Endre søk
Begrens søket
12 1 - 50 of 77
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Amin, Sidra
    et al.
    Lulea Univ Technol, Sweden; Shaheed Benazir Bhutto Univ, Pakistan.
    Tahira, Aneela
    Lulea Univ Technol, Sweden.
    Solangi, Amber
    Univ Sindh, Pakistan.
    Beni, Valerio
    Res Inst Sweden, Sweden.
    Morante, J. R.
    Catalonia Inst Energy Res IREC, Spain.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Mazzaro, Raffaello
    Lulea Univ Technol, Sweden.
    Ibupoto, Zafar Hussain
    Lulea Univ Technol, Sweden; Univ Sindh, Pakistan.
    Vomiero, Alberto
    Lulea Univ Technol, Sweden.
    A practical non-enzymatic urea sensor based on NiCo2O4 nanoneedles2019Inngår i: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 9, nr 25, s. 14443-14451Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We propose a new facile electrochemical sensing platform for determination of urea, based on a glassy carbon electrode (GCE) modified with nickel cobalt oxide (NiCo2O4) nanoneedles. These nanoneedles are used for the first time for highly sensitive determination of urea with the lowest detection limit (1 mu M) ever reported for the non-enzymatic approach. The nanoneedles were grown through a simple and low-temperature aqueous chemical method. We characterized the structural and morphological properties of the NiCo2O4 nanoneedles by TEM, SEM, XPS and XRD. The bimetallic nickel cobalt oxide exhibits nanoneedle morphology, which results from the self-assembly of nanoparticles. The NiCo2O4 nanoneedles are exclusively composed of Ni, Co, and O and exhibit a cubic crystalline phase. Cyclic voltammetry was used to study the enhanced electrochemical properties of a NiCo2O4 nanoneedle-modified GCE by overcoming the typical poor conductivity of bare NiO and Co3O4. The GCE-modified electrode is highly sensitive towards urea, with a linear response (R-2 = 0.99) over the concentration range 0.01-5 mM and with a detection limit of 1.0 mu M. The proposed non-enzymatic urea sensor is highly selective even in the presence of common interferents such as glucose, uric acid, and ascorbic acid. This new urea sensor has good viability for urea analysis in urine samples and can represent a significant advancement in the field, owing to the simple and cost-effective fabrication of electrodes, which can be used as a promising analytical tool for urea estimation.

  • 2.
    Atxabal, Ainhoa
    et al.
    CIC NanoGUNE, Spain.
    Braun, Slawomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Arnold, Thorsten
    Technical University of Dresden, Germany.
    Sun, Xiangnan
    National Centre Nanosci and Technology, Peoples R China.
    Parui, Subir
    CIC NanoGUNE, Spain.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Gozalvez, Cristian
    University of Basque Country UPV EHU, Spain.
    Llopis, Roger
    CIC NanoGUNE, Spain.
    Mateo-Alonso, Aurelio
    University of Basque Country UPV EHU, Spain; Basque Fdn Science, Spain.
    Casanova, Felix
    CIC NanoGUNE, Spain; Basque Fdn Science, Spain.
    Ortmann, Frank
    Technical University of Dresden, Germany.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Hueso, Luis E.
    CIC NanoGUNE, Spain; Basque Fdn Science, Spain.
    Energy Level Alignment at Metal/Solution-Processed Organic Semiconductor Interfaces2017Inngår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 29, nr 19, artikkel-id 1606901Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Energy barriers between the metal Fermi energy and the molecular levels of organic semiconductor devoted to charge transport play a fundamental role in the performance of organic electronic devices. Typically, techniques such as electron photoemission spectroscopy, Kelvin probe measurements, and in-device hot-electron spectroscopy have been applied to study these interfacial energy barriers. However, so far there has not been any direct method available for the determination of energy barriers at metal interfaces with n-type polymeric semiconductors. This study measures and compares metal/solution-processed electron-transporting polymer interface energy barriers by in-device hot-electron spectroscopy and ultraviolet photoemission spectroscopy. It not only demonstrates in-device hot-electron spectroscopy as a direct and reliable technique for these studies but also brings it closer to technological applications by working ex situ under ambient conditions. Moreover, this study determines that the contamination layer coming from air exposure does not play any significant role on the energy barrier alignment for charge transport. The theoretical model developed for this work confirms all the experimental observations.

  • 3.
    Bai, Sai
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. Univ Oxford, England.
    Da, Peimei
    Univ Oxford, England.
    Li, Cheng
    Univ Bayreuth, Germany; Xiamen Univ, Peoples R China.
    Wang, Zhiping
    Univ Oxford, England.
    Yuan, Zhongcheng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Fu, Fan
    Empa-Swiss Federal Laboratories for Materials Science and Technology, Duebendorf, Switzerland.
    Kawecki, Maciej
    Empa, Switzerland; Univ Basel, Switzerland.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Sakai, Nobuya
    Univ Oxford, England.
    Wang, Jacob Tse-Wei
    CSIRO Energy, Australia.
    Huettner, Sven
    Univ Bayreuth, Germany.
    Buecheler, Stephan
    Empa Swiss Fed Labs Mat Sci and Technol, Switzerland.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. Univ Oxford, England.
    Snaith, Henry J.
    Univ Oxford, England.
    Planar perovskite solar cells with long-term stability using ionic liquid additives2019Inngår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 571, nr 7764, s. 245-250Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Solar cells based on metal halide perovskites are one of the most promising photovoltaic technologies(1-4). Over the past few years, the long-term operational stability of such devices has been greatly improved by tuning the composition of the perovskites(5-9), optimizing the interfaces within the device structures(10-13), and using new encapsulation techniques(14,15). However, further improvements are required in order to deliver a longer-lasting technology. Ion migration in the perovskite active layer-especially under illumination and heat-is arguably the most difficult aspect to mitigate(16-18). Here we incorporate ionic liquids into the perovskite film and thence into positive-intrinsic-negative photovoltaic devices, increasing the device efficiency and markedly improving the long-term device stability. Specifically, we observe a degradation in performance of only around five per cent for the most stable encapsulated device under continuous simulated full-spectrum sunlight for more than 1,800 hours at 70 to 75 degrees Celsius, and estimate that the time required for the device to drop to eighty per cent of its peak performance is about 5,200 hours. Our demonstration of long-term operational, stable solar cells under intense conditions is a key step towards a reliable perovskite photovoltaic technology.

  • 4.
    Bao, Qinye
    et al.
    East China Normal Univ, Peoples R China.
    Braun, Slawomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Wang, Chuan Fei
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Interfaces of (Ultra)thin Polymer Films in Organic Electronics2019Inngår i: Advanced Materials Interfaces, ISSN 2196-7350, Vol. 6, nr 1, artikkel-id 1800897Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    In this short review the energy level alignment of interfaces involving solution-processed conjugated polymer (and soluble small molecules) films is described. Some general material properties of conjugated polymers and their solution-processed films are introduced, and the basic physics involved in energy level alignment at their interfaces is then discussed. An overview of energy level bending in (ultra)thin conjugated polymer films (often referred to as "band bending") is given and the effects of ion-containing interlayers typically used in organic electronic devices such as polymer light emitting diodes and organic bulk heterojunction solar cells are explored. The review finishes by describing a few of the available computational models useful for predicting and/or modeling energy level alignment at interfaces of solution-processed polymer films and discusses their respective strengths and weaknesses.

  • 5.
    Bao, Qinye
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Andersson, Mattias
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Braun, Slawomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Sun, Zhengyi
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Energy Level Bending in Ultrathin Polymer Layers Obtained through Langmuir-Shafer Deposition2016Inngår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 26, nr 7, s. 1077-1084Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The semiconductor-electrode interface impacts the function and the performance of (opto) electronic devices. For printed organic electronics the electrode surface is not atomically clean leading to weakly interacting interfaces. As a result, solution-processed organic ultrathin films on electrodes typically form islands due to dewetting. It has therefore been utterly difficult to achieve homogenous ultrathin conjugated polymer films. This has made the investigation of the correct energetics of the conjugated polymer-electrode interface impossible. Also, this has hampered the development of devices including ultrathin conjugated polymer layers. Here, LangmuirShafer-manufactured homogenous mono-and multilayers of semiconducting polymers on metal electrodes are reported and the energy level bending using photoelectron spectroscopy is tracked. The amorphous films display an abrupt energy level bending that does not extend beyond the first monolayer. These findings provide new insights of the energetics of the polymer-electrode interface and opens up for new high-performing devices based on ultrathin semiconducting polymers.

  • 6.
    Bao, Qinye
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Andersson, Mattias
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Braun, Slawomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Sun, Zhengyi
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    The energetics of the semiconducting polymer-electrode interface for solution-processed electronicsManuskript (preprint) (Annet vitenskapelig)
    Abstract [en]

    The semiconductor-electrode interface impacts the function and the performance of (opto-)electronic devices. For printed organic electronics the electrode surface is not atomically clean leading to weakly interacting interfaces. As a result, solution-processed organic ultra-thin films on electrodes typically form islands due to de-wetting. It has therefore been utterly difficult to achieve homogenous ultrathin conjugated polymer films. This has made the investigation of the correct energetics of the conjugated polymer-electrode interface impossible. Also, this has hampered the development of devices including ultra-thin conjugated polymer layers. Here, we report Langmuir-Shäfer-manufactured homogenous mono- and multilayers of semiconducting polymers on metal electrodes and track the energy level bending using photoelectron spectroscopy. The amorphous films display an abrupt energy level bending that does not extend beyond the first monolayer. Our findings provide new insights of the energetics of the polymer-electrode interface and opens up for new high-performing devices based on ultra-thin semiconducting polymers.

  • 7.
    Bao, Qinye
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Braun, Slawomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Energetics at Doped Conjugated Polymer/Electrode Interfaces2015Inngår i: ADVANCED MATERIALS INTERFACES, ISSN 2196-7350, Vol. 2, nr 2Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    n/a

  • 8.
    Bao, Qinye
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten. East China Normal University, Peoples R China.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Braun, Slawomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Li, Yanqing
    Soochow University, Peoples R China.
    Tang, Jianxin
    Soochow University, Peoples R China.
    Duan, Chungang
    East China Normal University, Peoples R China.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Energy Level Alignment of N-Doping Fullerenes and Fullerene Derivatives Using Air-Stable Dopant2017Inngår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 9, nr 40, s. 35476-35482Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Doping has been proved to be one of the powerful technologies to achieve significant improvement in the performance of organic electronic devices. Herein, we systematically map out the interface properties of solution-processed air-stable n-type (4(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl) doping fullerenes and fullerene derivatives and establish a universal energy level alignment scheme for this class of n-doped system. At low doping levels at which the charge-transfer doping induces mainly bound charges, the energy level alignment of the n-doping organic semiconductor can be described by combining integer charger transfer-induced shifts with a so-called double-dipole step. At high doping levels, significant densities of free charges are generated and the charge flows between the organic film and the conducting electrodes equilibrating the Fermi level in a classic "depletion layer" scheme. Moreover, we demonstrate that the model holds for both n- and p-doping of pi-backbone molecules and polymers. With the results, we provide wide guidance for identifying the application of the current organic n-type doping technology in organic electronics.

  • 9.
    Bao, Qinye
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten. East China Normal Univ, Peoples R China; Soochow Univ, Peoples R China.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Braun, Slawomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Yang, Jianming
    East China Normal Univ, Peoples R China.
    Li, Yanqing
    Soochow Univ, Peoples R China.
    Tang, Jianxin
    Soochow Univ, Peoples R China.
    Duan, Chungang
    East China Normal Univ, Peoples R China.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    The Effect of Oxygen Uptake on Charge Injection Barriers in Conjugated Polymer Films2018Inngår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, nr 7, s. 6491-6497Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The energy offset between the electrode Fermi level and organic semiconductor transport levels is a key parameter controlling the charge injection barrier and hence efficiency of organic electronic devices. Here, we systematically explore the effect of in situ oxygen exposure on energetics in n-type conjugated polymer P(NDI2OD-T2) films. The analysis reveals that an interfacial potential step is introduced for a series of P(NDI2OD-T2) electrode contacts, causing a nearly constant downshift of the vacuum level, while the ionization energies versus vacuum level remain constant. These findings are attributed to the establishment of a so-called double-dipole step via motion of charged molecules and will modify the charge injection barriers at electrode contact. We further demonstrate that the same behavior occurs when oxygen interacts with p-type polymer TQ1 films, indicating it is possible to be a universal effect for organic semiconductOrs.

  • 10.
    Bao, Qinye
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten. Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai, P.R. China.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Braun, Slawomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Yanqing, Li
    Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, P.R. China.
    Jianxin, Tang
    Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, P.R. China.
    Chungang, Duan
    Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai, P.R. China.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Intermixing Effect on Electronic Structures of TQ1:PC71BM Bulk Heterojunction in Organic Photovoltaics2017Inngår i: Solar RRL, ISSN 2367-198X, Vol. 1, nr 10, artikkel-id 1700142Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The interface energetics and intermixing effects of the donor/acceptor bulk heterojunction (BHJ) blends of poly[2,3‐bis‐(3‐octyloxyphenyl) quinoxaline‐5, 8‐dilyl‐alt‐thiophene‐2, 5‐diyl]: [6,6]‐phenyl C71butyric acid methyl ester (TQ1:PC71BM) have been investigated using ultraviolet photoemission spectroscopy (UPS) in combination with the integer charge transfer model. The TQ1:PC71BM represents the useful model system for BHJ organic photovoltaics featuring effective charge generation and transport. It finds out that the positive integer charge state of TQ1 are equal in energy to the negative integer charge state of PC71BM, leading to a negligible potential step at TQ1:PC71BM interface and thus the vacuum level alignment. It is observed that the TQ1 accumulates on the top of TQ1:PC71BM BHJ and UPS spectra as function of various blend ratios suggest that the TQ1 mixes finely with PC71BM with the little work function modification in a wide range. In addition, no significant influence of the long‐range Coulomb interactions or the intermolecular hybridization on the occupied electronic structures is present for the well‐intermixed TQ1:PC71BM BHJs. These findings provide deep insights into the properties of BHJ blends and are beneficial for the performance optimization in organic photovoltaics.

  • 11.
    Bao, Qinye
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Wang, Ergang
    Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden.
    Fang, Junfeng
    Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo, PR China.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, P. R. China.
    Braun, Slawomirslama19
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Regular Energetics at Conjugated Electrolyte/Electrode Modifier for Organic Electronics and Their Implications of Design Rules2015Inngår i: Advanced Materials Interfaces, ISSN 2196-7350, Vol. 2, nr 12, s. 1-6, artikkel-id 1500204Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Regular energetics at a conjugated electrolyte/electrode modifier are found and controlled by equilibration of the Fermi level and an additional interface double dipole step induced by ionic functionality. Based on the results, design rules for conjugated electrolyte/electrode modifiers to achieve the smallest charge injection/exaction barrier and break through the current thickness limitation are proposed.

  • 12.
    Bao, Qinye
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Xia, Yuxin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Kauffmann, Louis-Dominique
    GenesInk, France.
    Margeat, Olivier
    Aix Marseille University, France.
    Ackermann, Jorg
    Aix Marseille University, France.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Effects of ultraviolet soaking on surface electronic structures of solution processed ZnO nanoparticle films in polymer solar cells2014Inngår i: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 2, nr 41, s. 17676-17682Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We systematically show the effect of UV-light soaking on surface electronic structures and chemical states of solution processed ZnO nanoparticle (ZnONP) films in UHV, dry air and UV-ozone. UV exposure in UHV induces a slight decrease in work function and surface-desorption of chemisorbed oxygen, whereas UV exposure in the presence of oxygen causes an increase in work function due to oxygen atom vacancy filling in the ZnO matrix. We demonstrate that UV-light soaking in combination with vacuum or oxygen can tune the work function of the ZnONP films over a range exceeding 1 eV. Based on photovoltaic performance and diode measurements, we conclude that the oxygen atom vacancy filling occurs mainly at the surface of the ZnONP films and that the films consequently retain their n-type behavior despite a significant increase in the measured work function.

  • 13.
    Bao, Qinye
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Sandberg, Oskar
    Abo Akad University, Finland.
    Dagnelund, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Sanden, Simon
    Abo Akad University, Finland.
    Braun, Slawomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Aarnio, Harri
    Abo Akad University, Finland.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Osterbacka, Ronald
    Abo Akad University, Finland.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Trap-Assisted Recombination via Integer Charge Transfer States in Organic Bulk Heterojunction Photovoltaics2014Inngår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 24, nr 40, s. 6309-6316Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Organic photovoltaics are under intense development and significant focus has been placed on tuning the donor ionization potential and acceptor electron affinity to optimize open circuit voltage. Here, it is shown that for a series of regioregular-poly(3-hexylthiophene): fullerene bulk heterojunction (BHJ) organic photovoltaic devices with pinned electrodes, integer charge transfer states present in the dark and created as a consequence of Fermi level equilibrium at BHJ have a profound effect on open circuit voltage. The integer charge transfer state formation causes vacuum level misalignment that yields a roughly constant effective donor ionization potential to acceptor electron affinity energy difference at the donor-acceptor interface, even though there is a large variation in electron affinity for the fullerene series. The large variation in open circuit voltage for the corresponding device series instead is found to be a consequence of trap-assisted recombination via integer charge transfer states. Based on the results, novel design rules for optimizing open circuit voltage and performance of organic bulk heterojunction solar cells are proposed.

  • 14.
    Battocchio, Chiara
    et al.
    Roma Tre Univ, Italy.
    Concolato, Sofia
    Roma Tre Univ, Italy.
    De Santis, Serena
    Roma Tre Univ, Italy.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Iucci, Giovanna
    Roma Tre Univ, Italy.
    Santi, Marta
    Roma Tre Univ, Italy.
    Sotgiu, Giovanni
    Roma Tre Univ, Italy.
    Orsini, Monica
    Roma Tre Univ, Italy.
    Chitosan functionalization of titanium and Ti6Al4V alloy with chloroacetic acid as linker agent2019Inngår i: Materials science & engineering. C, biomimetic materials, sensors and systems, ISSN 0928-4931, E-ISSN 1873-0191, Vol. 99, s. 1133-1140Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this work, a new covalent grafting of chitosan on titanium and Ti6Al4V alloy surfaces is reported using chloroacetic acid as linker agent. Good results were obtained both on titanium and on Ti6Al4V alloy. The effect of the surface acid pretreatments on the subsequent functionalization with chitosan is evaluated. The morphological aspect of acid etched metal surfaces before chitosan grafting has been characterized by scanning electron microscopy (SEM). The presence of carboxylic groups on metal surfaces and then the efficiency of chitosan covalent immobilization were detected by Fourier transformed infrared-Attenuated Total Reflectance (FTIR-ATR) and X-Ray photoelectron spectroscopy (XPS). Cyclic voltammetry tests, using the functionalized titanium and Ti6Al4V samples as electrodes, were conducted in different aqueous solutions, to detect the presence of the homogeneous overlayer of chitosan on the surface, and to evaluate the importance of the carboxyl groups as linker agent.

  • 15.
    Ben Dkhil, Sadok
    et al.
    Aix Marseille University, France.
    Duche, David
    University of Toulon and Var, France.
    Gaceur, Meriem
    Aix Marseille University, France.
    Thakur, Anil K.
    Aix Marseille University, France.
    Bencheikh Aboura, Fatima
    University of Toulon and Var, France.
    Escoubas, Ludovic
    University of Toulon and Var, France.
    Simon, Jean-Jacques
    University of Toulon and Var, France.
    Guerrero, Antonio
    University of Jaume 1, Spain.
    Bisquert, Juan
    University of Jaume 1, Spain; King Abdulaziz University, Saudi Arabia.
    Garcia-Belmonte, Germa
    University of Jaume 1, Spain.
    Bao, Qinye
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Videlot-Ackermann, Christine
    Aix Marseille University, France.
    Margeat, Olivier
    Aix Marseille University, France.
    Ackermann, Joerg
    Aix Marseille University, France.
    Interplay of Optical, Morphological, and Electronic Effects of ZnO Optical Spacers in Highly Efficient Polymer Solar Cells2014Inngår i: ADVANCED ENERGY MATERIALS, ISSN 1614-6832, Vol. 4, nr 18, s. 1400805-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Optical spacers based on metal oxide layers have been intensively studied in poly(3-hexylthiophene) (P3HT) based polymer solar cells for optimizing light distribution inside the device, but to date, the potential of such a metal oxide spacer to improve the electronic performance of the polymer solar cells simultaneously has not yet be investigated. Here, a detailed study of performance improvement in high efficient polymer solar cells by insertion of solution-processed ZnO optical spacer using ethanolamine surface modification is reported. Insertion of the modified ZnO optical spacer strongly improves the performance of polymer solar cells even in the absence of an increase in light absorption. The electric improvements of the device are related to improved electron extraction, reduced contact barrier, and reduced recombination at the cathode. Importantly, it is shown for the first time that the morphology of optical spacer layer is a crucial parameter to obtain highly efficient solar cells in normal device structures. By optimizing optical spacer effects, contact resistance, and morphology of ZnO optical spacers, poly[[4,8-bis[(2-ethylhexyl) oxy] benzo[1,2-b: 4,5-b] dithiophene-2,6diyl] [3-fluoro-2-[(2-ethylhexyl) carbonyl] thieno[3,4-b] thiophenediyl]] (PTB7):[6,6]-phenyl-C71-butyric acid (PC70 BM) bulk heterojunction solar cells with conversion efficiency of 7.6% are obtained in normal device structures with all-solution-processed interlayers.

  • 16.
    Ben Dkhil, Sadok
    et al.
    Aix Marseille University, France.
    Gaceur, Meriem
    Aix Marseille University, France.
    Karim Diallo, Abdou
    Aix Marseille University, France.
    Didane, Yahia
    Aix Marseille University, France.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Margeat, Olivier
    Aix Marseille University, France.
    Ackermann, Jorg
    Aix Marseille University, France.
    Videlot-Ackermann, Christine
    Aix Marseille University, France.
    Reduction of Charge-Carrier Recombination at ZnO Polymer Blend Interfaces in PTB7-Based Bulk Heterojunction Solar Cells Using Regular Device Structure: Impact of ZnO Nanoparticle Size and Surfactant2017Inngår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 9, nr 20, s. 17257-17265Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Cathode interfacial layers, also called electron extraction layers (EELs), based on zinc oxide (ZnO) have been studied in polymer-blend solar cells toward optimization of the opto-electric properties. Bulk heterojunction solar cells based on poly( {4, 8-bis [(2- ethylhexyl) oxy]b enzo [1,2- b :4,5-b dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]- thieno[3,4-b]thiophenediy1}) (PTB7) and [6,6]-phenyl-C71-butyric acid methyl ester (PC70BM) were realized in regular structure with all-solution-processed interlayers. A pair of commercially available surfactants, ethanolamine (EA) and ethylene glycol (EG), were used to modify the surface of ZnO nanoparticles (NPs) in alcohol-based dispersion. The influence of ZnO particle size was also studied by preparing dispersions of two NP diameters (6 versus 11 nm). Here, we show that performance improvement can be obtained in polymer solar cells via the use of solution-processed ZnO EELs based on surface-modified nanoparticles. By the optimizing of the ZnO dispersion, surfactant ratio, and the resulting morphology of EELs, PTB7/PC70BM solar cells with a power-conversion efficiency of 8.2% could be obtained using small sized EG-modified ZnO NPs that allow the clear enhancement of the performance of solution processed photovoltaic devices compared to state-of-the-art ZnO-based cathode layers.

  • 17.
    Bröms, P.
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska högskolan.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska högskolan.
    Xing, K. Z.
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska högskolan.
    Salaneck, William R.
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska högskolan.
    Dannetun, Per
    Groupe de Physique des Solides, Tour 23-2, place Jussieu, F-752 51 Paris Cedex 05, France.
    Cornil, J.
    Service de Chimie des Matériaux Nouveaux, Université de Mons-Hainaut, B-7000 Mons, Belgium.
    Santos, D.A. dos
    Service de Chimie des Matériaux Nouveaux, Université de Mons-Hainaut, B-7000 Mons, Belgium.
    Brédas, J. L.
    Service de Chimie des Matériaux Nouveaux, Université de Mons-Hainaut, B-7000 Mons, Belgium.
    Moratti, S. C.
    University Chemical Laboratory, University of Cambridge, Cambridge CB2 1EW, UK.
    Holmes, A. B.
    University Chemical Laboratory, University of Cambridge, Cambridge CB2 1EW, UK.
    Friend, R. H.
    Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK.
    Optical absorption studies of sodium doped poly(cyanoterephthalylidene)1994Inngår i: Synthetic metals, ISSN 0379-6779, E-ISSN 1879-3290, Vol. 67, nr 1-3, s. 93-96Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The effects of doping poly(cyanoterephthalylidene) with sodium in ultrahighvacuum been studied by optical absorption spectroscopy. Upon doping, new optical transitions are observed within the bandgap; the characteristics of these transitions are consistent with the formation of bipolarons. The optical absorption results are confirmed by direct measurements of the doping-induced gap states using ultraviolet photoelectron spectroscopy.

  • 18.
    Chen, Shangzhi
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Kang, Evan S. H.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Shiran Chaharsoughi, Mina
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Stanishev, Vallery
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Kuhne, Philipp
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Sun, Hengda
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Wang, Chuanfei
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Darakchieva, Vanya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik.
    Conductive polymer nanoantennas for dynamicorganic plasmonics2020Inngår i: Nature Nanotechnology, ISSN 1748-3387, E-ISSN 1748-3395, Vol. 15, artikkel-id s41565-019-0583-yArtikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Being able to dynamically shape light at the nanoscale is oneof the ultimate goals in nano-optics1. Resonant light–matterinteraction can be achieved using conventional plasmonicsbased on metal nanostructures, but their tunability is highlylimited due to a fixed permittivity2. Materials with switchablestates and methods for dynamic control of light–matterinteraction at the nanoscale are therefore desired. Here weshow that nanodisks of a conductive polymer can supportlocalized surface plasmon resonances in the near-infraredand function as dynamic nano-optical antennas, with their resonancebehaviour tunable by chemical redox reactions. Theseplasmons originate from the mobile polaronic charge carriersof a poly(3,4-ethylenedioxythiophene:sulfate) (PEDOT:Sulf)polymer network. We demonstrate complete and reversibleswitching of the optical response of the nanoantennasby chemical tuning of their redox state, which modulatesthe material permittivity between plasmonic and dielectricregimes via non-volatile changes in the mobile chargecarrier density. Further research may study different conductivepolymers and nanostructures and explore their usein various applications, such as dynamic meta-optics andreflective displays.

  • 19.
    Dannetun, Per
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska högskolan.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska högskolan.
    Fauquet, C.
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska högskolan.
    Kaerijama, K.
    National Institute of Materials and Chemical Research, Tsukuba, Ibaraki 305, Japan.
    Sonoda, Y.
    National Institute of Materials and Chemical Research, Tsukuba, Ibaraki 305, Japan.
    Lazzaroni, R.
    Service de Chimie des Matériaux Nouveaux, Université de Mons-Hainaut, B-7000 Mons, Belgium.
    Brédas, J. L.
    Service de Chimie des Matériaux Nouveaux, Université de Mons-Hainaut, B-7000 Mons, Belgium.
    Salaneck, William R.
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska högskolan.
    Interface formation between poly(2,5-diheptyl-p-phenylenevinylene) and calcium: implications for light-emitting diodes1994Inngår i: Synthetic metals, ISSN 0379-6779, E-ISSN 1879-3290, Vol. 67, nr 1-3, s. 133-136Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The early stages of metal/polymer interface formation between calcium and poly(2,5-diheptyl-p-phenylenevinylene) (PDHPV) have been studied using both X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy. Charge transfer is observed from the metal atoms to the polymer; as a result the calcium atoms at the interface are ionic, and negative bipolarons appear as the charge-carrying species on the polymer chains. This n-type doping of PDHPV by calcium leads to the appearance of new electronic states in the polymer bandgap. The calcium atoms appear to diffuse into the near surface region of the polymer, rather than forming a well-defined overlayer on the organic films.

  • 20.
    Dannetun, Per
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten.
    Lögdlund, Michael
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten.
    Boman, Magnus
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten.
    Stafström, Sven
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten.
    Salaneck, William R.
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten.
    Lazzaroni, R.
    Service de Chimie des Matériaux Nouveaux, Université de Mons-Hainaut, Mons Belgium.
    Fredriksson, C.
    Service de Chimie des Matériaux Nouveaux, Université de Mons-Hainaut, Mons Belgium.
    Brédas, J. L.
    Service de Chimie des Matériaux Nouveaux, Université de Mons-Hainaut, Mons Belgium.
    Graham, S.
    Cavendish Laboratory, University of Cambridge, Cambridge, UK.
    Friend, R. H.
    Cavendish Laboratory, University of Cambridge, Cambridge, UK.
    Holmes, A. B.
    University Chemical Laboratory, Lensfield road, Cambridge, UK.
    Zamboni, R.
    Instituto di Spettroscopia Molecolare, Bologna, Italy.
    Taliani, C.
    Instituto di Spettroscopia Molecolare, Bologna, Italy.
    Proceedings of the International Conference on Science and Technology of Synthetic Metals The chemical and electronic structure of the interface between aluminum and conjugated polymers or molecules1993Inngår i: Synthetic metals, ISSN 0379-6779, E-ISSN 1879-3290, Vol. 55, nr 1, s. 212-217Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The interaction between aluminum and α-ω-diphenyltetradecaheptaenee (DP7), α-sexithienyl (6T), and poly(p-phenylenevinylene) (PPV), respectively have been studied using both X-ray Photoelectron Spectroscopy (XPS) and Ultraviolet Photoelectron Spectroscopy (UPS). The UPS valence band spectra, are interpreted with the help of quantum chemical calculations based upon Modified Neglect of Diatomic Overlap (MNDO), Valence Effective Hamitonian (VEH) and ab initio Hartree-Fock methods. DP7 is a model molecule for polyacetylene, while 6T is a model molecule (an oligomer) of polythiophene. The results indicate that aluminum reacts strongly with the surfaces of all of the materials studied. The π-electronic structure of each material was strongly modified. Furthermore, aluminum reacts preferentially with the polyene partof DP7, with the vinylene part of PPV, and with the α-carbons of the thiophene nits of 6T.

  • 21.
    Dannetun, Per
    et al.
    Groupe de Physique des Solides, Tour 23-2, place Jussieu, 752 51 Paris Cedex 05, France.
    Lögdlund, Michael
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska högskolan.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska högskolan.
    Fauquet, C.
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska högskolan.
    Beljonne, D.
    Service de Chimie des Matériaux Nouveaux, Université de Mons-Hainaut, place du Parc 20, B-7000 Mons, Belgium.
    Brédas, J. L.
    Service de Chimie des Matériaux Nouveaux, Université de Mons-Hainaut, place du Parc 20, B-7000 Mons, Belgium.
    Bässler, H.
    Fachbereich Physikalische Chemie und Zentrum für Materialwissenschaften der Phillips-Universität, Hans-Meerwein-Strasse, W-3550 Marburg, Germany.
    Salaneck, William R.
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska högskolan.
    The evolution of charge-induced gap states in degenerate and non-degenerate conjugated molecules and polymers as studied by photoelectron spectroscopy1994Inngår i: Synthetic metals, ISSN 0379-6779, E-ISSN 1879-3290, Vol. 67, nr 1, s. 81-86Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We report the results of ultraviolet photoelectron spectroscopy (UPS) studies of the interaction between sodium and conjugated systems for a series of diphenylpolyees and diffrent oligomers of poly(p-phenylenevinylene) (PPV). The diphenylpolyenes include molecules containing two (i.e., stilbene) to 14 carbon atoms in the polyene part; stilbene itself can also be considered as a phenyl-capped monomer of PPV. Furthermore, a PPV oligomer with three phenylene units, as well as PPV itself, has been studied. The experimental results are interpreted with the help of quantum-chemical calculations using the Hartree-Fock semi-empirical Austin Model 1 (AM1) and valence-effective Hamiltonian (VEH) methods. An important result is that all the systems react strongly with sodium; at high doping levels two new doping-induced states are detected above the valence band edge of the pristine material. In the case of saturation-doped diphenylpolyenes (i.e., two sodiums per molecule), the new states can be discussed in terms of soliton-antisoliton pairs confined within the polyene part of the molecules; in contrast, the self-localized states induced in PPV and its oligomers have to be referred to as bipolarons.

  • 22.
    del Pozo, Freddy G.
    et al.
    Institute Ciencia Mat Barcelona ICMAB CSIC, Spain; Networking Research Centre Bioengn Biomat and Nanomed CIBER, Spain.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Pfattner, Raphael
    Institute Ciencia Mat Barcelona ICMAB CSIC, Spain; Networking Research Centre Bioengn Biomat and Nanomed CIBER, Spain.
    Georgakopoulos, Stamatis
    Institute Ciencia Mat Barcelona ICMAB CSIC, Spain; Networking Research Centre Bioengn Biomat and Nanomed CIBER, Spain.
    Galindo, Sergi
    Institute Ciencia Mat Barcelona ICMAB CSIC, Spain; Networking Research Centre Bioengn Biomat and Nanomed CIBER, Spain.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Braun, Slawomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Veciana, Jaume
    Institute Ciencia Mat Barcelona ICMAB CSIC, Spain; Networking Research Centre Bioengn Biomat and Nanomed CIBER, Spain.
    Rovira, Concepcio
    Institute Ciencia Mat Barcelona ICMAB CSIC, Spain; Networking Research Centre Bioengn Biomat and Nanomed CIBER, Spain.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Mas-Torrent, Marta
    Institute Ciencia Mat Barcelona ICMAB CSIC, Spain; Networking Research Centre Bioengn Biomat and Nanomed CIBER, Spain.
    Single Crystal-Like Performance in Solution-Coated Thin-Film Organic Field-Effect Transistors2016Inngår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 26, nr 14, s. 2379-2386Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In electronics, the field-effect transistor (FET) is a crucial cornerstone and successful integration of this semiconductor device into circuit applications requires stable and ideal electrical characteristics over a wide range of temperatures and environments. Solution processing, using printing or coating techniques, has been explored to manufacture organic field-effect transistors (OFET) on flexible carriers, enabling radically novel electronics applications. Ideal electrical characteristics, in organic materials, are typically only found in single crystals. Tiresome growth and manipulation of these hamper practical production of flexible OFETs circuits. To date, neither devices nor any circuits, based on solution-processed OFETs, has exhibited an ideal set of characteristics similar or better than todays FET technology based on amorphous silicon. Here, bar-assisted meniscus shearing of dibenzo-tetrathiafulvalene to coat-process self-organized crystalline organic semiconducting domains with high reproducibility is reported. Including these coatings as the channel in OFETs, electric field and temperature-independent charge carrier mobility and no bias stress effects are observed. Furthermore, record-high gain in OFET inverters and exceptional operational stability in both air and water are measured.

  • 23.
    Dimitriev, Oleg
    et al.
    NAS Ukraine, Ukraine.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Braun, Slawomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Energy level alignment at the interface of cadmium sulphide single crystal and phthalocyanines: The role of the crystal surface states2018Inngår i: Materials Chemistry and Physics, ISSN 0254-0584, E-ISSN 1879-3312, Vol. 205, s. 102-112Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Ultraviolet photoelectron spectroscopy was used to study energy levels of (0001) and (000 (1) over bar) surfaces of bare CdS crystal terminated with Cd and S atoms, respectively, as well as energy level alignment at hybrid interfaces of CdS crystal and donor zinc phthalocyanine (PcZn) or acceptor fluoro-substituted zinc phtalocyanine (F-PcZn) layers, respectively. The data allowed us to distinguish a slight difference between ionization potential of the Cd- and S-terminated facets of the crystal and different contribution of these surfaces to formation of the interfacial dipole at the hybrid interfaces. Ionization potential for the 5 terminated surface was slightly higher as compared to the Cd-terminated one for the same crystal, and a more, positive dipole was always created on the S-terminated surface independent of whether the donor or acceptor phthalocyanine was used. The results showed that PcZn and F-PcZn render a dual effect at the CdS surface. First, the molecules created a dipole at the interface, however, the sign of this dipole was opposite for PcZn and F-PcZn, respectively. Second, the both molecules contributed to the formation of a depletion layer near the crystal surface. The role of the surface states of the crystal in the above effects has been elucidated. Interaction of PcZn and CdS surface was associated with the pinning of the upper occupied level of the surface states to the positive charge transfer state corresponding to the oxidized HOMO level of the molecule at the interface, whereas interaction of F-PcZn and CdS surface with the pinning of the upper occupied level of the surface states to the negative charge transfer corresponding to the reduced LUMO level of the molecule at the interface, i.e., similar to what is observed for the metal organic interfaces, where an upper occupied level of semiconductor surface states in our case plays the role of Fermi level in metal. (C) 2017 Elsevier B.V. All rights reserved.

  • 24.
    Fabiano, Simone
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Braun, Slawomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Weverberghs, Eric
    University of Mons-UMONS, Belgium.
    Gerbaux, Pascal
    University of Mons-UMONS, Belgium.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Poly(ethylene imine) impurities induce n-doping reaction in organic (semi)conductors2014Inngår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 26, nr 34, s. 6000-6006Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Volatile impurities contained in polyethyleneimine (PEI), and identified as ethyleneimine dimers and trimers, are reported. These N-based molecules show a strong reducing character, as demonstrated by the change in electrical conductivity of organic (semi) conductors exposed to the PEI vapor. The results prove that electron transfer rather than a dipole effect at the electrode interface is the origin of the work-function modification by the PEI-based layers.

  • 25.
    Fahlman, Mats
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gueskine, Viktor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel T
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik.
    Interfaces in organic electronics2019Inngår i: Nature Reviews Materials, E-ISSN 2058-8437, Vol. 4, nr 10, s. 627-650Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    Undoped, conjugated, organic molecules and polymers possess properties of semiconductors, including the electronic structure and charge transport, which can be readily tuned by chemical design. Moreover, organic semiconductors (OSs) can be n-doped or p-doped to become organic conductors and can exhibit mixed electronic and ionic conductivity. Compared with inorganic semiconductors and metals, organic (semi)conductors possess a unique feature: no insulating oxide forms on their surface when exposed to air. Thus, OSs form clean interfaces with many materials, including metals and other OSs. OS–metal and OS–OS interfaces have been intensely investigated over the past 30 years, from which a consistent theoretical description has emerged. Since the 2000s, increased attention has been paid to interfaces in organic electronics that involve dielectrics, electrolytes, ferroelectrics and even biological organisms. In this Review, we consider the central role of these interfaces in the function of organic electronic devices and discuss how the physico-chemical properties of the interfaces govern the interfacial transport of light, excitons, electrons and ions, as well as the transduction of electrons into the molecular language of cells.

  • 26.
    Fredj, Donia
    et al.
    Dracula Technol, France; Univ Grenoble Alpes, France.
    Alkarsifi, Riva
    Aix Marseille Univ, France.
    Pourcin, Florent
    Dracula Technol, France.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Boudjada, Nassira Chniba
    CNRS, France.
    Pierron, Pascal
    Dracula Technol, France.
    Nourdine, Ali
    Univ Grenoble Alpes, France.
    Boujelbene, Mohamed
    Univ Sfax, Tunisia.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Videlot-Ackermann, Christine
    Aix Marseille Univ, France.
    Flandin, Lionel
    Univ Grenoble Alpes, France.
    Ben Dkhil, Sadok
    Dracula Technol, France.
    Margeat, Olivier
    Aix Marseille Univ, France.
    Ackermann, Jorg
    Aix Marseille Univ, France.
    New Antimony-Based Organic-Inorganic Hybrid Material as Electron Extraction Layer for Efficient and Stable Polymer Solar Cells2019Inngår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 11, nr 47, s. 44820-44828Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Hybrid organic-inorganic materials are a new class of materials used as interfacial layers (ILs) in polymer solar cells (PSCs). A hybrid material, composed of antimony as the inorganic part and diaminopyridine as the organic part, is synthesized and described as a new material for application as the electron extraction layer (EEL) in PSCs and compared to the recently demonstrated hybrid materials using bismuth instead of antimony. The hybrid compound is solution-processed onto the photoactive layer based on a classical blend, which is composed of a PTB7-Th low band gap polymer as the donor mixed with PC70BM fullerene as the acceptor material. By using a regular device structure and an aluminum cathode, the solar cells exhibited a power conversion efficiency of 8.42%, equivalent to the reference device using ZnO nanocrystals as the IL, and strongly improved compared to the bismuth-based hybrid material. The processing of extraction layers up to a thickness of 80 nm of such hybrid material reveals that the change from bismuth to antimony has strongly improved the charge extraction and transport properties of the hybrid materials. Interestingly, nanocomposites made of the hybrid material mixed with ZnO nanocrystals in a 1:1 ratio further improved the electronic properties of the extraction layers, leading to a power conversion efficiency of 9.74%. This was addressed to a more closely packed morphology of the hybrid layer, leading to further improved electron extraction. It is important to note that these hybrid EELs, both pure and ZnO-doped, also greatly improved the stability of solar cells, both under dark storage in air and under lighting under an inert atmosphere compared to solar cells treated with ZnO intermediate layers.

  • 27.
    Fredj, Donia
    et al.
    Univ Sfax, Tunisia.
    Pourcin, Florent
    Aix Marseille Univ, France.
    Alkarsifi, Riva
    Aix Marseille Univ, France.
    Kilinc, Volkan
    Aix Marseille Univ, France.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Ben Dkhil, Sadok
    Aix Marseille Univ, France.
    Boudjada, Nassira Chniba
    CNRS, France.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Videlot-Ackermann, Christine
    Aix Marseille Univ, France.
    Margeat, Olivier
    Aix Marseille Univ, France.
    Ackermann, Joerg
    Aix Marseille Univ, France.
    Boujelbene, Mohamed
    Univ Sfax, Tunisia.
    Fabrication and Characterization of Hybrid Organic-Inorganic Electron Extraction Layers for Polymer Solar Cells toward Improved Processing Robustness and Air Stability2018Inngår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, nr 20, s. 17309-17317Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Organic-inorganic hybrid materials composed of bismuth and diaminopyridine are studied as novel materials for electron extraction layers in polymer solar cells using regular device structures. The hybrid materials are solution processed on top of two different low band gap polymers (PTB7 or PTB7-Th) as donor materials mixed with fullerene PC70BM as the acceptor. The intercalation of the hybrid layer between the photoactive layer and the aluminum cathode leads to solar cells with a power conversion efficiency of 7.8% because of significant improvements in all photovoltaic parameters, that is, short-circuit current density, fill factor, and open-circuit voltage, similar to the reference devices using ZnO as the interfacial layer. However when using thick layers of such hybrid materials for electron extraction, only small losses in photocurrent density are observed in contrast to the reference material ZnO of pronounced losses because of optical spacer effects. Importantly, these hybrid electron extraction layers also strongly improve the device stability in air compared with solar cells processed with ZnO interlayers. Both results underline the high potential of this new class of hybrid materials as electron extraction materials toward robust processing of air stable organic solar cells.

  • 28.
    Gaceur, Meriem
    et al.
    Aix Marseille University, France.
    Ben Dkhil, Sadok
    Aix Marseille University, France.
    Duche, David
    Aix Marseille University, France.
    Bencheikh, Fatima
    Aix Marseille University, France.
    Simon, Jean-Jacques
    Aix Marseille University, France.
    Escoubas, Ludovic
    Aix Marseille University, France.
    Mansour, Mahdi
    University of Jaume 1, Spain.
    Guerrero, Antonio
    University of Jaume 1, Spain.
    Garcia-Belmonte, Germa
    University of Jaume 1, Spain.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Dachraoui, Walid
    Aix Marseille University, France.
    Karim Diallo, Abdou
    Aix Marseille University, France.
    Videlot-Ackermann, Christine
    Aix Marseille University, France.
    Margeat, Olivier
    Aix Marseille University, France.
    Ackermann, Joerg
    Aix Marseille University, France.
    Ligand-Free Synthesis of Aluminum-Doped Zinc Oxide Nanocrystals and their Use as Optical Spacers in Color-Tuned Highly Efficient Organic Solar Cells2016Inngår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 26, nr 2, s. 243-253Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The color of polymer solar cells using an opaque electrode is given by the reflected light, which depends on the composition and thickness of each layer of the device. Metal-oxide-based optical spacers are intensively studied in polymer solar cells aiming to optimize the light absorption. However, the low conductivity of materials such as ZnO and TiO2 limits the thickness of such optical spacers to tenths of nanometers. A novel synthesis route of cluster-free Al-doped ZnO (AZO) nanocrystals (NCs) is presented for solution processing of highly conductive layers without the need of temperature annealing, including thick optical spacers on top of polymer blends. The processing of 80 nm thick optical spacers based on AZO nanocrystal solutions on top of 200 nm thick polymer blend layer is demonstrated leading to improved photocurrent density of 17% compared to solar cells using standard active layers of 90 nm in combination with thin ZnO-based optical spacers. These AZO NCs also open new opportunities for the processing of high-efficiency color tuned solar cells. For the first time, it is shown that applying solution-processed thick optical spacer with polymer blends of different thicknesses can process solar cells of similar efficiency over 7% but of different colors.

  • 29.
    Guo, Xuewen
    et al.
    East China Normal Univ, Peoples R China.
    Li, Danqin
    East China Normal Univ, Peoples R China.
    Zhang, Yuexing
    Soochow Univ, Peoples R China.
    Jan, Ming
    Shanghai Jiao Tong Univ, Peoples R China.
    Xu, Jinqiu
    Shanghai Jiao Tong Univ, Peoples R China.
    Wang, Zhiquan
    East China Normal Univ, Peoples R China.
    Li, Bo
    East China Normal Univ, Peoples R China.
    Xiong, Shaobing
    East China Normal Univ, Peoples R China.
    Li, Yanqing
    Soochow Univ, Peoples R China.
    Liu, Feng
    Shanghai Jiao Tong Univ, Peoples R China.
    Tang, Jianxin
    Soochow Univ, Peoples R China.
    Duan, Chungang
    East China Normal Univ, Peoples R China; Shanxi Univ, Peoples R China.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Bao, Qinye
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten. East China Normal Univ, Peoples R China; Shanxi Univ, Peoples R China; Soochow Univ, Peoples R China.
    Understanding the effect of N2200 on performance of J71: ITIC bulk heterojunction in ternary non-fullerene solar cells2019Inngår i: Organic electronics, ISSN 1566-1199, E-ISSN 1878-5530, Vol. 71, s. 65-71Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    None-fullerene solar cells with ternary architecture have attracted much attention because it is an effective approach for boosting the device power conversion efficiency. Here, the crystalline polymer N2200 as the third component is integrated into J71: ITIC bulk heterojunction. A series of characterizations indicate that N2200 could increase photo-harvesting, balanced hole and electron mobilities, enhanced exciton dissociation, and suppressed charge recombination, which result in the comprehensive improvement of open circuit voltage, short circuit current and fill factor in the device. Moreover, after introduction of N2200, the morphology of the ternary active layer is optimized, and the film crystallinity is improved. This work demonstrates that adding a small quantity of high crystallization acceptor into non-fullerene donor: acceptor mixture is a promising strategy toward developing high-performance organic solar cells.

    Fulltekst tilgjengelig fra 2021-05-08 08:41
  • 30.
    Guo, Xuewen
    et al.
    East China Normal Univ, Peoples R China.
    Zhang, Yuexing
    Soochow Univ, Peoples R China.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Braun, Slawomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Wang, Zhiquan
    East China Normal Univ, Peoples R China.
    Li, Bo
    East China Normal Univ, Peoples R China.
    Li, Yanqing
    Soochow Univ, Peoples R China.
    Duan, Chungang
    East China Normal Univ, Peoples R China; Shanxi Univ, Peoples R China.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Tang, Jianxin
    East China Normal Univ, Peoples R China.
    Fang, Junfeng
    Chinese Acad Sci, Peoples R China.
    Bao, Qinye
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten. East China Normal Univ, Peoples R China.
    Novel small-molecule zwitterionic electrolyte with ultralow work function as cathode modifier for inverted polymer solar cells2018Inngår i: Organic electronics, ISSN 1566-1199, E-ISSN 1878-5530, Vol. 59, s. 15-20Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Interfacial compatibility between the electrode and organic semiconductor plays a critical role in controlling the charge transport and hence efficiency of organic solar cell. Here, we introduce a novel small-molecule zwitterionic electrolyte (S1) combined with ZnO as electron transporting interlayer employed for the inverted PTB7:PC71BM bulk heterojunction solar cell. The resulting device with the S1/ZnO stacked interlayer achieves a high PCE of 8.59%, obtaining a 16.2% improvement over the control device performance of 7.4% without the S1 attributed to the significant increased short-circuit current density and fill factor. The interfacial properties are investigated. It is found that the S1/ZnO interlayer possess an ultralow work function of 3.6 eV, which originates from the interfacial double dipole step induced by the zwitterionic side chain electrostatic realignment at interface. The S1/ZnO interlayer exhibits the excellent charge extraction ability, suppresses the charge recombination loss and decreases the series resistance at the active layer/electrode contact.

  • 31.
    Håkansson, Anna
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Han, Shaobo
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Wang, Suhao
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Lu, Jun
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Braun, Slawomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Effect of (3-Glycidyloxypropyl)Trimethoxysilane (GOPS) on the Electrical Properties of PEDOT:PSS Films2017Inngår i: Journal of Polymer Science Part B: Polymer Physics, ISSN 0887-6266, E-ISSN 1099-0488, Vol. 55, nr 10, s. 814-820Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS) has been reported as a successful functional material in a broad variety of applications. One of the most important advantages of PEDOT:PSS is its water-solubility, which enables simple and environmental friendly manufacturing processes. Unfortunately, this also implies that pristine PEDOT:PSS films are unsuitable for applications in aqueous environments. To reach stability in polar solvents, (3-glycidyloxypropyl)trimethoxysilane (GOPS) is typically used to cross-link PEDOT:PSS. Although this strategy is widely used, its mechanism and effect on PEDOT:PSS performance have not been articulated yet. Here, we present a broad study that provides a better understanding of the effect of GOPS on the electrical and electronic properties of PEDOT:PSS. We show that the GOPS reacts with the sulfonic acid group of the excess PSS, causing a change in the PEDOT:PSS film morphology, while the oxidation level of PEDOT remains unaffected. This is at the origin of the observed conductivity changes. (c) 2017 Wiley Periodicals, Inc.

  • 32.
    Ibupoto, Zafar Hussain
    et al.
    Division of Material Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå, Sweden; Dr. M.A Kazi Institute of Chemistry University of Sindh Jamshoro, Sindh, Pakistan.
    Tahira, Aneela
    Division of Material Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå, Sweden.
    Tang, PengYi
    Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, Catalonia, Spain; Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, Sant Adrià del Besòs, Barcelona, Catalonia, Spain.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Morante, Joan Ramon
    Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, Sant Adrià del Besòs, Barcelona, Catalonia, Spain.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Arbiol, Jordi
    Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, Catalonia, Spain; ICREA, Pg. Lluís Companys 23, Barcelona, Catalonia, Spain.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Vomiero, Alberto
    Division of Material Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå, Sweden.
    MoSx@NiO Composite Nanostructures: An Advanced Nonprecious Catalyst for Hydrogen Evolution Reaction in Alkaline Media2019Inngår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 29, nr 7, artikkel-id 1807562Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The design of the earth-abundant, nonprecious, efficient, and stable electrocatalysts for efficient hydrogen evolution reaction (HER) in alkaline media is a hot research topic in the field of renewable energies. A heterostructured system composed of MoSx deposited on NiO nanostructures (MoSx@NiO) as a robust catalyst for water splitting is proposed here. NiO nanosponges are applied as cocatalyst for MoS2 in alkaline media. Both NiO and MoS2@NiO composites are prepared by a hydrothermal method. The NiO nanostructures exhibit sponge-like morphology and are completely covered by the sheet-like MoS2. The NiO and MoS2 exhibit cubic and hexagonal phases, respectively. In the MoSx@NiO composite, the HER experiment in 1 m KOH electrolyte results in a low overpotential (406 mV) to produce 10 mA cm(-2) current density. The Tafel slope for that case is 43 mV per decade, which is the lowest ever achieved for MoS2-based electrocatalyst in alkaline media. The catalyst is highly stable for at least 13 h, with no decrease in the current density. This simple, cost-effective, and environmentally friendly methodology can pave the way for exploitation of MoSx@NiO composite catalysts not only for water splitting, but also for other applications such as lithium ion batteries, and fuel cells.

  • 33.
    Kesters, Jurgen
    et al.
    Hasselt University, Belgium.
    Govaerts, Sanne
    Hasselt University, Belgium.
    Pirotte, Geert
    Hasselt University, Belgium.
    Drijkoningen, Jeroen
    Hasselt University, Belgium.
    Chevrier, Michele
    University of Montpellier, France; University of Mons UMONS, Belgium.
    Van den Brande, Niko
    Vrije University of Brussel, Belgium.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Van Mele, Bruno
    Vrije University of Brussel, Belgium.
    Lutsen, Laurence
    Hasselt University, Belgium.
    Vanderzande, Dirk
    Hasselt University, Belgium.
    Manca, Jean
    Hasselt University, Belgium.
    Clement, Sebastien
    University of Montpellier, France.
    Von Hauff, Elizabeth
    Vrije University of Amsterdam, Netherlands.
    Maes, Wouter
    Hasselt University, Belgium.
    High-Permittivity Conjugated Polyelectrolyte Interlayers for High-Performance Bulk Heterojunction Organic Solar Cells2016Inngår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 8, nr 10, s. 6309-6314Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Conjugated polyelectrolyte (CPE) interfacial layers present a powerful way to boost the I-V characteristics of organic photovoltaics. Nevertheless, clear guidelines with respect to the structure of high-performance interlayers are still lacking. In this work, impedance spectroscopy is applied to probe the dielectric permittivity of a series of polythiophene-based CPEs. The presence of ionic pendant groups grants the formation of a capacitive double layer, boosting the charge extraction and device efficiency. A counteracting effect is the diminishing affinity with the underlying photoactive layer. To balance these two effects, we found copolymer structures containing nonionic side chains to be beneficial.

  • 34.
    Kiefer, David
    et al.
    Chalmers Univ Technol, Sweden.
    Kroon, Renee
    Chalmers Univ Technol, Sweden.
    Hofmann, Anna I.
    Chalmers Univ Technol, Sweden.
    Sun, Hengda
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Giovannitti, Alexander
    Imperial Coll London, England; Imperial Coll London, England.
    Stegerer, Dominik
    Chalmers Univ Technol, Sweden; Tech Univ Chemnitz, Germany.
    Cano, Alexander
    Chalmers Univ Technol, Sweden.
    Hynynen, Jonna
    Chalmers Univ Technol, Sweden.
    Yu, Liyang
    Chalmers Univ Technol, Sweden.
    Zhang, Yadong
    Georgia Inst Technol, GA 30332 USA; Georgia Inst Technol, GA 30332 USA.
    Nai, Dingqi
    Univ Calif Davis, CA 95616 USA.
    Harrelson, Thomas F.
    Univ Calif Davis, CA 95616 USA.
    Sommer, Michael
    Tech Univ Chemnitz, Germany.
    Moule, Adam J.
    Univ Calif Davis, CA 95616 USA.
    Kemerink, Martijn
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Komplexa material och system. Linköpings universitet, Tekniska fakulteten.
    Marder, Seth R.
    Georgia Inst Technol, GA 30332 USA; Georgia Inst Technol, GA 30332 USA.
    McCulloch, Iain
    Imperial Coll London, England; Imperial Coll London, England; King Abdullah Univ Sci and Technol, Saudi Arabia.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Mueller, Christian
    Chalmers Univ Technol, Sweden.
    Double doping of conjugated polymers with monomer molecular dopants2019Inngår i: Nature Materials, ISSN 1476-1122, E-ISSN 1476-4660, Vol. 18, nr 2, s. 149-+Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Molecular doping is a crucial tool for controlling the charge-carrier concentration in organic semiconductors. Each dopant molecule is commonly thought to give rise to only one polaron, leading to a maximum of one donor: acceptor charge-transfer complex and hence an ionization efficiency of 100%. However, this theoretical limit is rarely achieved because of incomplete charge transfer and the presence of unreacted dopant. Here, we establish that common p-dopants can in fact accept two electrons per molecule from conjugated polymers with a low ionization energy. Each dopant molecule participates in two charge-transfer events, leading to the formation of dopant dianions and an ionization efficiency of up to 200%. Furthermore, we show that the resulting integer charge-transfer complex can dissociate with an efficiency of up to 170%. The concept of double doping introduced here may allow the dopant fraction required to optimize charge conduction to be halved.

  • 35.
    Lach, Stefan
    et al.
    Univ Kaiserslautern, Germany.
    Altenhof, Anna
    Univ Kaiserslautern, Germany.
    Shi, Shengwei
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten. Wuhan Inst Technol, Peoples R China.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ziegler, Christiane
    Univ Kaiserslautern, Germany.
    Electronic and magnetic properties of a ferromagnetic cobalt surface by adsorbing ultrathin films of tetracyanoethylene2019Inngår i: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 21, nr 28, s. 15833-15844Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Ultrathin films of tetracyanoethylene (TCNE) on Co(100) were investigated by means of spin-integrated and spin-resolved photoemission spectroscopy ((sp-)UPS), X-ray photoemission spectroscopy (XPS), near edge X-ray absorption fine-structure spectroscopy (NEXAFS), and X-ray magnetic circular dichroism (XMCD). We found a coverage-dependent modulation of the interface dipole and a switching between a metallic and a resistive spin filtering at the interface triggered by two distinct adsorption geometries of TCNE. The strongest hybridization and spin structure modifications are found at low coverage with a face-on adsorption geometry indicating changes in the distance between the surface Co atoms beneath. TCNE has the potential to manipulate the magnetic moments in the Co surface itself, including the possibility of magnetic hardening effects. In summary, the system TCNE/Co offers an experimentally rather easy and controllable way to build up a stable molecular platform stabilizing the reactive ferromagnetic Co surface and customizing the electronic and magnetic properties of the resulting spinterface simultaneously. This makes this system very attractive for spintronic applications as an alternative, less reactive but highly spin polarized foundation beside graphene-based systems.

  • 36.
    Li, Guowei
    et al.
    Max Planck Inst Chem Phys Solids, Germany.
    Fu, Chenguang
    Max Planck Inst Chem Phys Solids, Germany.
    Shi, Wujun
    ShanghaiTech Univ, Peoples R China.
    Jiao, Lin
    Max Planck Inst Chem Phys Solids, Germany.
    Wu, Jiquan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Yang, Qun
    Max Planck Inst Chem Phys Solids, Germany.
    Saha, Rana
    Max Planck Inst Microstruct Phys, Germany.
    Kamminga, Machteld E.
    Univ Groningen, Netherlands.
    Srivastava, Abhay K.
    Max Planck Inst Microstruct Phys, Germany.
    Liu, Enke
    Max Planck Inst Chem Phys Solids, Germany.
    Yazdani, Aliza N.
    Carleton Coll, MN 55057 USA.
    Kumar, Nitesh
    Max Planck Inst Chem Phys Solids, Germany.
    Zhang, Jian
    Tech Univ Dresden, Germany.
    Blake, Graeme R.
    Univ Groningen, Netherlands.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Wirth, Steffen
    Max Planck Inst Chem Phys Solids, Germany.
    Auffermann, Gudrun
    Max Planck Inst Chem Phys Solids, Germany.
    Gooth, Johannes
    Max Planck Inst Chem Phys Solids, Germany.
    Parkin, Stuart
    Max Planck Inst Microstruct Phys, Germany.
    Madhavan, Vidya
    Univ Illinois, IL 61801 USA; Univ Illinois, IL 61801 USA.
    Feng, Xinliang
    Tech Univ Dresden, Germany.
    Sun, Yan
    Max Planck Inst Chem Phys Solids, Germany.
    Felser, Claudia
    Max Planck Inst Chem Phys Solids, Germany.
    Dirac Nodal Arc Semimetal PtSn4: An Ideal Platform for Understanding Surface Properties and Catalysis for Hydrogen EvolutionInngår i: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Conductivity, carrier mobility, and a suitable Gibbs free energy are important criteria that determine the performance of catalysts for a hydrogen evolution reaction (HER). However, it is a challenge to combine these factors into a single compound. Herein, we discover a superior electrocatalyst for a HER in the recently identified Dirac nodal arc semimetal PtSn4. The determined turnover frequency (TOF) for each active site of PtSn4 is 1.54 H-2 s(-1) at 100 mV. This sets a benchmark for HER catalysis on Pt-based noble metals and earth-abundant metal catalysts. We make use of the robust surface states of PtSn4 as their electrons can be transferred to the adsorbed hydrogen atoms in the catalytic process more efficiently. In addition, PtSn4 displays excellent chemical and electrochemical stabilities after long-term exposure in air and long-time HER stability tests.

  • 37.
    Li, Guowei
    et al.
    Max Planck Inst Chem Phys Solids, Germany.
    Fu, Chenguang
    Max Planck Inst Chem Phys Solids, Germany.
    Wu, Jiquan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Rao, Jiancun
    Univ Maryland, MD 20742 USA.
    Liou, Sz-Chian
    Univ Maryland, MD 20742 USA.
    Xu, Xijin
    Univ Jinan, Peoples R China.
    Shao, Baiqi
    Chinese Acad Sci, Peoples R China.
    Liu, Kai
    Chinese Acad Sci, Peoples R China.
    Liu, Enke
    Chinese Acad Sci, Peoples R China.
    Kumar, Nitesh
    Max Planck Inst Chem Phys Solids, Germany.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Gooth, Johannes
    Max Planck Inst Chem Phys Solids, Germany.
    Auffermann, Gudrun
    Max Planck Inst Chem Phys Solids, Germany.
    Sun, Yan
    Max Planck Inst Chem Phys Solids, Germany.
    Felser, Claudia
    Max Planck Inst Chem Phys Solids, Germany.
    Zhang, Baomin
    Univ Jinan, Peoples R China.
    Synergistically creating sulfur vacancies in semimetal-supported amorphous MoS2 for efficient hydrogen evolution2019Inngår i: Applied Catalysis B: Environmental, ISSN 0926-3373, E-ISSN 1873-3883, Vol. 254Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The presence of elemental vacancies in materials are inevitable according to statistical thermodynamics, which will decide the chemical and physical properties of the investigated system. However, the controlled manipulation of vacancies for specific applications is a challenge. Here we report a facile method for creating large concentrations of S vacancies in the inert basal plane of MoS2 supported on semimetal CoMoP2. With a small applied potential, S atoms can be removed in the form of H2S due to the optimized free energy of formation. The existence of vacancies favors electron injection from the electrode to the active site by decreasing the contact resistance. As a consequence, the catalytic current is increased by 221% with the vacancy-rich MoS2 as electrocatalyst for hydrogen evolution reaction (HER). A small overpotential of 75 mV is needed to deliver a current density of 10 mA cm(-2), which is considered among the best values achieved for MoS2. It is envisaged that this work may provide a new strategy for utilizing the semimetal phase for structuring MoS2 into a multi-functional material.

  • 38.
    Li, Guowei
    et al.
    Max Planck Inst Chem Phys Solids, Germany.
    Sun, Yan
    Max Planck Inst Chem Phys Solids, Germany.
    Rao, Jiancun
    Univ Maryland, MD 20742 USA.
    Wu, Jiquan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Kumar, Anil
    Univ Groningen, Netherlands.
    Xu, Qiu Nan
    Max Planck Inst Chem Phys Solids, Germany.
    Fu, Chenguang
    Max Planck Inst Chem Phys Solids, Germany.
    Liu, Enke
    Max Planck Inst Chem Phys Solids, Germany.
    Blake, Graeme R.
    Univ Groningen, Netherlands.
    Werner, Peter
    Max Planck Inst Microstruct Phys, Germany.
    Shao, Baiqi
    Chinese Acad Sci, Peoples R China.
    Liu, Kai
    Chinese Acad Sci, Peoples R China.
    Parkin, Stuart
    Max Planck Inst Microstruct Phys, Germany.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Liou, Sz-Chian
    Univ Maryland, MD 20742 USA.
    Auffermann, Gudrun
    Max Planck Inst Chem Phys Solids, Germany.
    Zhang, Jian
    Tech Univ Dresden, Germany; Tech Univ Dresden, Germany.
    Felser, Claudia
    Max Planck Inst Chem Phys Solids, Germany.
    Feng, Xinliang
    Tech Univ Dresden, Germany; Tech Univ Dresden, Germany.
    Carbon-Tailored Semimetal MoP as an Efficient Hydrogen Evolution Electrocatalyst in Both Alkaline and Acid Media2018Inngår i: ADVANCED ENERGY MATERIALS, ISSN 1614-6832, Vol. 8, nr 24, artikkel-id 1801258Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The electrolysis processes such as hydrogen evolution reaction (HER) require high efficient catalysts with robust surface stability. A high conductivity is also necessary to speed up the charge transport between the catalyst and the electrolyte. Recently, the observation of exceedingly high conductivity in the topological semimetal MoP, has provided a model catalyst to investigate the correlation between the electrical transport and the electrocatalytic activity for the HER. Thus, MoP is encapsulated in a Mo, P codoped carbon layer (MoP@C). This composite material exhibits outstanding HER performance, with an extremely low overpotential of 49 mV at a current density of 10 mA cm(-2) and a Tafel slope of 54 mV dec(-1) in an alkaline medium. In addition, electron transport analysis indicates that MoP exhibits high conductivity and mobility due to the existence of triple-point fermions and a complex Fermi surface. Furthermore, the presence of P-C and Mo-C bonds at the interface between the carbon layer and the MoP particles modulates the band structure of MoP@C and facilitates fast electron transfer, accumulation, and subsequent delocalization, which are in turn responsible for the excellent HER activity.

  • 39.
    Lindell, Linda
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Vahlberg, Cecilia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik. Linköpings universitet, Tekniska högskolan.
    Uvdal, Kajsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär ytfysik och nanovetenskap. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Braun, Slawomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Self-assembled monolayer engineered interfaces: Energy level alignment tuning through chain length and end-group polarity2015Inngår i: Journal of Electron Spectroscopy and Related Phenomena, ISSN 0368-2048, E-ISSN 1873-2526, Vol. 204, s. 140-144Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We explore the different mechanisms through which self-assembled monolayers can tailor energy level alignment at metal-organic semiconductor interfaces. We show that the large work function variation that can be induced by the self-assembled monolayer on gold has limited ability to tailor the interface energy level alignment of a subsequent organic semiconductor overlayer. (C) 2015 Elsevier B.V. All rights reserved.

  • 40.
    Liu, Jincheng
    et al.
    Aix Marseille University, France; Huaqiao University, Peoples R China.
    Margeat, Olivier
    Aix Marseille University, France.
    Dachraoui, Walid
    Aix Marseille University, France.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Ackermann, Jorg
    Aix Marseille University, France.
    Gram-Scale Synthesis of Ultrathin Tungsten Oxide Nanowires and their Aspect Ratio-Dependent Photocatalytic Activity2014Inngår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 24, nr 38, s. 6029-6037Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Preparation of size-tunable ultrathin W18O49 nanowires by an alcohol-assisted solvothermal decomposition of tungstic acid is reported. The synthesis of ultrathin W18O49 nanowires can be achieved at large scale and low cost, while changing the molecular size of the used alcohols can control the nanowire morphology. With increasing the molecular size of the alcohol, the synthesized W18O49 nanowires have smaller diameters and longer lengths. The as-prepared blue W18O49 nanomaterials show a very strong visible light absorption caused by oxygen defects and an aspect ratio-dependent photocatalytic activity on the degradation of pollutant rhodamine B (RhB) under simulated solar light irradiation. It is found that the W18O49 nanowires with highest aspect ratio show the highest activity in the photodegradation of RhB, which could be related to their higher density of oxygen surface defects in combination with a higher adsorption capability of RhB. This new synthetic route of size tunable ultrathin W18O49 nanomaterials will enlarge their potential applications and can be possibly used in the pyrolyzing synthesis of other metal oxide nanomaterials.

  • 41.
    Liu, Xianjie
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Electronic Structure Characterization of Soft Semiconductors2019Inngår i: Advanced Materials Interfaces, ISSN 2196-7350, Vol. 6, nr 16, artikkel-id 1900439Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Soft semiconductors are a class of materials that have seen increased interest in terms of both basic research and development of technology, in particular optoelectronic devices. These materials, organic semiconductors and metal halide perovskites, are defined by being more mechanically malleable than the traditional crystalline inorganic semiconductors and with thin film fabrication done at lower temperatures and often from solution. In this short perspective article, basic properties of the materials are introduced, as well as their typical applications and a number of advanced characterization techniques that offer distinct advantages for studying soft semiconductor thin films.

  • 42.
    Malti, Abdellah
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Brooke, Robert
    University of S Australia, Australia.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Zhao, Dan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Andersson Ersman, Peter
    AcreoSwedish ICT, Sweden.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    A substrate-free electrochromic device2015Manuskript (preprint) (Annet vitenskapelig)
    Abstract [en]

    Electrochromic displays based on conducting polymers offer higher contrast, are cheaper, faster, more durable, and easier to synthesize as well as to process than their non-polymeric counterparts. The field of organic electrochromics has made considerable strides in the last decade with the development of new materials and methods. Here, we present a cellulose composite combining PEDOT:PSS and TiO2 that is a free-standing electrochromic material. Owing to the excellent refractive properties of TiO2, this nanocomposite is white in the neutral state and, when reduced, turns blue resulting in a color contrast exceeding 30. The composite has a granular morphology and, as shown by AFM, an intermingling of TiO2 and PEDOT:PSS at the surface. Variation of TiO2 within the material led to a trade-off in optical and electrical properties. A proof of concept free-standing electrochromic device was fabricated by casting several layers, which was found to be stable over 100 cycles.

  • 43.
    Malti, Abdellah
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Brooke, Robert
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Zhao, Dan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Andersson Ersman, Peter
    Acreo Swedish ICT, Sweden.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Freestanding electrochromic paper2016Inngår i: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 4, nr 41, s. 9680-9686Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Electrochromic displays based on conducting polymers exhibit higher contrasts and are cheaper, faster, more durable, and easier to synthesize as well as to process than their non-polymeric counterparts. However, current devices are typically based on thin electrochromic layers on top of a reflecting surface, which limits the thickness of the polymer layer to a few hundred nanometers. Here, we embed a light-scattering material within the electrochromic material to achieve a freestanding electrochromic paper-like electrode (50 to 500 mm). The device is based on a cellulose composite combining PEDOT:PSS as the electrochromic material and TiO2 nanoparticles as the reflecting material. Owing to the excellent refractive properties of TiO2, this nanocomposite is white in the neutral state and, when reduced, turns blue resulting in a color contrast around 30. The composite has a granular morphology and, as shown by AFM, an intermingling of TiO2 and PEDOT: PSS at the surface. Variation of the amount of TiO2 within the composite material is shown to result in a trade-off in optical and electrical properties. A proof-of-concept freestanding electrochromic device was fabricated by casting all layers successively to maximize the interlayer conformation. This freestanding device was found to be stable for over 100 cycles when ramped between 3 and -3 V.

  • 44.
    Malti, Abdellah
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Edberg, Jesper
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Granberg, Hjalmar
    Innventia AB, Stockholm, Sweden.
    Khan, Zia Ullah
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Andreasen, Jens W.
    Technical University of Denmark, Department of Energy Conversion and Storage, Roskilde, Denmark.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Zhao, Dan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Zhang, Hao
    Department of Physics and Astronomy, University of Kentucky, Lexington, USA.
    Yao, Ylong
    Department of Physics and Astronomy, University of Kentucky, Lexington, USA.
    Brill, Joseph W.
    Department of Physics and Astronomy, University of Kentucky, Lexington, USA.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Wåberg, Lars
    KTH Royal Institute of Technology, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, and Wallenberg Wood Science Center, Stockholm, Sweden.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Enabling organic power electronics with a cellulose nano-scaffold2015Manuskript (preprint) (Annet vitenskapelig)
    Abstract [en]

    Exploiting the nanoscale properties of certain materials enables the creation of new materials with a unique set of properties. Here, we report on an electronic (and ionic) conducting paper based on cellulose nanofibrils (CNF) composited with poly(3,4-ethylene-dioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS), which may be facilely processed into large three-dimensional geometries, while keeping unprecedented electronic and ionic conductivities of 140 S/cm and 20 mS/cm, respectively. This is achieved by cladding the CNF with PEDOT:PSS, and trapping an ion-transporting phase in the interstices between these nanofibrils. The unique properties of the resulting nanopaper composite have been used to demonstrate (electrochemical) transistors, supercapacitors and conductors resulting in exceptionally high device parameters, such as an associated transconductance, charge storage capacity and current level beyond 1 S, 1 F and 1 A, respectively.

  • 45.
    Malti, Abdellah
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Edberg, Jesper
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Granberg, Hjalmar
    Innventia AB, Stockholm.
    Ullah Khan, Zia
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Andreasen, Jens W
    Technical University of Denmark, Roskilde.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Zhao, Dan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Zhang, Hao
    University of Kentucky, Lexington.
    Yao, Yulong
    University of Kentucky, Lexington.
    Brill, Joseph W
    University of Kentucky, Lexington.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Wågberg, Lars
    KTH Royal Institute of Technology, Stockholm.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    An Organic Mixed Ion–Electron Conductor for Power Electronics2016Inngår i: Advanced Science, ISSN 2198-3844, artikkel-id 1500305Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A mixed ionic–electronic conductor based on nanofibrillated cellulose composited with poly(3,4-ethylene-dioxythio­phene):­poly(styrene-sulfonate) along with high boiling point solvents is demonstrated in bulky electrochemical devices. The high electronic and ionic conductivities of the resulting nanopaper are exploited in devices which exhibit record values for the charge storage capacitance (1F) in supercapacitors and transconductance (1S) in electrochemical transistors.

  • 46.
    Mitraka, Evangelia
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Jafari, Mohammad Javad
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Ederth, Thomas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Oxygen-induced doping on reduced PEDOT2017Inngår i: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 5, nr 9, s. 4404-4412Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) has shown promise as air electrode in renewable energy technologies like metal-air batteries and fuel cells. PEDOT is based on atomic elements of high abundance and is synthesized at low temperature from solution. The mechanism of oxygen reduction reaction (ORR) over chemically polymerized PEDOT: Cl still remains controversial with eventual role of transition metal impurities. However, regardless of the mechanistic route, we here demonstrate yet another key active role of PEDOT in the ORR mechanism. Our study demonstrates the decoupling of conductivity (intrinsic property) from electrocatalysis (as an extrinsic phenomenon) yielding the evidence of doping of the polymer by oxygen during ORR. Hence, the PEDOT electrode is electrochemically reduced (undoped) in the voltage range of ORR regime, but O-2 keeps it conducting; ensuring PEDOT to act as an electrode for the ORR. The interaction of oxygen with the polymer electrode is investigated with a battery of spectroscopic techniques.

  • 47.
    Munoz, William Armando
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Understanding the Impact of Film Disorder and Local Surface Potential in Ultraviolet Photoelectron Spectroscopy of PEDOT2018Inngår i: Macromolecular rapid communications, ISSN 1022-1336, E-ISSN 1521-3927, Vol. 39, nr 4, artikkel-id 1700533Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The spectra of conducting polymers obtained using ultraviolet photoelectron spectroscopy (UPS) exhibit a typical broadening of the tail sigma(UPS) approximate to 1 eV, which by an order of magnitude exceeds a commonly accepted value of the broadening of the tail of the density of states sigma(DOS) approximate to 0.1 eV obtained using transport measurements. In this work, an origin of this anomalous broadening of the tail of the UPS spectra in a doped conducting polymer, PEDOT (poly(3,4-ethylenedioxythiophene)), is discussed. Based on the semiempirical approach and using a realistic morphological model, the density of valence states in PEDOT doped with molecular counterions is computed. It is shown that due to a disordered character of the material with randomly distributed counterions, the localized charge carriers in PEDOT crystallites experience spatially varying electrostatic potential. This leads to spatially varying local vacuum levels and binding energies. Taking this variation into account the UPS spectrum is obtained with the broadening of the tail comparable to the experimentally observed one. The results imply that the observed broadening of the tail of the UPS spectra in PEDOT provides information about a disordered spatially varying potential in the material rather than the broadening of the DOS itself.

  • 48.
    Murib, M. S.
    et al.
    Hasselt University, Belgium.
    Yeap, W. S.
    Hasselt University, Belgium.
    Martens, D.
    Ghent University of INTEC, Belgium.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Bienstman, P.
    Ghent University of INTEC, Belgium.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Schoening, M. J.
    Aachen University of Appl Science, Germany.
    Michiels, L.
    Hasselt University, Belgium.
    Haenen, K.
    Hasselt University, Belgium; IMEC VZW, Belgium.
    Serpenguzel, A.
    Koc University, Turkey.
    Wagner, P.
    Hasselt University, Belgium.
    Photonic studies on polymer-coated sapphire-spheres: A model system for biological ligands2015Inngår i: Sensors and Actuators A-Physical, ISSN 0924-4247, E-ISSN 1873-3069, Vol. 222, s. 212-219Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this study we show an optical biosensor concept, based on elastic light scattering from sapphire micro-spheres. Transmitted and elastic scattering intensity of the microspheres (radius 500 mu m, refractive index 1.77) on an optical fiber half coupler is analyzed at 1510 nm. The 0.43 nm angular mode spacing of the resonances is comparable to the angular mode spacing value estimated using the optical size of the microsphere. The spectral linewidths of the resonances are in the order of 0.01 am, which corresponds to quality factors of approximately 10(5). A polydopamine layer is used as a functionalizing agent on sapphire microspherical resonators in view of biosensor implementation. The varying layer thickness on the microsphere is determined as a function of the resonance wavelength shift. It is shown that polymer functionalization has a minor effect on the quality factor. This is a promising step toward the development of an optical biosensor. (C) 2014 Elsevier B.V. All rights reserved.

  • 49.
    Ning, Weihua
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. Nanjing Tech Univ, Peoples R China.
    Wang, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Wu, Bo
    Nanyang Technol Univ, Singapore.
    Lu, Jun
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Yan, Zhibo
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. Nanjing Univ, Peoples R China.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Tao, Youtian
    Nanjing Tech Univ, Peoples R China.
    Liu, Jun-Ming
    Nanjing Univ, Peoples R China.
    Huang, Wei
    Nanjing Tech Univ, Peoples R China.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Hultman, Lars
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Sum, Tze Chien
    Nanyang Technol Univ, Singapore.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Long Electron-Hole Diffusion Length in High-Quality Lead-Free Double Perovskite Films2018Inngår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 30, nr 20, artikkel-id 1706246Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Developing environmentally friendly perovskites has become important in solving the toxicity issue of lead-based perovskite solar cells. Here, the first double perovskite (Cs2AgBiBr6) solar cells using the planar structure are demonstrated. The prepared Cs2AgBiBr6 films are composed of high-crystal-quality grains with diameters equal to the film thickness, thus minimizing the grain boundary length and the carrier recombination. These high-quality double perovskite films show long electron-hole diffusion lengths greater than 100 nm, enabling the fabrication of planar structure double perovskite solar cells. The resulting solar cells based on planar TiO2 exhibit an average power conversion efficiency over 1%. This work represents an important step forward toward the realization of environmentally friendly solar cells and also has important implications for the applications of double perovskites in other optoelectronic devices.

  • 50.
    Petsagkourakis, Ioannis
    et al.
    University of Bordeaux, France.
    Pavlopoulou, Eleni
    Institute Polytech Bordeaux Bordeaux INP, France.
    Cloutet, Eric
    University of Bordeaux, France.
    Fang Chen, Yan
    University of Bordeaux, France.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Dilhaire, Stefan
    University of Bordeaux, France.
    Fleury, Guillaume
    University of Bordeaux, France.
    Hadziioannou, Georges
    University of Bordeaux, France.
    Correlating the Seebeck coefficient of thermoelectric polymer thin films to their charge transport mechanism2018Inngår i: Organic electronics, ISSN 1566-1199, E-ISSN 1878-5530, Vol. 52, s. 335-341Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Room temperature flexible heat harvesters based on conducting polymers are ideally suited to cover the energy demands of the modern nomadic society. The optimization of their thermoelectric efficiency is usually sought by tuning the oxidation levels of the conducting polymers, even if such methodology is detrimental to the Seebeck coefficient (S) as both the Seebeck coefficient and the electrical conductivity (sigma) are antagonistically related to the carrier concentration. Here we report a concurrent increase of S and sigma and we experimentally derive the dependence of Seebeck coefficient on charge carrier mobility for the first time in organic electronics. Through specific control of the conducting polymer synthesis, we enabled the formation of a denser percolation network that facilitated the charge transport and the thermodiffusion of the charge carriers inside the conducting polymer layer, while the material shifted from a Fermi glass towards a semi-metal, as its crystallinity increased. This work sheds light upon the origin of the thermoelectric properties of conducting polymers, but also underlines the importance of enhanced charge carrier mobility for the design of efficient thermoelectric polymers.

12 1 - 50 of 77
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf