Change search
Refine search result
1234567 1 - 50 of 416
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ahmed, Mobyen Uddin
    et al.
    Mälardalen University, Sweden.
    Fotouhi, Hossein
    Mälardalen University, Sweden.
    Köckemann, Uew
    Örebro University, Sweden.
    Lindén, Maria
    Mälardalen University, Sweden.
    Tomasic, Ivan
    Mälardalen University, Sweden.
    Tsiftes, Nicolas
    RISE - Research Institutes of Sweden, ICT, SICS.
    Voigt, Thiemo
    RISE - Research Institutes of Sweden, ICT, SICS.
    Run-Time Assurance for the E-care@home System2018In: Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 225), 2018, p. 107-110Conference paper (Refereed)
    Abstract [en]

    This paper presents the design and implementation of the software for a run-time assurance infrastructure in the E-care@home system. An experimental evaluation is conducted to verify that the run-time assurance infrastructure is functioning correctly, and to enable detecting performance degradation in experimental IoT network deployments within the context of E-care@home. © 2018, ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering.

  • 2.
    Ahmed, Mobyen Uddin
    et al.
    Mälardalen University, Sweden.
    Fotouhi, Hossein
    Mälardalen University, Sweden.
    Köckemann, Uwe
    Örebro University, Sweden.
    Lindén, Maria
    Mälardalen University, Sweden.
    Tomasic, Ivan
    Mälardalen University, Sweden.
    Tsiftes, Nicolas
    RISE - Research Institutes of Sweden, ICT, SICS.
    Voigt, Thiemo
    RISE - Research Institutes of Sweden, ICT, SICS.
    Run-Time Assurance for the E-care@home System2017In: Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, 2017, Vol. 225, p. 107-110Conference paper (Refereed)
  • 3.
    Al Nahas, Beshr
    et al.
    Swedish Institute of Computer Science.
    Duquennoy, Simon
    Swedish Institute of Computer Science.
    Iyer, Venkatraman
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Voigt, Thiemo
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Low-Power Listening Goes Multi-Channel2014In: 2014 IEEE INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING IN SENSOR SYSTEMS (IEEE DCOSS 2014), 2014, p. 2-9Conference paper (Refereed)
    Abstract [en]

    Exploiting multiple radio channels for communicationhas been long known as a practical way to mitigateinterference in wireless settings. In Wireless Sensor Networks,however, multichannel solutions have not reached their fullpotential: the MAC layers included in TinyOS or the ContikiOS for example are mostly single-channel. The literature offersa number of interesting solutions, but experimental results wereoften too few to build confidence. We propose a practical extensionof low-power listening, MiCMAC, that performs channel hopping,operates in a distributed way, and is independent of upper layersof the protocol stack. The above properties make it easy todeploy in a variety of scenarios, without any extra configuration/scheduling/channelselection hassle. We implement our solutionin Contiki and evaluate it in a 97-node testbed while runninga complete, out-of-the-box low-power IPv6 communication stack(UDP/RPL/6LoWPAN). Our experimental results demonstrateincreased resilience to emulated WiFi interference (e.g., data yieldkept above 90% when ContikiMAC drops in the 40% range). In noiseless environments, MiCMAC keeps the overhead low incomparison to ContikiMAC, achieving performance as high as 99% data yield along with sub-percent duty cycle and sub-secondlatency for a 1-minute inter-packet interval data collection.

  • 4.
    Al Nahas, Beshr
    et al.
    RISE, Swedish ICT, SICS.
    Duquennoy, Simon
    RISE, Swedish ICT, SICS, Computer Systems Laboratory.
    Iyer, Venkatraman
    Voigt, Thiemo
    RISE, Swedish ICT, SICS, Computer Systems Laboratory.
    Low-Power Listening Goes Multi-Channel2014Conference paper (Refereed)
    Abstract [en]

    Exploiting multiple radio channels for communication has been long known as a practical way to mitigate interference in wireless settings. In Wireless Sensor Networks, however, multi-channel solutions have not reached their full potential: the MAC layers included in TinyOS or the Contiki OS for example are mostly single-channel. The literature offers a number of interesting solutions, but experimental results were often too few to build confidence. We propose a practical extension of low-power listening, MiCMAC, that performs channel hopping, operates in a distributed way, and is independent of upper layers of the protocol stack. The above properties make it easy to deploy in a variety of scenarios, without any extra configuration/scheduling/channel selection hassle. We implement our solution in Contiki and evaluate it in a 97-node testbed while running a complete, out-of-the-box low-power IPv6 communication stack (UDP/RPL/6LoWPAN). Our experimental results demonstrate increased resilience to emulated WiFi interference (e.g., data yield kept above 90% when ContikiMAC drops in the 40% range). In noiseless environments, MiCMAC keeps the overhead low in comparison to ContikiMAC, achieving performance as high as 99% data yield along with sub-percent duty cycle and sub-second latency for a 1-minute inter-packet interval data collection.

  • 5.
    Ali, Muneeb
    et al.
    RISE, Swedish ICT, SICS.
    Umar, Saif
    Dunkels, Adam
    RISE, Swedish ICT, SICS.
    Voigt, Thiemo
    RISE, Swedish ICT, SICS, Computer Systems Laboratory.
    Römer, Kay
    Langendoen, Koen
    Polastre, Joseph
    Uzmi, Zartash Afzal
    Medium access control issues in sensor networks2006In: Computer communication review, ISSN 0146-4833, E-ISSN 1943-5819, Vol. 36, p. 33-36Article in journal (Refereed)
    Abstract [en]

    Medium access control for wireless sensor networks has been a very active research area for the past couple of years. The sensor networks literature presents an alphabet soup of medium access control protocols with almost all of the works focusing only on energy efficiency. There is much more innovative work to be done at the MAC layer, but current efforts are not addressing the hard unsolved problems. Majority of the works appearing in the literature are "least publishable incremental improvements" over the popular S-MAC [1] protocol. In this paper we present research directions for future medium access research. We identify some open issues and discuss possible solutions.

  • 6.
    Ali, Muneeb
    et al.
    RISE, Swedish ICT, SICS.
    Voigt, Thiemo
    RISE, Swedish ICT, SICS, Computer Systems Laboratory.
    Uzmi, Zartash Afzal
    Mobility Management in Sensor Networks2006Conference paper (Refereed)
  • 7.
    Alirezaie, Marjan
    et al.
    Örebro University, Sweden.
    Renoux, Jennifer
    Örebro University, Sweden.
    Köckemann, Uwe
    Örebro University, Sweden.
    Kristoffersson, Annica
    Örebro University, Sweden.
    Karlsson, Lars
    Örebro University, Sweden.
    Blomqvist, Eva
    RISE - Research Institutes of Sweden, ICT, SICS.
    Tsiftes, Nicolas
    RISE - Research Institutes of Sweden, ICT, SICS.
    Voigt, Thiemo
    RISE - Research Institutes of Sweden, ICT, SICS.
    Loutfi, A
    Örebro University, Sweden.
    An ontology-based context-aware system for smart homes: E-care@home2017In: Sensors, ISSN 1424-8220, E-ISSN 1424-8220, Vol. 17, no 7, article id 1586Article in journal (Refereed)
    Abstract [en]

    Smart home environments have a significant potential to provide for long-term monitoring of users with special needs in order to promote the possibility to age at home. Such environments are typically equipped with a number of heterogeneous sensors that monitor both health and environmental parameters. This paper presents a framework called E-care@home, consisting of an IoT infrastructure, which provides information with an unambiguous, shared meaning across IoT devices, end-users, relatives, health and care professionals and organizations. We focus on integrating measurements gathered from heterogeneous sources by using ontologies in order to enable semantic interpretation of events and context awareness. Activities are deduced using an incremental answer set solver for stream reasoning. The paper demonstrates the proposed framework using an instantiation of a smart environment that is able to perform context recognition based on the activities and the events occurring in the home.

  • 8.
    Alirezaie, Marjan
    et al.
    Örebro University.
    Renoux, Jennifer
    Örebro University.
    Köckemann, Uwe
    Örebro University.
    Kristoffersson, Annica
    Örebro University.
    Karlsson, Lars
    Örebro University.
    Blomqvist, Eva
    SICS East.
    Tsiftes, Nicolas
    SICS.
    Voigt, Thiemo
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Architecture and Computer Communication. SICS.
    Loutfi, Amy
    Örebro University.
    An Ontology-based Context-aware System for Smart Homes: E-care@ home2017In: Sensors, ISSN 1424-8220, E-ISSN 1424-8220, Vol. 17, no 7Article in journal (Refereed)
  • 9.
    Alonso, Juan
    et al.
    RISE, Swedish ICT, SICS.
    Dunkels, Adam
    RISE, Swedish ICT, SICS.
    Voigt, Thiemo
    RISE, Swedish ICT, SICS, Computer Systems Laboratory.
    Bounds on the energy consumption of routings in wireless sensor networks2004Conference paper (Refereed)
  • 10.
    Alonso, Juan
    et al.
    RISE - Research Institutes of Sweden, ICT, SICS.
    Dunkels, Adam
    RISE, Swedish ICT, SICS.
    Voigt, Thiemo
    RISE, Swedish ICT, SICS, Computer Systems Laboratory.
    Bounds on the Energy Consumption of Routings in Wireless Sensor Networks2003Report (Other academic)
    Abstract [en]

    Energy is one of the most important resources in wireless sensor networks. We use an idealized mathematical model to study the impact of routing on energy consumption. Our results are very general and, within the assumptions listed in Section 2, apply to arbitrary topologies, routings and radio energy models. We find bounds on the minimal and maximal energy routings will consume, and use them to bound the lifetime of the network. The bounds are sharp, and can be achieved in many situations of interest. We illustrate the theory with some examples.

  • 11. Alonso, Juan
    et al.
    Dunkels, Adam
    RISE, Swedish ICT, SICS.
    Voigt, Thiemo
    RISE, Swedish ICT, SICS, Computer Systems Laboratory.
    Bounds on the Lifetime of Wireless Sensor Networks2004Report (Other academic)
    Abstract [en]

    Energy is one of the most important resources in wireless sensor networks. We use an idealized mathematical model to study the energy consumption under all possible routings. Our results are very general and, within the assumptions listed in Section 2, apply to arbitrary topologies, routings and radio energy models. We find bounds on the minimal and maximal energy routings will consume, and use them to bound the lifetime of the network. The bounds are sharp, and we show that they are achievable in many situations of interest. We give some examples, and apply the theory to the problem of covering a given square region with the most efficient member of a family of increasingly more dense square-lattice sensor networks. Finally, we use simulations to test these results in a more realistic scenario, where packet loss can occur.

  • 12. Alonso, Juan M.
    et al.
    Nordhamn, Amanda
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Architecture and Computer Communication.
    Olofsson, Simon
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Architecture and Computer Communication.
    Voigt, Thiemo
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Architecture and Computer Communication.
    Bounds on the lifetime of wireless sensor networks with lossy links and directional antennas2016In: Wireless Network Performance Enhancement via Directional Antennas: Models, Protocols, and Systems, Boca Raton, FL: CRC Press, 2016, p. 329-361Chapter in book (Refereed)
  • 13.
    Alonso, Juan M.
    et al.
    Inst. de Cienc. Basicas, ICB Univ. Nac. de Cuyo, Cuyo, Argentina.
    Voigt, Thiemo
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems. SICS Swedish ICT, Kista.
    Varshney, Ambuj
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Bounds on the Lifetime of WSNs2013Conference paper (Refereed)
  • 14. Alonso, Juan
    et al.
    Voigt, Thiemo
    RISE, Swedish ICT, SICS, Computer Systems Laboratory.
    Varshney, Ambuj
    Bounds on the Lifetime of WSNs2013Conference paper (Refereed)
  • 15.
    Aris, Ahmet
    et al.
    Istanbul Technical University.
    Oktuğ, Sema
    Istanbul Technical University.
    Voigt, Thiemo
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Architecture and Computer Communication.
    Security of Internet of Things for a Reliable Internet of Services2018In: Autonomous Control for a Reliable Internet of Services: Methods, Models, Approaches, Techniques, Algorithms, and Tools / [ed] Ivan Ganchev, R. D. van der Mei, Hans van den Berg, Cham , 2018Chapter in book (Refereed)
  • 16.
    Arıs, Ahmet
    et al.
    Istanbul Technical University, Turkey.
    Oktug, Sema F.
    Istanbul Technical University, Turkey.
    Voigt, Thiemo
    RISE - Research Institutes of Sweden, ICT, SICS.
    Security of internet of things for a reliable internet of services2018In: Part of the Lecture Notes in Computer Science book series (LNCS, volume 10768), 2018, p. 337-370Chapter in book (Refereed)
    Abstract [en]

    The Internet of Things (IoT) consists of resource-constrained devices (e.g., sensors and actuators) which form low power and lossy networks to connect to the Internet. With billions of devices deployed in various environments, IoT is one of the main building blocks of future Internet of Services (IoS). Limited power, processing, storage and radio dictate extremely efficient usage of these resources to achieve high reliability and availability in IoS. Denial of Service (DoS) and Distributed DoS (DDoS) attacks aim to misuse the resources and cause interruptions, delays, losses and degrade the offered services in IoT. DoS attacks are clearly threats for availability and reliability of IoT, and thus of IoS. For highly reliable and available IoS, such attacks have to be prevented, detected or mitigated autonomously. In this study, we propose a comprehensive investigation of Internet of Things security for reliable Internet of Services. We review the characteristics of IoT environments, cryptography-based security mechanisms and D/DoS attacks targeting IoT networks. In addition to these, we extensively analyze the intrusion detection and mitigation mechanisms proposed for IoT and evaluate them from various points of view. Lastly, we consider and discuss the open issues yet to be researched for more reliable and available IoT and IoS. © The Author(s) 2018.

  • 17.
    Asan, Noor Badariah
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics. Universiti Teknikal Malaysia Melaka, Melaka Malaysia.
    Carlos, Pérez Penichet
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Architecture and Computer Communication.
    Redzwan, Syaiful
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Noreland, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology.
    Hassan, Emadeldeen
    Umeå University.
    Rydberg, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Blokhuis, Taco
    Maastricht University Medical Center+, Netherlands.
    Voigt, Thiemo
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Architecture and Computer Communication.
    Augustine, Robin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Data Packet Transmission through Fat Tissue for Wireless Intra-Body Networks2017In: IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, ISSN 2469-7249, Vol. 1, no 2, p. 43-51Article in journal (Refereed)
    Abstract [en]

    This work explores high data rate microwave communication through fat tissue in order to address the wide bandwidth requirements of intra-body area networks. We have designed and carried out experiments on an IEEE 802.15.4 based WBAN prototype by measuring the performance of the fat tissue channel in terms of data packet reception with respect to tissue length and power transmission. This paper proposes and demonstrates a high data rate communication channel through fat tissue using phantom and ex-vivo environments. Here, we achieve a data packet reception of approximately 96 % in both environments. The results also show that the received signal strength drops by ~1 dBm per 10 mm in phantom and ~2 dBm per 10 mm in ex-vivo. The phantom and ex-vivo experimentations validated our approach for high data rate communication through fat tissue for intrabody network applications. The proposed method opens up new opportunities for further research in fat channel communication. This study will contribute to the successful development of high bandwidth wireless intra-body networks that support high data rate implanted, ingested, injected, or worn devices

  • 18.
    Asan, Noor Badariah
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics. Faculty of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka.
    Hassan, Emadeldeen
    Perez, Mauricio D.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Joseph, Laya
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Berggren, Martin
    Voigt, Thiemo
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Architecture and Computer Communication.
    Augustine, Robin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Fat-intrabody communication at 5.8 GHz including impacts of dynamics body movementsManuscript (preprint) (Other academic)
  • 19.
    Asan, Noor Badariah
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics. Univ Tekn Malaysia Melaka, Fac Elect & Comp Engn, Durian Tunggal 76100, Malaysia.
    Hassan, Emadeldeen
    Umea Univ, Dept Comp Sci, S-90187 Umea, Sweden;Menoufia Univ, Dept Elect & Elect Commun, Menoufia 32952, Egypt.
    Perez, Mauricio David
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Shah, Syaiful Redzwan Mohd
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Velander, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Blokhuis, Taco J.
    Maastricht Univ, Dept Surg, Med Ctr, NL-6229 HX Maastricht, Netherlands.
    Voigt, Thiemo
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Architecture and Computer Communication. ¨.
    Augustine, Robin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Assessment of Blood Vessel Effect on Fat-Intrabody Communication Using Numerical and Ex-Vivo Models at 2.45 GHZ2019In: IEEE Access, E-ISSN 2169-3536, Vol. 7, p. 89886-89900Article in journal (Refereed)
    Abstract [en]

    The potential offered by the intra-body communication (IBC) over the past few years has resulted in a spike of interest for the topic, specifically for medical applications. Fat-IBC is subsequently a novel alternative technique that utilizes fat tissue as a communication channel. This work aimed to identify such transmission medium and its performance in varying blood-vessel systems at 2.45 GHz, particularly in the context of the IBC and medical applications. It incorporated three-dimensional (3D) electromagnetic simulations and laboratory investigations that implemented models of blood vessels of varying orientations, sizes, and positions. Such investigations were undertaken by using ex-vivo porcine tissues and three blood-vessel system configurations. These configurations represent extreme cases of real-life scenarios that sufficiently elucidated their principal influence on the transmission. The blood-vessel models consisted of ex-vivo muscle tissues and copper rods. The results showed that the blood vessels crossing the channel vertically contributed to 5.1 dB and 17.1 dB signal losses for muscle and copper rods, respectively, which is the worst-case scenario in the context of fat-channel with perturbance. In contrast, blood vessels aligned-longitudinally in the channel have less effect and yielded 4.5 dB and 4.2 dB signal losses for muscle and copper rods, respectively. Meanwhile, the blood vessels crossing the channel horizontally displayed 3.4 dB and 1.9 dB signal losses for muscle and copper rods, respectively, which were the smallest losses among the configurations. The laboratory investigations were in agreement with the simulations. Thus, this work substantiated the fat-IBC signal transmission variability in the context of varying blood vessel configurations.

  • 20.
    Asan, Noor Badariah
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Hassan, Emadeldeen
    Umea Univ, Dept Comp Sci, S-90187 Umea, Sweden;Menoufia Univ, Dept Elect & Elect Commun, Menoufia 32952, Egypt.
    Velander, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Redzwan, Syaiful
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Noreland, Daniel
    Umea Univ, Dept Comp Sci, S-90187 Umea, Sweden.
    Blokhuis, Taco J.
    Maastricht Univ, Med Ctr, Dept Surg, NL-6229 HX Maastricht, Netherlands.
    Wadbro, Eddie
    Umea Univ, Dept Comp Sci, S-90187 Umea, Sweden.
    Berggren, Martin
    Umea Univ, Dept Comp Sci, S-90187 Umea, Sweden.
    Voigt, Thiemo
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Architecture and Computer Communication.
    Augustine, Robin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Characterization of the Fat Channel for Intra-Body Communication at R-Band Frequencies2018In: Sensors, ISSN 1424-8220, E-ISSN 1424-8220, Vol. 18, no 9, article id 2752Article in journal (Refereed)
    Abstract [en]

    In this paper, we investigate the use of fat tissue as a communication channel between in-body, implanted devices at R-band frequencies (1.7-2.6 GHz). The proposed fat channel is based on an anatomical model of the human body. We propose a novel probe that is optimized to efficiently radiate the R-band frequencies into the fat tissue. We use our probe to evaluate the path loss of the fat channel by studying the channel transmission coefficient over the R-band frequencies. We conduct extensive simulation studies and validate our results by experimentation on phantom and ex-vivo porcine tissue, with good agreement between simulations and experiments. We demonstrate a performance comparison between the fat channel and similar waveguide structures. Our characterization of the fat channel reveals propagation path loss of similar to 0.7 dB and similar to 1.9 dB per cm for phantom and ex-vivo porcine tissue, respectively. These results demonstrate that fat tissue can be used as a communication channel for high data rate intra-body networks.

  • 21.
    Asan, Noor Badariah
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Noreland, Daniel
    Department of Computing Science, Umeå University, SE-901 87 Umeå, Sweden.
    Hassan, Emadeldeen
    Department of Computing Science, Umeå University, SE-901 87 Umeå, Sweden; Department of Electronics and Electrical Communications, Menoufia University, 32952 Menouf, Egypt.
    Redzwan, Syaiful
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Rydberg, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Blokhuis, Taco J.
    Department of Surgery, Maastricht University Medical Center+, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands.
    Carlsson, Per-Ola
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Transplantation and regenerative medicine.
    Voigt, Thiemo
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Architecture and Computer Communication.
    Augustine, Robin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Intra-body microwave communication through adipose tissue2017In: Healthcare Technology Letters, E-ISSN 2053-3713, Vol. 4, no 4, p. 115-121Article in journal (Refereed)
  • 22.
    Asan, Noor Badariah
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Redzwan, Syaiful
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Rydberg, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Augustine, Robin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Noreland, Daniel
    Hassan, Emadeldeen
    Voigt, Thiemo
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Architecture and Computer Communication.
    Human fat tissue: A microwave communication channel2017In: Proc. 1st MTT-S International Microwave Bio Conference, IEEE, 2017Conference paper (Refereed)
    Abstract [en]

    In this paper, we present an approach for communication through human body tissue in the R-band frequency range. This study examines the ranges of microwave frequencies suitable for intra-body communication. The human body tissues are characterized with respect to their transmission properties using simulation modeling and phantom measurements. The variations in signal coupling with respect to different tissue thicknesses are studied. The simulation and phantom measurement results show that electromagnetic communication in the fat layer is viable with attenuation of approximately 2 dB per 20 mm. 

  • 23.
    Asan, Noor Badariah
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Velander, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Redzwan, Syaiful
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Augustine, Robin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Hassan, Emadeldeen
    Department of Computing Science, Umeå University, Umeå, Sweden.
    Noreland, Daniel
    Department of Computing Science, Umeå University, Umeå, Sweden.
    Voigt, Thiemo
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Architecture and Computer Communication.
    Blokhuis, Taco J.
    Department of Surgery, Maastricht University Medical Center+, Maastricht, The Netherland.
    Reliability of the fat tissue channel for intra-body microwave communication2017In: 2017 IEEE Conference on Antenna Measurements & Applications (CAMA), IEEE, 2017, p. 310-313Conference paper (Refereed)
    Abstract [en]

    Recently, the human fat tissue has been proposed as a microwave channel for intra-body sensor applications. In this work, we assess how disturbances can prevent reliable microwave propagation through the fat channel. Perturbants of different sizes are considered. The simulation and experimental results show that efficient communication through the fat channel is possible even in the presence of perturbants such as embedded muscle layers and blood vessels. We show that the communication channel is not affected by perturbants that are smaller than 15 mm cube.

  • 24.
    Asan, Noor Badariah
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Velander, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Redzwan, Syaiful
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Perez, Mauricio D.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Hassan, Emadeldeen
    Umeå University, Department of Computing Science, Umeå, Sweden.
    Blokhuis, Taco J.
    Maastricht University Medical Center, Department of Surgery, Maastricht, The Netherland.
    Voigt, Thiemo
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Architecture and Computer Communication.
    Augustine, Robin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Effect of thickness inhomogeneity in fat tissue on in-body microwave propagation2018In: 2018 IEEE International Microwave Biomedical Conference (IMBioC), Philadelphia, USA: IEEE, 2018, p. 136-138Conference paper (Refereed)
    Abstract [en]

    In recent studies, it has been found that fat tissue can be used as a microwave communication channel. In this article, the effect of thickness inhomogeneities in fat tissues on the performance of in-body microwave communication at 2.45 GHz is investigated using phantom models. We considered two models namely concave and convex geometrical fat distribution to account for the thickness inhomogeneities. The thickness of the fat tissue is varied from 5 mm to 45 mm and the Gap between the transmitter/receiver and the starting and ending of concavity/convexity is varied from 0 mm to 25 mm for a length of 100 mm to study the behavior in the microwave propagation. The phantoms of different geometries, concave and convex, are used in this work to validate the numerical studies. It was noticed that the convex model exhibited higher signal coupling by an amount of 1 dB (simulation) and 2 dB (measurement) compared to the concave model. From the study, it was observed that the signal transmission improves up to 30 mm thick fat and reaches a plateau when the thickness is increased further.

  • 25.
    Asan, Noor Badariah
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Velander, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Redzwan, Syaiful
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Perez, Mauricio D.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Hassan, Emadeldeen
    Umea Univ, Dept Comp Sci, Umea, Sweden;Menoufia Univ, Dept Elect & Elect Commun, Menoufia, Egypt.
    Blokhuis, Taco J.
    Maastricht Univ, Dept Surg, Med Ctr, Maastricht, Netherlands.
    Voigt, Thiemo
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Augustine, Robin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics. Uppsala Univ, Dept Engn Sci, Microwave Grp, Uppsala, Sweden.
    Effect of Thickness Inhomogeneity in Fat Tissue on In-Body Microwave Propagation2018In: PROCEEDINGS OF THE 2018 IEEE/MTT-S INTERNATIONAL MICROWAVE BIOMEDICAL CONFERENCE (IMBIOC), IEEE , 2018, p. 136-138Conference paper (Refereed)
    Abstract [en]

    In recent studies, it has been found that fat tissue can be used as a microwave communication channel. In this article, the effect of thickness inhomogeneities in fat tissues on the performance of in-body microwave communication at 2.45 GHz is investigated using phantom models. We considered two models namely concave and convex geometrical fat distribution to account for the thickness inhomogeneities. The thickness of the fat tissue is varied from 5 mm to 45 mm and the Gap between the transmitter/receiver and the starting and ending of concavity/convexity is varied from 0 mm to 25 mm for a length of 100 mm to study the behavior in the microwave propagation. The phantoms of different geometries, concave and convex, are used in this work to validate the numerical studies. It was noticed that the convex model exhibited higher signal coupling by an amount of 1 dB (simulation) and 2 dB (measurement) compared to the concave model. From the study, it was observed that the signal transmission improves up to 30 mm thick fat and reaches a plateau when the thickness is increased further.

  • 26. Aschenbruck, Nils
    et al.
    Ernst, Raphael
    Schwamborn, Matthias
    Österlind, Fredrik
    SICS.
    Voigt, Thiemo
    SICS.
    Adding Mobility to Wireless Sensor Network Simulations: Poster Abstract2010Conference paper (Refereed)
  • 27. Aschenbruck, Nils
    et al.
    Ernst, Raphael
    Schwamborn, Matthias
    Österlind, Fredrik
    RISE, Swedish ICT, SICS.
    Voigt, Thiemo
    RISE, Swedish ICT, SICS, Computer Systems Laboratory.
    Poster Abstract: Adding Mobility to Wireless Sensor Network Simulations2010Conference paper (Refereed)
  • 28. Baccour, Nouha
    et al.
    Koubaa, Anis
    Noda, Claro
    Fotouhi, Hossein
    Alves, Mario
    Youssef, Hossein
    Zuniga, Marco
    Boano, Carlo Alberto
    Römer, Kay
    Puccinelli, Daniele
    Mottola, Luca
    RISE, Swedish ICT, SICS, Computer Systems Laboratory.
    Voigt, Thiemo
    RISE, Swedish ICT, SICS, Computer Systems Laboratory.
    Radio Link Quality Estimation in Low-Power Wireless Networks2013 (ed. 12)Book (Refereed)
  • 29. Badariah Asan, Noor
    et al.
    Hassan, Emadeldeen
    Umeå University, Faculty of Science and Technology, Department of Computing Science. Department of Electronics and Electrical Communications, Menoufia University, Menouf, Egypt.
    Velander, Jacob
    Redzwan Mohd Shah, Syaiful
    Noreland, Daniel
    Umeå University, Faculty of Science and Technology, Department of Computing Science.
    Blokhuis, Taco J.
    Wadbro, Eddie
    Umeå University, Faculty of Science and Technology, Department of Computing Science.
    Berggren, Martin
    Umeå University, Faculty of Science and Technology, Department of Computing Science.
    Voigt, Thiemo
    Augustine, Robin
    Characterization of the Fat Channel for Intra-Body Communication at R-Band Frequencies2018In: Sensors, ISSN 1424-8220, E-ISSN 1424-8220, Vol. 18, no 9, article id 2752Article in journal (Refereed)
    Abstract [en]

    In this paper, we investigate the use of fat tissue as a communication channel between in-body, implanted devices at R-band frequencies (1.7–2.6 GHz). The proposed fat channel is based on an anatomical model of the human body. We propose a novel probe that is optimized to efficiently radiate the R-band frequencies into the fat tissue. We use our probe to evaluate the path loss of the fat channel by studying the channel transmission coefficient over the R-band frequencies. We conduct extensive simulation studies and validate our results by experimentation on phantom and ex-vivo porcine tissue, with good agreement between simulations and experiments. We demonstrate a performance comparison between the fat channel and similar waveguide structures. Our characterization of the fat channel reveals propagation path loss of ∼0.7 dB and ∼1.9 dB per cm for phantom and ex-vivo porcine tissue, respectively. These results demonstrate that fat tissue can be used as a communication channel for high data rate intra-body networks.

  • 30. Bagci, Ibrahim Ethem
    et al.
    Pourmirza, Mohammad Reza
    Raza, Shahid
    RISE, Swedish ICT, SICS, Security Lab.
    Roedig, Utz
    Voigt, Thiemo
    RISE, Swedish ICT, SICS, Computer Systems Laboratory.
    Codo: Confidential Data Storage for Wireless Sensor Networkss2012Conference paper (Refereed)
    Abstract [en]

    Many Wireless Sensor Networks (WSNs) are used to collect and process confidential information. Confidentiality must be ensured at all times and, for example, solutions for confidential communication, processing or storage are required. To date, the research community has addressed mainly the issue of confidential communication. Efficient solutions for cryptographically secured communication and associated key exchange in WSNs exist. Many WSN applications, however, rely heavily on available on-node storage space and therefore it is essential to ensure the confidentiality of stored data as well. In this paper we present Codo, a confidential data storage solution which balances platform, performance and security requirements. We implement Codo for the Contiki WSN operating system and evaluate its performance.

  • 31. Bagci, Ibrahim Ethem
    et al.
    Raza, Shahid
    RISE, Swedish ICT, SICS, Security Lab.
    Chung, Tony
    Roedig, Utz
    Voigt, Thiemo
    RISE, Swedish ICT, SICS, Computer Systems Laboratory.
    Combined Secure Storage and Communication for the Internet of Things2013Conference paper (Refereed)
  • 32.
    Bagci, Ibrahim Ethem
    et al.
    Univ Lancaster, Sch Comp & Commun, Lancaster, England.
    Raza, Shahid
    SICS Swedish ICT, Kista, Sweden.
    Roedig, Utz
    Univ Lancaster, Sch Comp & Commun, Lancaster, England.
    Voigt, Thiemo
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Architecture and Computer Communication. SICS Swedish ICT, Kista, Sweden.
    Fusion: Coalesced Confidential Storage and Communication Framework for the IoT2016In: Security and Communication Networks, ISSN 1939-0114, E-ISSN 1939-0122, Vol. 9, no 15, p. 2656-2673Article in journal (Refereed)
    Abstract [en]

    Comprehensive security mechanisms are required for a successful implementation of the Internet of Things (IoT). Existing solutions focus mainly on securing the communication links between Internet hosts and IoT devices. However, as most IoT devices nowadays provide vast amounts of flash storage space, it is as well required to consider storage security within a comprehensive security framework. Instead of developing independent security solutions for storage and communication, we propose Fusion, a framework that provides coalesced confidential storage and communication. Fusion uses existing secure communication protocols for the IoT such as Internet protocol security (IPsec) and datagram transport layer security (DTLS) and re-uses the defined communication security mechanisms within the storage component. Thus, trusted mechanisms developed for communication security are extended into the storage space. Notably, this mechanism allows us to transmit requested data directly from the file system without decrypting read data blocks and then re-encrypting these for transmission. Thus, Fusion provides benefits in terms of processing speed and energy efficiency, which are important aspects for resource-constrained IoT devices. This paper describes the Fusion architecture and its instantiation for IPsec-based and DTLS-based systems. We describe Fusion's implementation and evaluate its storage overheads, communication performance, and energy consumption.

  • 33.
    Bagci, Ibrahim Ethem
    et al.
    Lancaster University, UK.
    Raza, Shahid
    RISE, Swedish ICT, SICS, Security Lab.
    Roedig, Utz
    Lancaster University, UK.
    Voigt, Thiemo
    RISE, Swedish ICT, SICS, Computer Systems Laboratory. Uppsala University, Sweden.
    Fusion: Coalesced Confidential Storage and Communication Framework for the IoT2015In: Security and Communication Networks, ISSN 1939-0114, E-ISSN 1939-0122, Vol. 9, no 15, p. 2656-2673Article in journal (Refereed)
    Abstract [en]

    Comprehensive security mechanisms are required for a successful implementation of the Internet of Things (IoT). Existing solutions focus mainly on securing the communication links between Internet hosts and IoT devices. However, as most IoT devices nowadays provide vast amounts of flash storage space it is as well required to consider storage security within a comprehensive security framework. Instead of developing independent security solutions for storage and communication we propose Fusion, a framework which provides coalesced confidential storage and communication. Fusion uses existing secure communication protocols for the IoT such as IPsec and DTLS and re-uses the defined communication security mechanisms within the storage component. Thus, trusted mechanisms developed for communication security are extended into the storage space. Notably, this mechanism allows us to transmit requested data directly from the file system without decrypting read data blocks and then re-encrypting these for transmission. Thus, Fusion provides benefits in terms of processing speed and energy efficiency which are important aspects for resource constrained IoT devices. The paper describes the Fusion architecture and its instantiation for IPsec and DTLS based systems. We describe Fusion’s implementation and evaluate its storage overheads, communication performance and energy consumption

  • 34.
    Bagci, Ibrahim
    et al.
    Lancaster University.
    Raza, Shahid
    SICS.
    Chung, Antony
    Univ. of Lancaster.
    Roedig, Utz
    Univ. of Lancaster.
    Voigt, Thiemo
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Combined Secure Storage and Communication for the Internet of Things2013In: IEEE International Conference on Sensing, Communication and Networking (IEEE SECON), 2013Conference paper (Refereed)
  • 35.
    Bavier, Andy
    et al.
    Princeton University.
    Voigt, Thiemo
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Wawrzoniak, Mike
    Princeton University.
    Peterson, Larry
    Princeton University.
    Gunningberg, Per
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    SILK: Scout Paths in the Linux Kernel2001Report (Other academic)
  • 36. Behboodi, Arash
    et al.
    Crombez, Pieter
    de las Heras, Jose Javier
    De Poorter, Eli
    Handziski, Vlado
    Lemic, Filip
    Moerman, Ingrid
    Van Haute, Tom
    Verhoeve, Piet
    Voigt, Thiemo
    RISE, Swedish ICT, SICS, Computer Systems Laboratory.
    Wirström, Niklas
    RISE, Swedish ICT, SICS.
    Wolisz, Adam
    Evaluation of RF-based Indoor Localization Solutions for the Future Internet2013Conference paper (Refereed)
  • 37.
    Behboodi, Arash
    et al.
    Technical University of Berlin, Germany.
    Wirström, NIclas
    RISE, Swedish ICT, SICS.
    Lemic, Filip
    Technical University of Berlin, Germany.
    Voigt, Thiemo
    RISE, Swedish ICT, SICS, Computer Systems Laboratory.
    Wolisz, Adam
    RISE, Swedish ICT, SICS.
    Interference Effect on Localization Solutions: Signal Feature Perspective2015In: 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), 2015, 10, article id 7145885Conference paper (Refereed)
    Abstract [en]

    We study the effect of interference on localization algorithms through the study of the interference effect on signal features that are used for localization. Particularly, the effect of interference on packet-based Received Signal Strength Indicator (RSSI), reported by IEEE 802.11 and IEEE 802.15.4 technologies, and on Time of Flight (ToF), reported by IEEE 802.15.4 technology, is studied using both theoretical discussions and experimental verifications. As for the RSSI values, using an information theoretic formulation, we distinguish three operational regimes and we show that the RSSI values, in dBm, remain unchanged in the noise-limited regime, increase almost linearly with interference power in dBm in the interference-limited regime and cannot be obtained due to packet loss in the collision regime. The maximum observable RSSI variation is dependent on the transmission rate and Signal to Noise Ratio (SNR). We also show that ToF is, interestingly, decreased under interference which is caused in the symbol synchronization procedure at the receiver. After providing the experimental results, we discuss how the localization algorithms are affected by interference.

  • 38. Boano, Carlo Alberto
    et al.
    Brown, James
    He, Zhitao
    RISE, Swedish ICT, SICS, Computer Systems Laboratory.
    Roedig, Utz
    Voigt, Thiemo
    RISE, Swedish ICT, SICS, Computer Systems Laboratory.
    Low-power radio communication in industrial outdoor deployments: the impact of weather conditions and ATEX-compliance2009Conference paper (Refereed)
  • 39. Boano, Carlo Alberto
    et al.
    Brown, James
    He, Zhitao
    SICS.
    Utz, Roedig
    Voigt, Thiemo
    SICS.
    Low-power radio communication in industrial outdoor deployments: the impact of weather conditions and ATEX-compliance2009Conference paper (Refereed)
  • 40. Boano, Carlo Alberto
    et al.
    He, Zhitao
    SICS.
    Li, Yafei
    Voigt, Thiemo
    SICS.
    Zuniga, Marco
    Willig, Andreas
    Controllable radio interference for experimental and testing purposes in wireless sensor networks2009Conference paper (Refereed)
  • 41. Boano, Carlo Alberto
    et al.
    He, Zhitao
    RISE, Swedish ICT, SICS, Computer Systems Laboratory.
    Li, Yafei
    Voigt, Thiemo
    RISE, Swedish ICT, SICS, Computer Systems Laboratory.
    Zuniga, Marco
    Willig, Andreas
    Controllable radio interference for experimental and testing purposes in wireless sensor networks2009Conference paper (Refereed)
  • 42. Boano, Carlo Alberto
    et al.
    Römer, Kay
    He, Zhitao
    SICS.
    Voigt, Thiemo
    SICS.
    Zuniga, Marco
    Willig, Andreas
    Demo Abstract: Generation of Controllable Radio Interference for Protocol Testing in Wireless Sensor Networks2009Conference paper (Refereed)
  • 43. Boano, Carlo Alberto
    et al.
    Römer, Kay
    He, Zhitao
    RISE, Swedish ICT, SICS, Computer Systems Laboratory.
    Voigt, Thiemo
    RISE, Swedish ICT, SICS, Computer Systems Laboratory.
    Zuniga, Marco
    Willig, Andreas
    Demo Abstract: Generation of Controllable Radio Interference for Protocol Testing in Wireless Sensor Networks2009Conference paper (Refereed)
  • 44. Boano, Carlo Alberto
    et al.
    Römer, Kay
    Voigt, Thiemo
    RISE, Swedish ICT, SICS, Computer Systems Laboratory.
    Zuniga, Marco
    Poster Abstract: Agreement for Wireless Sensor Networks under External Interference2012Conference paper (Refereed)
  • 45. Boano, Carlo Alberto
    et al.
    Römer, Kay
    Österlind, Fredrik
    RISE, Swedish ICT, SICS.
    Voigt, Thiemo
    RISE, Swedish ICT, SICS, Computer Systems Laboratory.
    Demo Abstract: Realistic Simulation of Radio Interference in COOJA2011Conference paper (Refereed)
  • 46.
    Boano, Carlo Alberto
    et al.
    RISE, Swedish ICT, SICS.
    Tsiftes, Nicolas
    RISE, Swedish ICT, SICS, Computer Systems Laboratory.
    Voigt, Thiemo
    RISE, Swedish ICT, SICS, Computer Systems Laboratory.
    Brown, James
    Roedig, Utz
    The Impact of Temperature on Outdoor Industrial Sensornet Applications2010In: IEEE Transactions on Industrial Informatics, ISSN 1551-3203, E-ISSN 1941-0050, Vol. 6, p. 451-459Article in journal (Refereed)
  • 47. Boano, Carlo Alberto
    et al.
    Tsiftes, Nicolas
    SICS.
    Voigt, Thiemo
    SICS.
    Brown, James
    Utz, Roedig
    The Impact of Temperature on Outdoor Industrial Sensornet Applications2010In: IEEE Transactions on Industrial Informatics, ISSN 1551-3203, Vol. 6, no 3, p. 451-459Article in journal (Refereed)
  • 48. Boano, Carlo Alberto
    et al.
    Voigt, Thiemo
    RISE, Swedish ICT, SICS, Computer Systems Laboratory.
    Dunkels, Adam
    RISE, Swedish ICT, SICS.
    Österlind, Fredrik
    RISE, Swedish ICT, SICS.
    Tsiftes, Nicolas
    RISE, Swedish ICT, SICS, Computer Systems Laboratory.
    Mottola, Luca
    RISE, Swedish ICT, SICS, Computer Systems Laboratory.
    Suarez, Pablo
    Poster Abstract: Exploiting the LQI Variance for Rapid Channel Quality Assessment2009Conference paper (Refereed)
  • 49. Boano, Carlo Alberto
    et al.
    Voigt, Thiemo
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Noda, Claro
    Römer, Kay
    Zuniga, Marco
    JamLab: Augmenting sensornet testbeds with realistic and controlled interference generation2011In: IPSN, 2011, p. 175-186Conference paper (Refereed)
  • 50. Boano, Carlo Alberto
    et al.
    Voigt, Thiemo
    RISE, Swedish ICT, SICS, Computer Systems Laboratory.
    Noda, Claro
    Römer, Kay
    Zuniga, Marco
    JamLab: Augmenting Sensornet Testbeds with Realistic and Controlled Interference Generation2011Conference paper (Refereed)
1234567 1 - 50 of 416
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf