers in Capsella2018In: NATURE PLANTS, ISSN 2055-026X, Vol. 4, no 6, p. 352-357Article in journal (Refereed)
    Abstract [en]

    Hybrid seed lethality is a widespread type of reproductive barrier among angiosperm taxa(1,2) that contributes to species divergence by preventing gene flow between natural populations(3,4). Besides its ecological importance, it is an important obstacle to plant breeding strategies(5). Hybrid seed lethality is mostly due to a failure of the nourishing endosperm tissue, resulting in embryo arrest(3,6,7). The cause of this failure is a parental dosage imbalance in the endosperm that can be a consequence of either differences in parental ploidy levels or differences in the 'effective ploidy', also known as the endosperm balance number (EBN)(8,9). Hybrid seed defects exhibit a parent-of-origin pattern(3,6,7), suggesting that differences in number or expression strength of parent-of-origin-specific imprinted genes underpin, as the primary or the secondary cause, the molecular basis of the EBN7,10. Here, we have tested this concept in the genus Capsella and show that the effective ploidy of three Capsella species correlates with the number and expression level of paternally expressed genes (PEGs). Importantly, the number of PEGs and the effective ploidy decrease with the selfing history of a species: the obligate outbreeder Capsella grandiflora had the highest effective ploidy, followed by the recent selfer Capsella rubella and the ancient selfer Capsella orientalis. PEGs were associated with the presence of transposable elements and their silencing mark, DNA methylation in CHH context (where H denotes any base except C). This suggests that transposable elements have driven the imprintome divergence between Capsella species. Together, we propose that variation in transposable element insertions, the resulting differences in PEG number and divergence in their expression level form one component of the effective ploidy variation between species of different breeding system histories, and, as a consequence, allow the establishment of endosperm-based hybridization barriers.

  • 38. Lafon-Placette, Clément
    et al.
    Hatorangan, Marcelinus R.
    Steige, Kim A.
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences. Stockholm University, Science for Life Laboratory (SciLifeLab).
    Cornille, Amandine
    Lascoux, Martin
    Slotte, Tanja
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences. Stockholm University, Science for Life Laboratory (SciLifeLab).
    Köhler, Claudia
    Paternally expressed imprinted genes associate with hybridization barriers in Capsella2018In: Nature plants, ISSN 2055-026X, Vol. 4, no 6, p. 352-357Article in journal (Refereed)
    Abstract [en]

    Hybrid seed lethality is a widespread type of reproductive barrier among angiosperm taxa(1,2) that contributes to species divergence by preventing gene flow between natural populations(3,4). Besides its ecological importance, it is an important obstacle to plant breeding strategies(5). Hybrid seed lethality is mostly due to a failure of the nourishing endosperm tissue, resulting in embryo arrest(3,6,7). The cause of this failure is a parental dosage imbalance in the endosperm that can be a consequence of either differences in parental ploidy levels or differences in the 'effective ploidy', also known as the endosperm balance number (EBN)(8,9). Hybrid seed defects exhibit a parent-of-origin pattern(3,6,7), suggesting that differences in number or expression strength of parent-of-origin-specific imprinted genes underpin, as the primary or the secondary cause, the molecular basis of the EBN7,10. Here, we have tested this concept in the genus Capsella and show that the effective ploidy of three Capsella species correlates with the number and expression level of paternally expressed genes (PEGs). Importantly, the number of PEGs and the effective ploidy decrease with the selfing history of a species: the obligate outbreeder Capsella grandiflora had the highest effective ploidy, followed by the recent selfer Capsella rubella and the ancient selfer Capsella orientalis. PEGs were associated with the presence of transposable elements and their silencing mark, DNA methylation in CHH context (where H denotes any base except C). This suggests that transposable elements have driven the imprintome divergence between Capsella species. Together, we propose that variation in transposable element insertions, the resulting differences in PEG number and divergence in their expression level form one component of the effective ploidy variation between species of different breeding system histories, and, as a consequence, allow the establishment of endosperm-based hybridization barriers.

  • 39.
    Lagercrantz, U
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics, Evolutionary Functional Genomics. Evolutionär funktionsgenomik.
    Österberg, MK
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics, Evolutionary Functional Genomics. Evolutionär funktionsgenomik.
    Lascoux, M
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics, Evolutionary Functional Genomics. Evolutionär funktionsgenomik.
    Sequence variation and haplotype structure at the putative flowering-time locus COL1 of Brassica nigra2002In: Molecular Biology and Evolution, Vol. 19, no 9, p. 1474-1482Article in journal (Refereed)
  • 40.
    Larsson, Hanna
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    De Paoli, Emanuele
    Dipartimento di Scienze Agrarie e Ambientali, Universita di Udine, Italy.
    Morgante, Michele
    Dipartimento di Scienze Agrarie e Ambientali, Universita di Udine, Italy.
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Gyllenstrand, Niclas
    Dept. of Plant Biology and Forest Genetics, Swedish Agricultural University, Uppsala, Sweden.
    The HypoMethylated Partial Restriction (HMPR) method reduces the repetitive content of genomic libraries in Norway spruce (Picea abies)2013In: Tree Genetics & Genomes, ISSN 1614-2942, E-ISSN 1614-2950, Vol. 9, no 2, p. 601-612Article in journal (Refereed)
    Abstract [en]

    To evaluate the usefulness of Reduced Representation Libraries (RRL) in species with large and highly repetitive genomes such as conifers, we employed Hypomethylated Partial Restriction (HMPR) on the genome of Norway spruce (Picea abies). The HMPR method preferentially removes the commonly hypermethylated, repetitive fraction of the genome. Hence, RRLs should be enriched for the hypomethylated gene space. For comparison, a standard shotgun library was constructed and samples of the respective libraries were obtained through Sanger sequencing. We obtained a 9-fold gene enrichment, a value which is slightly higher than for other plant species. The amount of repetitive DNA was reduced by 45 % in the RRLs, demonstrating the ability to efficiently remove hypermethylated DNA. Annotating sequences in an uncharacterized genome remains challenging and a large number of sequences could not be classified as either repetitive DNA or as belonging to the gene space. Upon further investigation, we found that some of these uncharacterized fragments were expressed, and in most cases the expression was spatially differentiated, indicating that they might have a function. Full-length transcripts of a subset of expressed fragments also revealed that these could be long non-coding RNAs. In conclusion, our study shows that the HMPR method is effective in constructing libraries enriched for the genic fraction of the genome, while simultaneously reducing the repetitive fraction, in P. abies and may prove a valuable tool for the discovery, validation, and assessment of genetic markers in population studies and breeding efforts when combined with next-generation sequencing technology.

  • 41.
    Larsson, Hanna
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Kallman, Thomas
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Gyllenstrand, Niclas
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Distribution of Long-Range Linkage Disequilibrium and Tajima's D Values in Scandinavian Populations of Norway Spruce (Picea abies)2013In: G3: Genes, Genomes, Genetics, ISSN 2160-1836, E-ISSN 2160-1836, Vol. 3, no 5, p. 795-806Article in journal (Refereed)
    Abstract [en]

    The site frequency spectrum of mutations (SFS) and linkage disequilibrium (LD) are the two major sources of information in population genetics studies. In this study we focus on the levels of LD and the SFS and on the effect of sample size on summary statistics in 10 Scandinavian populations of Norway spruce. We found that previous estimates of a low level of LD were highly influenced by both sampling strategy and the fact that data from multiple loci were analyzed jointly. Estimates of LD were in fact heterogeneous across loci and increased within individual populations compared with the estimate from the total data. The variation in levels of LD among populations most likely reflects different demographic histories, although we were unable to detect population structure by using standard approaches. As in previous studies, we also found that the SFS-based test Tajima's D was highly sensitive to sample size, revealing that care should be taken to draw strong conclusions from this test when sample size is small. In conclusion, the results from this study are in line with recent studies in other conifers that have revealed a more complex and variable pattern of LD than earlier studies suggested and with studies in trees and humans that suggest that Tajima's D is sensitive to sample size. This has large consequences for the design of future association and population genetic studies in Norway spruce.

  • 42.
    Lascoux, Martin
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Glémin, Sylvain
    Savolainen, Outi
    Local adaptation in plants2016In: Encyclopedia of Life Sciences, ISSN 1476-9506, E-ISSN 1476-9506, article id 0025270Article in journal (Refereed)
  • 43.
    Lascoux, Martin
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Suyama, Yoshihisa
    Inferring forest tree population and species histories from genetic variation2012In: Molecular ecology of forest trees / [ed] Yoshihisa Suyama, Tokyo: bun-ichi sogo shuppan , 2012Chapter in book (Refereed)
  • 44. Lesur, I
    et al.
    Durand, J
    Sebastiani, F
    Gyllenstrand, N
    Bodénès, C
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Kremer, A
    Vendramin, GG
    Plomion, C
    A sample view of the pedunculate oak (Quercus robur) genome from the sequencing of hypomethylated and random genetic libraries2011In: Tree Genetics & Genomes, ISSN 1614-2942, E-ISSN 1614-2950, Vol. 7, no 6, p. 1277-1285Article in journal (Refereed)
    Abstract [en]

    Genomic resources have recently been developed for a number of species of Fagaceae, with the purpose of identifying the genetic factors underlying the adaptation of these long-lived, biologically predominant, commercially and ecologically important species to their environment. The sequencing of genomes of the size of the oak genome (740 Mb/C) is now becoming both possible and affordable due to breakthroughs in sequencing technology. However, an understanding of the composition and structure of the oak genome is required before launching a sequencing initiative. We constructed random (Rd) and hypomethylated (Hp) genomic libraries for pedunculate oak (Quercus robur) and carried out a sample sequencing of 2.33 and 2.36 Mb of shotgun DNA from the Rd and Hp libraries, respectively, to provide a first insight into the repetitive element and gene content of the oak genome. We found striking similarities between Rd sequences and previously analyzed BAC end sequences of pedunculate oak, with a similar percentage of known repeat elements (5.56%), an almost identical simple sequence repeat density (i.e., 29 SSRs per 100 kb), an identical profile of SSR motifs (in descending order of frequency—dinucleotide, pentanucleotide, trinucleotide, tetranucleotide, and hexanucleotide motifs). Conversely, the Hp fraction was, as expected, enriched in nuclear genes (2.44-fold enrichment). This enrichment was associated with a lower frequency of retrotransposons than for Rd sequences. We also identified twice as many SSR motifs in the Rd library as in the Hp library. This work provides useful information before opening a new chapter in oak genome sequencing.

  • 45. Li, Junrui
    et al.
    Li, Haipeng
    Jakobsson, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Evolutionary Biology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Li, Sen
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Evolutionary Biology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Sjödin, Per
    Uppsala University, Science for Life Laboratory, SciLifeLab.
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Joint analysis of demography and selection in population genetics: where do we stand and where could we go?2012In: Molecular Ecology, ISSN 0962-1083, E-ISSN 1365-294X, Vol. 21, no 1, p. 28-44Article, review/survey (Refereed)
    Abstract [en]

    Teasing apart the effects of selection and demography on genetic polymorphism remains one of the major challenges in the analysis of population genomic data. The traditional approach has been to assume that demography would leave a genome-wide signature, whereas the effect of selection would be local. In the light of recent genomic surveys of sequence polymorphism, several authors have argued that this approach is questionable based on the evidence of the pervasive role of positive selection and that new approaches are needed. In the first part of this review, we give a few empirical and theoretical examples illustrating the difficulty in teasing apart the effects of selection and demography on genomic polymorphism patterns. In the second part, we review recent efforts to detect recent positive selection. Most available methods still rely on an a priori classification of sites in the genome but there are many promising new approaches. These new methods make use of the latest developments in statistics, explore aspects of the data that had been neglected hitherto or take advantage of the emerging population genomic data. A current and promising approach is based on first estimating demographic and genetic parameters, using, e.g., a likelihood or approximate Bayesian computation framework, focusing on extreme outlier regions, and then using an independent method to confirm these. Finally, especially for species where evidence of natural selection has been limited, more experimental and versatile approaches that contrast populations under varied environmental constraints might be more successful compared with species-wide genome scans in search of specific signatures.

  • 46.
    Li, Lili
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Chen, Jun
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Clinal variation in growth cessation and FTL2 expression in Siberian spruce2019In: Tree Genetics & Genomes, ISSN 1614-2942, E-ISSN 1614-2950, Vol. 15, no 82Article in journal (Refereed)
    Abstract [en]

    Forest trees exhibit strong patterns of local adaptation in phenological traits along latitudinal gradients. Previous studies in spruce have shown that variation at genes from the photoperiodic pathway and the circadian clock are associated to these clines but it has been difficult to find solid evidence of selection for some of these genes. Here, we used growth cessation, gene expression, and single nucleotide polymorphism (SNP) data at two major candidate loci, FLOWERING LOCUS T/TERMINAL FLOWER1-Like2 (FTL2) and GIGANTEA (GI), as well as at background loci from a latitudinal gradient in Siberian spruce (Picea obovata) populations along the Ob River to test for clinal variation in growth cessation and at the two candidate genes. As in previous studies, there was a strong latitudinal cline in growth cessation that was accompanied by a significant cline in the expression of FTL2. Expression of FTL2 was significantly associated with allele frequencies at some of the GI’s SNPs. However, the cline in allele frequency at candidate genes was not as steep as in a Norway spruce cline and in a parallel Siberian spruce cline studied previously and nonsignificant when a correction for population structure was applied. A McDonald-Kreitman test did not detect decisive evidence of selection on GI (p value = 0.07) and could not be applied to FTL2 because of limited polymorphism. Nonetheless, polymorphisms contributed more to the increased neutrality index of PoGI than to that of control loci. Finally, comparing the results of two previously published studies to our new dataset led to the identification of strong candidate SNPs for local adaptation in FTL2 promoter and GI.

  • 47.
    Li, Lili
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Milesi, Pascal
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Chen, Jun
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution. Uppsala University, Science for Life Laboratory, SciLifeLab. College of Life Sciences, Zhejiang University.
    Baison, John
    Umeå Plant Science Centre, Department Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences.
    Chen, Zhiqiang
    Umeå Plant Science Centre, Department Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences.
    Linghua, Zhou
    Umeå Plant Science Centre, Department Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences.
    Karlsson, Bo
    Skogforsk,Sävar.
    Berlin, Mats
    Skogforsk, Uppsala.
    Westin, Johan
    Skogforsk, Uppsala.
    Garcia-Gil, Rosario
    Umeå Plant Science Centre, Department Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences.
    Wu, Harry
    Swedish University of Agricultural Sciences; Beijing Forestry University; CSIRO National Collection Research Australia, Black Mountain Laboratory.
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Recent introductions, ancient recolonization events and local adaptation: a first fine-scale mapping of the population genetic structure of Norway spruce across SwedenManuscript (preprint) (Other academic)
    Abstract [en]

    Population genetic structure matters for a large range of issues: it is intrinsically related to speciation and local adaptation, it informs us on past demography, it conditions the response of populations to climate change or to the spread of diseases and it severely limits the power of genome wide association studies (GWAS). In the present study we genotyped all individuals from the base population of the Swedish P. abies breeding program using exome capture. In total 4769 individuals were genotyped. This very large and dense sampling along a latitudinal gradient ranging from 55°N to 67°N, together with a large number of polymorphisms (>300,000 SNPs) allowed us to analyze population genetic structure at an unprecedented scale and to test for associations between genetic polymorphisms and environmental variables We used clustering methods (PCA, Admixture) to obtain a first genetic clustering of the data. Moreover, in order to better capture the mixture of discrete and continuous processes that generated the distribution of the genetic variation of Norway spruce across Sweden two recently developed spatialized analyses (conStruct, EEMS) were also performed. The overall data comprises both trees of Swedish origin and a large number of trees recently introduced into Sweden from the rest of the range and is highly structured with a total of six clusters representing the main postglacial refugia and admixed populations originating from the refugia. Focusing on the trees of Swedish origin, the data shows that those can be divided into two main clusters with a contact zone in central Sweden and a third small cluster in northern Sweden. The contact zone is also observed in other species and likely reflects the meeting point of the two main waves of recolonization of Scandinavia after the Last Glacial Maximum. As to the northernmost cluster it was characterized by a high contribution from P. obovata. A large number of SNPs were found to be associated to environmental variables and exhibited a stronger pattern of isolation-by-distance than random SNP. Considering that P. abies has been in Sweden for less than 50 generations, this suggests a strong selection pressure during the expansion of the species through Scandinavia. 

  • 48.
    Li, Yuan
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Evolutionary Functional Genomics.
    Stocks, Michael
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Hemmilä, Sofia
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Evolutionary Functional Genomics.
    Källman, Thomas
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Evolutionary Functional Genomics.
    Zhu, Hongtao
    Zhou, Yongfeng
    Chen, Jun
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Evolutionary Functional Genomics.
    Liu, Jianquan
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Demographic histories of four spruce (Picea) species of the Qinghai-Tibetan Plateau and neighboring areas inferred from multiple nuclear loci2010In: Molecular biology and evolution, ISSN 0737-4038, E-ISSN 1537-1719, Vol. 27, no 5, p. 1001-1014Article in journal (Refereed)
    Abstract [en]

    Nucleotide variation at 12 to 16 nuclear loci was studied in three spruce species from the Qinghai-Tibetan Plateau (QTP), Picea likiangensis, P. wilsonii and P. purpurea, and one species from the Tian Shan mountain range, P. schrenkiana. Silent nucleotide diversity was limited in P. schrenkiana and high in the three species from the QTP, with values higher than in boreal spruce species, despite their much more restricted distributions compared to that of the boreal species. In contrast to European boreal species that have experienced severe bottlenecks in the past, coalescent-based analysis suggests that DNA polymorphism in the species from the QTP and adjacent areas is compatible with the standard neutral model (P. likiangensis, P. wilsonii, P. schrenkiana) or with population growth (P. purpurea). In order to test if P. purpurea is a diploid hybrid of P. likiangensis and P. wilsonii, we used a combination of approaches, including model based inference of population structure, Isolation-with-Migration models and recent theoretical results on the effect of introgression on the geographic distribution of diversity. In contrast to the three other species, each of which was predominantly assigned to a single cluster in the Structure analysis, P. purpurea individuals were scattered over the three main clusters and not, as we had expected, confined to the P. likiangensis and P. wilsonii clusters. Furthermore the contribution of P. schrenkiana was by far the largest one. In agreement with this, the divergence between P. purpurea and P. schrenkiana was lower than the divergence of either P. likiangensis or P. wilsonii from P. schrenkiana. These results, together with previous ones showing that P. purpurea and P. wilsonii share the same haplotypes at both chloroplast and mitochondrial markers, suggest that P. purpurea has a complex origin, possibly involving additional species.

  • 49. Li, Zhonghu
    et al.
    Zou, Jiabin
    Mao, Kangshan
    Lin, Kao
    Li, Haipeng
    Liu, Jianquan
    Källman, Thomas
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Population Genetic Evidence for Complex Evolutionary Histories of Four High Altitude Juniper Species in the Qinghai-Tibetan Plateau2012In: Evolution, ISSN 0014-3820, E-ISSN 1558-5646, Vol. 66, no 3, p. 831-845Article in journal (Refereed)
    Abstract [en]

    Population genetics data based on multiple nuclear loci provide invaluable information to understand demographic, selective, and divergence histories of the current species. We studied nucleotide variation at 13 nuclear loci in 53 populations distributed among four closely related, but morphologically distinct juniper species of the QinghaiTibetan Plateau (QTP). We used a novel approach combining Approximate Bayesian Computation and a recently developed neutrality test based on the maximum frequency of derived mutations to examine the demographic and selective histories of individual species, and isolation-with-migration analyses to study the joint history of the species and detect gene flow between them. We found that (1) the four species, which diverged in response to the extensive QTP uplifts, have different demographic histories; (2) two loci, Pgi and CC0822, depart significantly from neutrality in one species and Pgi, is also marginally significant in another; and (3) shared polymorphisms are common, indicating both incomplete lineage sorting and gene flow after species divergence. In addition, the detected unidirectional gene flow provides indirect support for the theoretical prediction that introgression should mostly take place from local to invading species. Our results, together with previous studies, underscore complex evolutionary histories of plant diversification in the biodiversity-hotspot QTP.

  • 50. Lind, Marten
    et al.
    Kallman, Thomas
    Chen, Jun
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Ma, Xiao-Fei
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Bousquet, Jean
    Morgante, Michele
    Zaina, Giusi
    Karlsson, Bo
    Elfstrand, Malin
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Stenlid, Jan
    A Picea abies Linkage Map Based on SNP Markers Identifies QTLs for Four Aspects of Resistance to Heterobasidion parviporum Infection2014In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 9, no 7, p. e101049-Article in journal (Refereed)
    Abstract [en]

    A consensus linkage map of Picea abies, an economically important conifer, was constructed based on the segregation of 686 SNP markers in a F-1 progeny population consisting of 247 individuals. The total length of 1889.2 cM covered 96.5% of the estimated genome length and comprised 12 large linkage groups, corresponding to the number of haploid P. abies chromosomes. The sizes of the groups (from 5.9 to 9.9% of the total map length) correlated well with previous estimates of chromosome sizes (from 5.8 to 10.8% of total genome size). Any locus in the genome has a 97% probability to be within 10 cM from a mapped marker, which makes the map suited for QTL mapping. Infecting the progeny trees with the root rot pathogen Heterobasidion parviporum allowed for mapping of four different resistance traits: lesion length at the inoculation site, fungal spread within the sapwood, exclusion of the pathogen from the host after initial infection, and ability to prevent the infection from establishing at all. These four traits were associated with two, four, four and three QTL regions respectively of which none overlapped between the traits. Each QTL explained between 4.6 and 10.1% of the respective traits phenotypic variation. Although the QTL regions contain many more genes than the ones represented by the SNP markers, at least four markers within the confidence intervals originated from genes with known function in conifer defence; a leucoanthocyanidine reductase, which has previously been shown to upregulate during H. parviporum infection, and three intermediates of the lignification process; a hydroxycinnamoyl CoA shikimate/quinate hydroxycinnamoyltransferase, a 4-coumarate CoA ligase, and a R2R3-MYB transcription factor.

12 1 - 50 of 89
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf