Hydropower units are known to be comparatively insensitive to subsynchronous power oscillations. During a startup test of an electrical island in the Nordic power system, a series capacitor tripped due to a subsynchronous oscillation within the normal frequency range of hydropower unit torsional modes. Since no thermal units were connected, it is motivated to question the traditional view. In this paper, the small-signal and transient torsional mode stability of hydropower units is assessed through time-domain simulations. The model is based on the first IEEE benchmark model for subsynchronous resonance which has been tuned to fit one of the blackstart test system units for which detailed measurements are available. The stability conditions are investigated for several load conditions and machine configurations. It is found that the damping in the startup test system is sufficient to prevent growing oscillations. A fault however could expose the machines to high transient torques.
Standstill Frequency Response (SSFR) test data from a salient-pole synchronous machine with reconfigurable damper winding is presented. In addition to the regular measurements, the damper bar currents are measured and used to obtain the stator-to-damper transfer functions. The test is performed three times with physically different damper winding configurations. An extension to the standard SSFR test analysis scheme is suggested where the stator-to-damper transfer functions are included. The validity of the identified models is substantiated by comparison of the simulated and measured machine response to a drive torque step disturbance. It is found that the damper winding measurements can be incorporated in the analysis scheme to isolate the effect of the damper circuits. However, for a machine of the type studied, also the standard SSFR test produce yields models that are accurate enough for power system studies.
The use of cable windings in generators and transformers has a physical background which is hard to neglect. The work done by Maxwell, Poynting and Slepian combined with powerful finite element solver of today allows for visualization of electric and magnetic fields in different geometries. The electromagnetic fields and power flows for generator stator cables are in this article associated with Poynting's theorem. Geometrical design and insulation material properties are then linked to Poynting's theory showing that circular stator cables enable higher voltages while maintaining a high power flow. Today several high voltage generators and two transformers have been built and are currently in operation. This paper discusses the application of the Poynting Theorem to cable wound generators.
Fault detection of electrical machines can avoid unplanned outage of the electricity generation at a power plant. Research related to a different type of faults in the synchronous generator, the broken damper bar (BDB) fault attracts less attention due to the low statistical population. However, a comprehensive condition monitoring system requires a method to diagnose this few in number faults also. Detection of BDB fault is difficult since damper bars are active only during a transient period, which could be start-up intervals or as a reaction to power system dynamics. In this paper, the BDB fault is detected during the machine start-up. The Radius of Gyration (RG) was introduced using a time series data mining (TSDM) approach that was applied to induced electromotive force of the rotor field winding due to BDB fault. Location and number of BDBs effect on the nominated feature are also studied.
In this paper, a method to control the harmonic content of the magnetic flux density in the airgap of a synchronous machine is presented. Voltage harmonics in one phase as well as the exciting magnetic forces can be affected. Switched power electronics were used to provide the field current to a synchronous machine, the control added specific current harmonics to the DC field current in order to minimize either voltage harmonics or magnetic forces. The method is verified and compared with simulations and experiments on an existing electrical machine.
A magnetization system with active compensation of unbalanced magnetic pull for synchronous machines with rotating exciters is demonstrated. The system used switched power electronics and a digital control system to control the currents in four rotor pole groups, each consisting of 3 poles. It was mounted on the shaft of a synchronous machine, providing an interface between a permanent magnet outer-pole brushless exciter and the segmented field winding. Measurements of magnetic flux density on each pole face and current control made it possible to control the airgap magnetic flux density to balance the machine magnetically, thus removing flux density space harmonics in the airgap and also the unbalanced magnetic pull. The construction of the system is presented along with results from experiments and simulations. Tests were performed with the stator winding both in series and with two parallel circuits. Approximately 80% reduction of static forces and 60% reduction of dynamic forces between the stator and rotor were observed when the system was running.
The article proposes a model of a salient pole synchronous machine field winding based on a single transmission line model. An experimental method to derive the parameters is also presented and validated. Finally, the measured voltage distribution in the winding is compared to the model voltage distribution and the results match, demonstrating the model capabilities. The model describes the intrinsic resonance phenomena and accurately determines the voltage amplification factor.
Herein, a set of experimental procedures is presented for determining the main electrical distributed parameters of the field winding in salient pole synchronous machines. It applies to the electrical characterisation of iron-core power inductors and transformer windings as well, in a range of frequency useful for power electronics applications. A first estimation of the parameters is obtained by forcing the winding into resonance with capacitors of known capacitance. The obtained estimates are then refined through an iterative process, which makes use of the winding natural frequencies. The presented procedures are applied step-by-step to the field winding of a 60-kVA salient pole synchronous generator with solid poles. The distributed parameters model, featured using the outlined procedures, accurately reproduces the winding voltage distribution in a large range of frequency. Finally, it is explored how the interaction between armature and rotor influences the field winding parameters, pointing to the differences of measuring them with the rotor inside or outside the machine bore.
This work investigates the establishment of steady-state eddy currents in solid and laminated salient poles and rotor rim of synchronous machines due to a periodic excitation voltage. It shows that the presence of eddy currents in the rotor magnetic circuit has the double effect of increasing the excitation winding AC-resistance and decreasing its magnetizing AC-inductance. According to that a simple analytical model is presented in here which allows a rapid rough estimation of the excitation winding AC-resistance when little information is available about the machine geometry and its electric/magnetic materials properties. The model is then verified by reproducing in frequency the excitation winding AC-resistance and the related power loss measured in two synchronous generators. Finally, the limits of reliability and applicability of the model are discussed. The model has implications for periodic field winding current control and voltage regulation in synchronous machines.
Salient pole wound field synchronous motors find many industrial applications thanks to their favorable characteristics: reactive power regulation, stiff mechanical characteristic and overall outstanding efficiency. Nevertheless, their competitiveness towards the induction motors, especially for medium and small power sizes, depends crucially on their capability to be asynchronously started as well. Regrettably, the asynchronous run-up of a synchronous motor can be sometimes very problematic because of thermal issues, torsional vibrations and grid voltage disturbances. This paper presents an alternative method of starting salient pole wound field synchronous machines by activating the field winding in a special manner, which makes it possible to mitigate the three problems at once. The suggested method is validated through a 2D finite elements simulation and by starting a 60 kVA prototype generator. The requirements for the application of the proposed run-up strategy are critically discussed together with related pros and cons.
The purpose of this paper is to carry out an alternative to the present transient models for field wound synchronous machines, which is able to take into account the nonlinearity of the magnetic materials as well as the cross-magnetization. After presenting the principal model structures according to the state variables, a model based on two lookup tables for the magnetizing flux linkages is introduced and built step by step. The resulting signal flowchart shows an algebraic loop within the model, where the main flux linkage rapidly converges to its instantaneous value by simple iteration. The proof of this convergence is given for both saturated and unsaturated machine. Even though the proposed model uses the total linkage flux as state variable, as many alternative models do, it does not require the inversion of the current to flux linkage function (i.e., of lookup tables). This can spare a heavy computational task, especially with very large lookup tables. In the proposed model, the computational effort in the worst case scenario is reduced to few iterations (<10). Finally, the nonlinear behavior of the model is verified in four different transient scenarios by comparing its outcomes with those of a linear model for the same test machine.
An electrical machine (1) comprises a stator (20) having armature windings (24), a rotor (10) having salient poles (12) and being rotably arranged with respect to the stator (20), and a rotor excitation system (30). The rotor excitation system (30) has a rotor winding arrangement (14), a rotor power supply (34) for exciting the salient poles (12), and a rotor driving unit (32) configured to control currents provided to the rotor winding arrangement (14). In a first operation mode, the rotor excitation system (30) is sconfigured for providing a rotating magnetic field by supplying alternating currents to the rotor winding arrangement (14), while the armature windings (24) being short-circuited or closed on external resistors. A method for operating an electrical machine is also disclosed.
Many static and rotating electric energy converters make use of inductive coils as filters, reactive loads or exciters, where a sudden variation of the magnetizing current can produce severe overvoltage with potential subsequent insulation damage. In some applications the overvoltage is the result of a superposition of travelling voltage waves in a supplying line. Traditional tools for studying such phenomena are based on ordinary differential equations that can heavily handle variable parameters, especially if they change according to the rapidity of the observed overvoltage. In this paper the transient voltage distribution in the excitation winding of a salient pole synchronous generator is simulated by solving the problem entirely in the frequency domain, i.e., without any use of the traditional ordinary differential equations solvers. Thismakesit possible to tune the parameters of a simplified electric model to the frequency response of the studied winding. It is shown that for highly inductive windings a single transmission line model with frequency dependent parameters can reproduce voltage transients very accurately, in a broad interval of frequency, relevant for power electronics and electromagnetic compatibility applications. Furthermore, the paper presents the experimental setup which has been needed for generating the fast varying voltage edges.
Two approaches for delivery of inertia-like grid services are described and compared. Voltages and currents are measured and logged from two synchronous generators during large grid disturbances. The data is used in Matlab Simulinkfor comparison and evaluation of control strategies. A novel enhanced inertia control strategy is proposed and compared with two synthetic inertia controllers utilizing frequency derivative estimators, a frequency locked loop and a Savitzgy Golay finite impulse response filter. Both inertia delivery approaches naturally rely on that the properties of the surrounding grid are such that the frequency variations due to power imbalances are large compared to other variations. Furthermore, the synthetic inertia controllers face the usual software signal filtering problems if the signal-to-noise ratio is low. The other approach, to enhance a physical Inertialresponse from a real machine, is a way to avoid such filtering challenges. However, the physical properties of the machine, mainly rotor angle oscillations, might call for software filtering anyway, adding phase shift to the otherwise low latency shown to be achievable
The frequency in the electrical grid is, on the short time-scale, stabilized by the total rotational mass given predominantly by synchronously connected devices. These devices include the generators themselves and, on slightly longer timescales, the control system acting on turbine governors. As the inverter-connected technologies increase their share of total power, the total inertia in the grid is significantly reduced. One way to stabilize the frequency and reduce low frequency oscillations is to add synthetic inertia provided by a small energy, high power, storage devices combined with a fast control system. This paper describes a possible hardware topology for linear synthetic inertia. It uses an inverter coupled to a local energy storage unit comprised of supercapacitors. The paper presents the implementation and some selected experimental results. The system response is fast enough on a small test grid to act as inertia.
The installation of intermittent renewable energy sources (RESs) are now fast increasing, reducing fossil fuel use. Due to the fact that RESs are typically grid-connected to the power-system via grid following fast-response voltage source converters, the amount of mechanical inertia synchronised in the power system is decreasing. As a result, the power system will be more sensitive to load and generation variations, causing larger frequency fluctuations which, in turn, could result in undesirable load-shedding, or large-scale blackouts. This paper presents a performance evaluation of a concept of emulating virtual inertia via power-electronics and a energy storage unit in terms of a supercapacitor connected to the DC-bus. Simulation and experimental results are presented to validate the proposed combination of frequency estimation and frequency derivative estimation. The paper shows the feasibility of using virtual inertia and how it could be implemented.
A full scale hybrid energy storage system consistingof two 14.5 MVA bulb hydro turbines and a 1.1 MWh lithium-ion battery energy storage system was designed, built andcommissioned in the North of Sweden. A hybrid power controllerwas designed and tested were grid frequency disturbances weresimulated in the programmable logic controllers and voltagesand currents were logged from each generating unit. Responsetimes and rise times were measured for each generating unit. Itwas shown that the battery energy storage has the capability ofchanging output power fast to meet new grid services require-ments such as fast frequency response. The hybrid energy storagecontroller was shown to be able to divide the frequency of thegrid frequency disturbances into slow and fast changes for eachgenerating unit and letting the battery energy storage handle fastpower responses and the bulb hydro turbines the slow and longterm power responses to fulfil frequency control requireme
The paper reviews recent research and development activities in the field of hydropower technology. It covers emerging and advanced technologies to mitigate flow instabilities (active and passive approach) as well as emerging magneto-rheological control techniques. Recent research findings on flow instabilities are also presented, especially concerning fluid-structure interaction and transient operating conditions. As a great number of the existing large-scale hydroelectric facilities were constructed decades ago using technologies that are now considered obsolete, technologies to achieve the digitalisation of hydropower are also analysed. Advances in the electro-mechanical components and generator design are presented; their potential role to adapt hydropower to the current operating conditions is also highlighted. The text explores current efforts to advance hydropower operation, mainly in terms of European projects. It provides a detailed overview of the recent efforts to increase the operational range of hydraulic turbines in order to reach exceptional levels of flexibility, a topic of several recent research projects. Variable speed hydropower generation and its application in pumped storage power plants are presented in detail. Moreover, revolutionary concepts for hydroelectric energy storage are also presented with the analysis focusing on underwater hydro storage and hydropower's hybridisation with fast energy storage systems. Efforts to minimise hydropower's environmental footprint are also presented via the utilisation of small-scale and fish-friendly installations.
Recent technological developments have caused a renewed interest in the brushless excitation system. With the application of wireless communication, the conventional diode bridge has been replaced with fully controllable thyristors on the shaft. It offers the same dynamic performance as the conventional static excitation system. The thyristor bridge of the conventional three-phase exciter needs to be controlled with a high firing angle in normal operation in order to fulfill a requirement of both a high ceiling voltage and a high ceiling current. A high firing angle causes high torque ripple to be absorbed by the exciter stator and a low power factor results in a low utilization of the designed exciter. In this contribution, we present a strategy that solves this problem by looking into combinations of thyristor configurations of a double-star six-phase connection of the exciter. Experimental results are used to verify the circuit models implemented for this investigation. A hybrid-mode 12-pulse thyristor bridge configuration seems to be a good solution for implementations in commercial apparatus. An additional switch interconnects two separate thyristor bridges from parallel- to series connection at the rectifier output, and utilizes the advantages of both topologies.
The upcoming modifications to the criteria for providing Frequency Containment Reserves (FCR) in the Nordic synchronous area present severe challenges for some hydropower units. By quantifying the difference between the required FCR power response and the actual response provided by the unit, an additional power response from an energy storage system can be specified to augment the hydropower unit, thus securing its participation in FCR in the future. A practical method to control the storage system, by applying a band-pass filter on the negative frequency deviation, is presented in this paper. The method is verified using a set of field measurements from Swedish hydropower units currently providing FCR. It is found that all tested units are able to satisfy the upcoming criteria with the specified storage systems. The optimality of the method is discussed by comparing the storage system power and energy ratings to the theoretical minimum. Obtained power ratings between 3% and 24% of the FCR power, combined with a short storage system duration of up to 2.5 minutes, indicate that the method presents a possible application for high-power and low-energy storage technologies.
Four standard test procedures-the three phase short-circuit test, the field decrement test, the slip test, and the applied voltage test-for estimation of synchronous generator parameters have been implemented in a time-stepping finite-element software. In this paper, the main features of the implementation and the post-processing of data are described. The validity of the application is demonstrated by comparison with test results from the commissioning of a large hydropower generator. The method is shown to be effective in estimating most parameters. Better representation of the exciter and the interpole connections of the damper circuit is believed to enhance the compliance even further.
This paper compares the transient response of a finite element salient pole synchronous generator model connected to an infinite network bus to that of a system model based on an equivalent circuit representation of the machine. The characteristics and operating conditions of the two models are made equal as far as possible by thoroughgoing initiation and by using the finite element model for estimation of the circuit model parameters. It is found that the circuit model underestimates the stiffness and damping properties of the machine in comparison with the electromagnetic model, which largely is believed to be attributable to inadequate representation of the rotor circuits. The results raise questions regarding some common applications of equivalent circuit models.
This paper addresses effects of automatic excitation control in time-stepped finite element analysis of hydroelectric generators. A simple method to incorporate exciter and automatic voltage regulator models in a finite element software is presented and tested on a small hydropower generator connected to a three-phase power system equivalent. Three simulations are performed to demonstrate the impact of the controller and to compare the field voltage and the field current as two possible excitation source variables. It is shown that inclusion of the excitation system greatly enhances the damping of rotor-angle oscillations and that the field voltage should be chosen as source variable to include the transient field winding inductance in the field problem.
The Poynting vector has been used to gain an understanding of energy flow in rotating electrical machines. Previous studies of energy flow in rotating electrical machines have used the Poynting vector in crude formulas to obtain a qualitative picture. In this paper, we present a study based on numerically calculated fields and quantities entering the Poynting vector. We obtained a detailed understanding of how energy flows in the air gap and into the winding of a synchronous generator. In particular, we found that, at no-load, energy is flowing both to and from the stator as a result of cogging, while for normal load cases the energy flow is unidirectional.
Synchronous motors are hard to line start due to torque pulsations at zero rotor speed and low starting torque when started using induced current in a damper squirrel cage. By inverting the rotor pole polarity at appropriate times it is possible to, in principle, achieve uniform torque, albeit pulsating with twice the line frequency at zero initial rotor speed. This has been demonstrated in an earlier work. In this paper we demonstrate that high torque starting using the back-emf in the field winding as triggering signal for the rotor polarity inversion is possible. We further discuss the origin of the rotational energy and active and reactive power pulsations. Finally, we show that it is possible to operate a synchronous motors at continuous asynchronous speed by inverting the polarity of the rotor current and adjusting the field current accordingly, although down rated.
Spillways are very important dam safety devices that can discharge large amounts of water to prevent over-topping a dam. However, spillways are expensive to build and have operational issues. This paper is a report from a test of a system capable of discharging the full turbine flow even in the absence of an external power grid absorbing the electrical power. Instead the power is dissipated in a local load. The scope of the tests is to verify the use of the discharge capacity of the turbine under continuous operation as spillway flow for emergency discharge from a Hydropower reservoir. A dumpload consisting of a hot water electrode boiler cooled by water taken from the turbine spiral case was used as a local load. The results show long-term stability of using a local load and turbine discharge as an electrical alternative to building additional traditional spillways to increase spillway capacity from a hydropower reservoir.
We have previously shown that a division of the f-shell into two subsystems gives a better understanding of the cohesive properties as well the general behavior of lanthanide systems. In this article, we present numerical computations, using the suggested method. We show that the picture is consistent with most experimental data, e.g., the equilibrium volume and electronic structure in general. Compared with standard energy band calculations and calculations based on the self-interaction correction and LIDA + U, the f-(non-f)-mixing interaction is decreased by spectral weights of the many-body states of the f-ion.
Nonuniform air gaps in electrical machines cause problems with forces and noise. There are a number of analytical and numerical methods to calculate the response due to nonuniform air gaps. In this paper, we present an efficient method based on an effective air gap permeability. Our unified method enables all nonuniform rotor-stator configurations to be simulated. We provide some results from simulations of static and dynamic eccentricity as well as irregularity.
The load angle of a synchronous generator connected to a power grid has an eigenfrequency that depends on the operating conditions. The existence of an eigenfrequency can make the generator sensitive to electrical and mechanical disturbances and motivates the use of damper windings and power stabilizing systems. Another reason for keeping load angle oscillations small is that they increase the eddy current losses in the stator core and clamping structure due to axial leakage flux. This is shown with transient finite element analyses and can be explained by a loss model derived from a phasor model of the eddy current loss density.
Axial magnetic fields leaking out at the ends of a conventional rotating synchronous machine cause losses. Therefore, it is important to be able to predict the axial magnetic fields. A linear steady-state model for the axial magnetic flux density phasor in the end regions of non-salient synchronous generators has previously been verified experimentally. This paper describes an extension of the model to salient pole synchronous generators and a method for calculating the coefficients. Experiments and 3-D finite element simulations justify a distinction between axial flux density contributions from the d and q components of the stator current. How the coefficients and the axial magnetic fields in the ends of a small synchronous generator change with steady-state operation conditions is here shown with measurements and to some extent with 3-D finite element simulations.
Axial displacement of the stator in a synchronous machine gives rise to axial magnetic field both at the ends and deep inside the stator. The axial magnetic field causes losses. This article contains results from two studies with an axially displaced stator. In the first study, axial magnetic leakage fields in the ends of a small synchronous generator at load and no load were measured and simulated. In the second study, axial force and iron losses at no load were calculated with non-linear materials and a three-dimensional, time-stepped finite element method. For some machines with vertical shafts, the sum of iron losses and thrust bearing losses can be reduced if the rotor is lowered or the stator raised, whichever is best.
Analytical expressions that include arbitrarily directed fields on all laminate boundaries can be used for calculation of the fields inside the laminate when the boundary fields are known from, e.g., measurements. A linear laminate block could be used in non-destructive testing for comparisons between different laminates. This article contains derivation of Fourier series of harmonically time varying, traveling electromagnetic fields in homogeneous, anisotropic approximations of laminates. The component of the magnetic field strength in the stacking direction is used as a source term in two-dimensional Poisson equations for the magnetic field strength in other directions. This approximation is here used in three dimensions under the precondition that the conductivity is much smaller in the laminate stacking direction than in the other directions. Sine interpolation and different choices of types of boundary conditions are discussed. Different alternative subdivisions of the Poisson boundary value problems are treated. Shorted derivations of simple analytical expressions are given for both traveling and standing waves in two dimensions. Results from Fourier series in the three-dimensional case are compared with results from finite element calculations.
This article contains derivation of propagation factors and Fourier series for harmonically time varying, traveling electromagnetic fields in a plate and a laminate with rectangular cross sections, isotropic materials and infinite length. Different and quite general fields are taken into account on all boundaries. Choices of boundary conditions and continuity conditions are discussed. Certain combinations of types of boundary conditions make the derivation possible for a laminate. Comparisons are made between results of Fourier series and finite element calculations.
Developments of the high-speed response brushless excitation systems (HSRBESs) are ongoing in the power industry. This is because the transient response of the excitation system (ES) is a key performance indicator for the grid owner. In dealing with this problem, accurate prediction and control of the ES ceiling voltage are desirable. However, the brushless exciters' nonlinear armature reaction causes the ceiling voltage to be unknown under varying operating conditions. This article proposes a numerical average-value model (AVM) that captures all the main dynamics of the HSRBES. It is shown that the AVM relationships can be utilized for online prediction of the ceiling voltage and employed in a dual-control scheme. The proposed model is validated against a dynamic voltage build-up test. Moreover, it is derived from a detailed model, which is verified from instantaneous field measurements and further from finite-element analysis. Finally, the accuracy and effectiveness of the AVMs' transient relationships prove the feasibility of the proposed dual-control scheme and shows that it can be easily implemented in existing systems.
A new high-speed-response dual-star brushless rotating exciter has been recently proposed, which utilizes two rotating thyristor rectifiers in a hybrid-mode topology. However, dissymmetries tend to occur in large-scale apparatus, which ultimately results in an undesired unbalanced loading of the topology. Moreover, the topology provides a possibility for compensation via asymmetrical firing, which serves as a promising solution to be investigated. This letter proposes an active current sharing adjustment method between the parallel thyristor bridges. The method improves controllability and performance compared with the alternative “skip firing” approach, and it can replace the interphase reactors (IPRs) in large direct current applications.
The excitation system plays a critical role in the operation of synchronous generators. An equipment failure could impact the voltage quality for smaller grids. Further, it can lead to cost penalties and reduced production for the power plant owner. Recently, a new high-speed-response rotating brushless exciter was developed that employs remote control of the rotating thyristors on the generator shaft. This has led to new possibilities for improving the performance of brushless exciters. This contribution investigates the failure modes of a dual-star outer pole exciter that feeds two separate thyristor bridges connected in parallel during normal operation. The possibility of redundant postfault operation due to open-thyristor or open-phase faults are demonstrated using experimental testing. The system is compared with the fault performance of a conventional three-phase system. This work includes the implementation and validation of a fault-predicting double d-q exciter model. In addition, the dangerous effects of a shorted-thyristor fault are investigated. A "skip firing" protection technique is briefly demonstrated for the fast isolation of such faults, yielding nondestructive postfault recovery and redundant failure-mode operation. The evidence shows that the dual-star exciter is a competitive choice for the future development of fault-tolerant brushless exciters.
Generally, PM machines are used as PMG pre-exciters in 3-stage brushless excitations systems. This paperpresents the design, characterization and prototyping of a rotatingbrushless PM exciter used in a proposed 2-stage excitation systemfor a synchronous generator. The proposed design reduces thenumber of components compared with conventional systems.A comparison with the state-of-the-art conventional excitationsystems is given. The design of a fast-response, or high initialresponse, brushless exciter requires active rectification on therotating frame, replacing the non-controllable diode bridge. Theobjective was to construct an exciter with the capability of a50 Aoutput field current as well as a high value of the available ceilingvoltage and ceiling current. The final exciter was constructed to befitted into an in-house synchronous generator test setup. A finiteelement model of the exciter was validated with experimentalmeasurements. The exciter prototype is also compared with analternative armature design with non-overlapping single-layerconcentrated windings but with the same main dimensions.The paper includes a general design procedure suitable foroptimization of PM brushless exciters that fulfill the requirementsof their synchronous generators and the grid.
This paper deals with the characterization and construction of a rotating brushless PM exciter intended for synchronous generator excitation purposes. Traditionally, PM exciters are used as pre-exciters in synchronous generator excitations systems. In order to reduce the number of components and to increase the step time response of the system, a PM exciter is designed as an outer pole PM machine, with permanent magnets on the stator and armature windings on the rotor. The exciter was constructed electrically and mechanically to be fitted into an in-house synchronous generator test setup. A finite element model of the exciter was validated with no-load measurements of voltages and magnetic flux densities. The exciter was then characterized with unsaturated and saturated parameters.
his paper investigates the performance of different power electronic interfaces for a rotating brushless permanent magnet exciter, designed for a synchronous generator test setup. A passive rotating diode bridge is commonly used as the rotating interface on conventional brushless excitation systems. Those systems are known to be slow dynamically, since they cannot control the generator field voltage directly. Including active switching components on the rotating shaft, like thyristors or transistors, brushless excitation systems can be comparable to static excitation systems. Brushless excitation systems has the benefit of less regular maintenance. With permanent magnets on the stator of the designed exciter, the excitation system improves its field forcing capability. Results show that modern power electronic interfaces utilize the exciter machine optimally, increase the power factor, reduce the torque pulsations, maintain the available field winding ceiling voltage and improve the field winding controllability.
The static exciter is dominating among large grid-connected generators due to the weak dynamic performance of conventional brushless exciters. In this paper, a six-phase outer pole permanent magnet rotating brushless exciter is evaluated with different active rectification topologies. Both thyristor-based and chopper-based topologies are considered. A fast-response brushless excitation system is obtained by replacing the conventional rotating diode bridge rectifier with the proposed active rectification topologies on the shaft. The given two-stage system generates its own excitation power directly from the shaft, contrary to static exciters. The selection of an appropriate rectification topology could minimize the rotor armature phase currents for a given generator field current. The objective is a high power factor and a high utilization of the exciter machine. An optimal rectification topology makes higher ceiling currents possible, improving the transient behavior of the synchronous generator. In this paper we show that six-phase topologies add complexity, but improve exciter redundancy, increase the available ceiling voltage and reduce the steady state torque ripple. Experimental results are given for validating the models implemented for the analysis.
The thyristor bridge rectifier has proven to be a reliable solution regarding control of excitation equipment for synchronous generators. However, in rotating brushless exciters, the diode rectifier is the dominant topology on the shaft. In order to improve the step response of rotating exciters, one could put a thyristor bridge rectifier on the rotating part and control the firing angle remotely from a stationary controller. This paper compares different multiphase configurations of permanent magnet synchronous machines as a rotating exciter and discusses the possibility to reduce the torque ripple by selecting the appropriate rectification topology. The paper also explains the implications of the self and mutual inductances of the armature windings for the performance of the exciter.
A fast step response of an excitation system is critical for a synchronous generator in order to maintain stability under disturbances in the interconnected power grid. This is the main reason that the static excitation system has been preferred for large synchronous generators. Some transmission system operators even have requirements that the excitation system should be static for synchronous generators above a certain size. The requirement is set in order to fulfill a certain goal for the step time response. As technology progresses forward, the static excitation system will not any longer be the only option for a fast controllable excitation system. New brushless rotating excitation systems, with wireless control interfaces, can be even faster than the static excitation system. They also reduce the need of maintenance of the synchronous generator. With permanent magnet exciters, the excitation system can be independent from the grid, maintaining the excitation response under voltage dips in the power grid. This paper evaluates the dynamic performance of the static excitation system compared with different types of brushless rotating excitation systems.