Change search
Refine search result
1234567 1 - 50 of 17029
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Aabou, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et. al.,
    ZZ -> l(+)l(-)l '(+)l '(-) cross-section measurements and search for anomalous triple gauge couplings in 13 TeV pp collisions with the ATLAS detector2018In: Physical Review C. Nuclear Physics, ISSN 0556-2813, E-ISSN 1089-490XArticle in journal (Refereed)
    Abstract [en]

    Measurements of ZZ production in the l(+)l(-)l'(+)l'(-) channel in proton-proton collisions at 13 TeV center-of-mass energy at the Large Hadron Collider are presented. The data correspond to 36.1 fb(-1) of collisions collected by the ATLAS experiment in 2015 and 2016. Here l and l ' stand for electrons or muons. Integrated and differential ZZ -> l(+)l(-)l'(+)l'(-) cross sections with Z -> l(+)l(-) candidate masses in the range of 66 GeV to 116 GeV are measured in a fiducial phase space corresponding to the detector acceptance and corrected for detector effects. The differential cross sections are presented in bins of twenty observables, including several that describe the jet activity. The integrated cross section is also extrapolated to a total phase space and to all standard model decays of Z bosons with mass between 66 GeV and 116 GeV, resulting in a value of 17.3 +/- 0.9 [+/- 0.6(start) +/- 0.5 (syst) +/- 0.6 (lumi)] pb. The measurements are found to be in good agreement with the standard model. A search for neutral triple gauge couplings is performed using the transverse momentum distribution of the leading Z boson candidate. No evidence for such couplings is found and exclusion limits are set on their parameters.

  • 2. Aaboud, B
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for heavy long-lived charged R-hadrons with the ATLAS detector in 3.2 fb(-1) of proton-proton collision data at root s=13 TeV2016In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 760, p. 647-665Article in journal (Refereed)
    Abstract [en]

    A search for heavy long-lived charged R-hadronsis reported using a data sample corresponding to 3.2fb(-1)of proton-proton collisions at root s = 13 TeV collected by the ATLAS experiment at the Large Hadron Collider at CERN. The search is based on observables related to large ionisation losses and slow propagation velocities, which are signatures of heavy charged particles travelling significantly slower than the speed of light. No significant deviations from the expected background are observed. Upper limits at 95% confidence level are provided on the production cross section of long-lived R-hadronsin the mass range from 600 GeV to 2000 GeV and gluino, bottom and top squark masses are excluded up to 1580 GeV, 805 GeV and 890 GeV, respectively.

  • 3. Aaboud, B
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for Higgs and Z Boson Decays to phi gamma with the ATLAS Detector2016In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 117, no 11, article id 111802Article in journal (Refereed)
    Abstract [en]

    A search for the decays of the Higgs and Z bosons to a phi meson and a photon is performed with a pp collision data sample corresponding to an integrated luminosity of 2.7 fb(-1) collected at root s = 13 TeV with the ATLAS detector at the LHC. No significant excess of events is observed above the background, and 95% confidence level upper limits on the branching fractions of the Higgs and Z boson decays to phi gamma of 1.4 x 10(-3) and 8.3 x 10(-6), respectively, are obtained.

  • 4. Aaboud, B
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for TeV-scale gravity signatures in high-mass final states with leptons and jets with the ATLAS detector at s=13 TeV2016In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 760, p. 520-537Article in journal (Refereed)
    Abstract [en]

    A search for physics beyond the Standard Model, in final states with at least one high transverse momentum charged lepton (electron or muon) and two additional high transverse momentum leptons or jets, is performed using 3.2 fb (1) of proton-proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015 at root s = 13 TeV. The upper end of the distribution of the scalar sum of the transverse momenta of leptons and jets is sensitive to the production of high-mass objects. No excess of events beyond Standard Model predictions is observed. Exclusion limits are set for models of microscopic black holes with two to six extra dimensions.

  • 5. Aaboud, B
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    Search for scalar leptoquarks in pp collisions at √s = 13 TeV with the ATLAS experiment2016In: New Journal of Physics, ISSN 1367-2630, E-ISSN 1367-2630, Vol. 18, no 9, article id 093016Article in journal (Refereed)
    Abstract [en]

    We report a search for first generation scalar leptoquarks using 1.03 fb(-1) of proton-proton collisions data produced by the Large Hadron Collider at root s = 7 TeV and recorded by the ATLAS experiment. Leptoquarks are sought via their decay into an electron or neutrino and a quark, producing events with two oppositely charged electrons and at least two jets, or events with an electron, missing transverse momentum and at least two jets. Control data samples are used to validate background predictions from Monte Carlo simulation. In the signal region, the observed event yields are consistent with the background expectations. We exclude at 95% confidence level the production of first generation scalar leptoquark with masses m(LQ) < 660 (607) GeV when assuming the branching fraction of a leptoquark to a charged lepton is equal to 1.0 (0.5).

  • 6. Aaboud, M
    et al.
    Amorim, Antonio
    KTH.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L
    et al.,
    Search for metastable heavy charged particles with large ionization energy loss in pp collisions at root s=13 TeV using the ATLAS experiment2016In: Physical Review D. Particles and fields, ISSN 0556-2821, E-ISSN 1089-4918, Vol. 93, no 11, article id 112015Article in journal (Refereed)
    Abstract [en]

    This paper presents a search for massive charged long-lived particles produced in pp collisions at root s = 13 TeV at the LHC using the ATLAS experiment. The data set used corresponds to an integrated luminosity of 3.2 fb(-1). Many extensions of the Standard Model predict the existence of massive charged long-lived particles, such as R-hadrons. These massive particles are expected to be produced with a velocity significantly below the speed of light, and therefore to have a specific ionization higher than any Standard Model particle of unit charge at high momenta. The Pixel subsystem of the ATLAS detector is used to measure the ionization energy loss of reconstructed charged particles and to search for such highly ionizing particles. The search presented here has much greater sensitivity than a similar search performed using the ATLAS detector in the root s = 8 TeV data set, thanks to the increase in expected signal cross section due to the higher center-of-mass energy of collisions, to an upgraded detector with a new silicon layer close to the interaction point, and to analysis improvements. No significant deviation from Standard Model background expectations is observed, and lifetime-dependent upper limits on R-hadron production cross sections and masses are set. Gluino R-hadrons with lifetimes above 0.4 ns and decaying to q (q) over bar plus a 100 GeV neutralino are excluded at the 95% confidence level, with lower mass limit ranging between 740 and 1590 GeV. In the case of stable R-hadrons the lower mass limit at the 95% confidence level is 1570 GeV

  • 7.
    Aaboud, M.
    et al.
    Univ Clermont Auvergne, LPC, CNRS IN2P3, Clermont Ferrand, France..
    Bloch, I.
    Royal Inst Technol, Phys Dept, Stockholm, Sweden..
    Citterio, M.
    Royal Inst Technol, Phys Dept, Stockholm, Sweden..
    Shlomi, J.
    KTH, School of Engineering Sciences (SCI), Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    Search for pair production of Higgs bosons in the b(b)over-barb(b)over-bar final state using proton-proton collisions at root s=13 TeV with the ATLAS detector2019In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 1, article id 030Article in journal (Refereed)
    Abstract [en]

    A search for Higgs boson pair production in the bbbb final state is carried out with up to 36.1 fb(-1) of LHC proton-proton collision data collected at s=13 TeV with the ATLAS detector in 2015 and 2016. Three benchmark signals are studied: a spin-2 graviton decaying into a Higgs boson pair, a scalar resonance decaying into a Higgs boson pair, and Standard Model non-resonant Higgs boson pair production. Two analyses are carried out, each implementing a particular technique for the event reconstruction that targets Higgs bosons reconstructed as pairs of jets or single boosted jets. The resonance mass range covered is 260-3000 GeV. The analyses are statistically combined and upper limits on the production cross section of Higgs boson pairs times branching ratio to bbbb are set in each model. No significant excess is observed; the largest deviation of data over prediction is found at a mass of 280 GeV, corresponding to 2.3 standard deviations globally. The observed 95% confidence level upper limit on the non-resonant production is 13 times the Standard Model prediction.

  • 8.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Collaboration, A. T. L. A. S.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    et al.,
    Measurements of Higgs boson properties in the diphoton decay channel with 36 fb(-1) of pp collision data at root s=13 TeV with the ATLAS detector2018In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 98, no 5, article id 052005Article in journal (Refereed)
    Abstract [en]

    Properties of the Higgs boson are measured in the two-photon final state using 36.1 fb(-1) of proton-proton collision data recorded at root s = 13 TeV by the ATLAS experiment at the Large Hadron Collider. Cross-section measurements for the production of a Higgs boson through gluon-gluon fusion, vector-boson fusion, and in association with a vector boson or a top-quark pair are reported. The signal strength, defined as the ratio of the observed to the expected signal yield, is measured for each of these production processes as well as inclusively. The global signal strength measurement of 0.99 +/- 0.14 improves on the precision of the ATLAS measurement at root s = 7 and 8 TeV by a factor of two. Measurements of gluon-gluon fusion and vector-boson fusion productions yield signal strengths compatible with the Standard Model prediction. Measurements of simplified template cross sections, designed to quantify the different Higgs boson production processes in specific regions of phase space, are reported. The cross section for the production of the Higgs boson decaying to two isolated photons in a fiducial region closely matching the experimental selection of the photons is measured to be 55 +/- 10 fb, which is in good agreement with the Standard Model prediction of 64 +/- 2 fb. Furthermore, cross sections in fiducial regions enriched in Higgs boson production in vector-boson fusion or in association with large missing transverse momentum, leptons or top-quark pairs are reported. Differential and double-differential measurements are performed for several variables related to the diphoton kinematics as well as the kinematics and multiplicity of the jets produced in association with a Higgs boson. These differential cross sections are sensitive to higher order QCD corrections and properties of the Higgs boson, such as its spin and CP quantum numbers. No significant deviations from a wide array of Standard Model predictions are observed. Finally, the strength and tensor structure of the Higgs boson interactions are investigated using an effective Lagrangian, which introduces additional CP-even and CP-odd interactions. No significant new physics contributions are observed.

  • 9.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Collaboration, A. T. L. A. S.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    et al.,
    Observation of Higgs boson production in association with a top quark pair at the LHC with the ATLAS detector2018In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 784, p. 173-191Article in journal (Refereed)
    Abstract [en]

    The observation of Higgs boson production in association with a top quark pair (t (t) over barH), based on the analysis of proton-proton collision data at a centre-of-mass energy of 13 TeV recorded with the ATLAS detector at the Large Hadron Collider, is presented. Using data corresponding to integrated luminosities of up to 79.8 fb(-1), and considering Higgs boson decays into b (b) over bar, WW*, tau(+)tau(-), gamma gamma, and ZZ*, the observed significance is 5.8 standard deviations, compared to an expectation of 4.9 standard deviations. Combined with the t (t) over barH searches using a dataset corresponding to integrated luminosities of 4.5 fb(-1) at 7 TeV and 20.3 fb(-1) at 8 TeV, the observed (expected) significance is 6.3 (5.1) standard deviations. Assuming Standard Model branching fractions, the total t (t) over barH production cross section at 13 TeV is measured to be 670 +/- 90(stat.)(-100)(+110)(syst.) fb, in agreement with the Standard Model prediction.

  • 10. Aaboud, M D
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Top-quark mass measurement in the all-hadronic t(t)over-bar decay channel at root s=8 TeV with the ATLAS detector2017In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 9Article in journal (Refereed)
    Abstract [en]

    The top-quark mass is measured in the all-hadronic top-antitop quark decay channel using proton-proton collisions at a centre-of-mass energy of root s = 8 TeV with the ATLAS detector at the CERN Large Hadron Collider. The data set used in the analysis corresponds to an integrated luminosity of 20.2 fb(-1). The large multi-jet background is modelled using a data-driven method. The top-quark mass is obtained from template fits to the ratio of the three-jet to the dijet mass. The three-jet mass is obtained from the three jets assigned to the top quark decay. From these three jets the dijet mass is obtained using the two jets assigned to the W boson decay. The top-quark mass is measured to be 173.72 +/- 0.55 (stat.) +/- 1.01 (syst.) GeV.

  • 11.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    et. al,
    Combination of the Searches for Pair-Produced Vectorlike Partners of the Third-Generation Quarks at root s=13 TeV with the ATLAS Detector2018In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 121, no 21, article id 211801Article in journal (Refereed)
    Abstract [en]

    A combination of the searches for pair-produced vectorlike partners of the top and bottom quarks in various decay channels (T -> Zt/Wb/Ht, B -> Zb/Wt/Hb) is performed using 36.1 fb(-1) of pp collision data at root s = 13 TeV with the ATLAS detector at the Large Hadron Collider. The observed data are found to be in good agreement with the standard model background prediction in all individual searches. Therefore, combined 95% confidence-level upper limits are set on the production cross section for a range of vectorlike quark scenarios, significantly improving upon the reach of the individual searches. Model-independent limits are set assuming the vectorlike quarks decay to standard model particles. A singlet T is excluded for masses below 1.31 TeV and a singlet B is excluded for masses below 1.22 TeV. Assuming a weak isospin (T, B) doublet and vertical bar V-Tb vertical bar << vertical bar V-tB vertical bar, T and B masses below 1.37 TeV are excluded.

  • 12.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    et al.,
    Measurements of gluon-gluon fusion and vector-boson fusion Higgs boson production cross-sections in the H -> WW* -> e nu mu nu decay channel in pp collisions at root s=13 TeV with the ATLAS detector2019In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 789, p. 508-529Article in journal (Refereed)
    Abstract [en]

    Higgs boson production cross-sections in proton-proton collisions are measured in the H -> WW*-> e nu mu nu decay channel. The proton-proton collision data were produced at the Large Hadron Collider at a centre-of-mass energy of 13 TeV and recorded by the ATLAS detector in 2015 and 2016, corresponding to an integrated luminosity of 36.1 fb(-1). The product of the H -> WW* branching fraction times the gluon-gluon fusion and vector-boson fusion cross-sections are measured to be 11.4(-1.1)(+1.2)(stat.)(-1.7)(+1.8)(syst.) pb and 0.50(-0.22)(+0.24)(stat.) +/- 0.17(syst.) pb, respectively, in agreement with Standard Model predictions. Elsevier B.V.

  • 13. Aaboud, M.
    et al.
    Kastanas, A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, B.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, C. C.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, G.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. E.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, J.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    ATLAS Collaboration,
    Prompt and non-prompt J/ ψ elliptic flow in Pb+Pb collisions at √sNN=5.02 Tev with the ATLAS detector2018In: The European Physical Journal CArticle in journal (Refereed)
    Abstract [en]

    The elliptic flow of prompt and non-prompt J/ ψ was measured in the dimuon decay channel in Pb+Pb collisions at sNN=5.02 TeV with an integrated luminosity of 0.42nb-1 with the ATLAS detector at the LHC. The prompt and non-prompt signals are separated using a two-dimensional simultaneous fit of the invariant mass and pseudo-proper decay time of the dimuon system from the J/ ψ decay. The measurement is performed in the kinematic range of dimuon transverse momentum and rapidity 9 < pT< 30 GeV , | y| < 2 , and 0–60% collision centrality. The elliptic flow coefficient, v2, is evaluated relative to the event plane and the results are presented as a function of transverse momentum, rapidity and centrality. It is found that prompt and non-prompt J/ ψ mesons have non-zero elliptic flow. Prompt J/ ψv2 decreases as a function of pT, while for non-prompt J/ ψ it is, with limited statistical significance, consistent with a flat behaviour over the studied kinematic region. There is no observed dependence on rapidity or centrality.

  • 14. Aaboud, M.
    et al.
    Kastanas, A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, C.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, G.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. E.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, J.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et.al.,
    Measurement of the cross section for isolated-photon plus jet production in pp collisions at root s=13 TeV using the ATLAS detector2018In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, no 780, p. 578-602Article in journal (Refereed)
    Abstract [en]

    The dynamics of isolated-photon production in association with a jet in proton-proton collisions at a centre-of-mass energy of 13 TeV are studied with theATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb(-1). Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti-k(t) algorithm with radius parameter R = 0.4 and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon-jet invariant mass and the scattering angle in the photon-jet centre-of-mass system. Tree-level plus parton-shower predictions from SHERPA and PYTHIA as well as next-to-leading-order QCD predictions from JETPHOX and SHERPA are compared to the measurements. 

  • 15. Aaboud, M.
    et al.
    Kastanas, A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, C.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, G.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. E.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, J.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et.al.,
    Search for pair production of heavy vector-like quarks decaying into high-(PT) W bosons and top quarks in the lepton-plus-jets final state in pp collisions at root s=13 TeV with the ATLAS detector2018In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 8Article in journal (Refereed)
    Abstract [en]

    A search is presented for the pair production of heavy vector-like B quarks, primarily targeting B quark decays into a W boson and a top quark. The search is based on 36.1 fb(-1) of pp collisions at root s = 13 TeV recorded in 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. Data are analysed in the lepton-plus-jets final state, characterised by a high-transverse-momentum isolated electron or muon, large missing transverse momentum, and multiple jets, of which at least one is b-tagged. No significant deviation from the Standard Model expectation is observed. The 95% confidence level lower limit on the B mass is 1350 GeV assuming a 100% branching ratio to Wt. In the SU(2) singlet scenario, the lower mass limit is 1170 GeV. The 100% branching ratio limits are found to be also applicable to heavy vector-like X production, with charge +5/3, that decay into Wt. This search is also sensitive to a heavy vector-like B quark decaying into other final states (Zb and Hb) and thus mass limits on B production are set as a function of the decay branching ratios.

  • 16. Aaboud, M.
    et al.
    Kastanas, K. A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, B.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, C.C.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, G.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. E.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, J.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et.al.,
    Search for WW/WZ resonance production in lvqq final states in pp collisions at root s=13 TeV with the ATLAS detector2018In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479Article in journal (Refereed)
    Abstract [en]

    A search is conducted for new resonances decaying into a WW or WZ boson pair, where one W boson decays leptonically and the other W or Z boson decays hadronically. It is based on proton-proton collision data with an integrated luminosity of 36.1 fb(-1) collected with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of root s = 13 TeV in 2015 and 2016. The search is sensitive to diboson resonance production via vector-boson fusion as well as quark-antiquark annihilation and gluon-gluon fusion mechanisms. No significant excess of events is observed with respect to the Standard Model backgrounds. Several benchmark models are used to interpret the results. Limits on the production cross section are set for a new narrow scalar resonance, a new heavy vector-boson and a spin-2 Kaluza-Klein graviton.

  • 17. Aaboud, M.
    et al.
    Kastanas, K. A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, B.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, G.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. E.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, J.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    ATLAS Collaboration,
    et.al.,
    A search for pair-produced resonances in four-jet final states at root s=13 TeV with the ATLAS detector2018In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 78, no 3Article in journal (Refereed)
    Abstract [en]

    A search for massive coloured resonances which are pair-produced and decay into two jets is presented. The analysis uses 36.7 fb(-1) of root s = 13 TeV pp collision data recorded by the ATLAS experiment at the LHC in 2015 and 2016. No significant deviation from the background prediction is observed. Results are interpreted in a SUSY simplified model where the lightest supersymmetric particle is the top squark, (t) over tilde, which decays promptly into two quarks through R-parity-violating couplings. Top squarks with masses in the range 100 GeV < m((T) over tilde) < 410 GeV are excluded at 95% confidence level. If the decay is into a b-quark and a light quark, a dedicated selection requiring two b-tags is used to exclude masses in the ranges 100 GeV < m((t) over tilde) < 470 GeV and 480 GeV < m(<(t)over tilde>) < 610 GeV. Additional limits are set on the pair-production of massive colour-octet resonances.

  • 18.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Royal Inst Technol, Dept Phys, Stockholm, Sweden..
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Royal Inst Technol, Dept Phys, Stockholm, Sweden..
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Royal Inst Technol, Dept Phys, Stockholm, Sweden..
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Royal Inst Technol, Dept Phys, Stockholm, Sweden..
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Royal Inst Technol, Dept Phys, Stockholm, Sweden..
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Royal Inst Technol, Dept Phys, Stockholm, Sweden..
    Zwalinsk, L.
    et al,
    Search for new phenomena in events with same-charge leptons and b-jets in pp collisions at >=13 TeV with the ATLAS detector2018In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 12, article id 039Article in journal (Refereed)
    Abstract [en]

    A search for new phenomena in events with two same- charge leptons or three leptons and jets identi fi ed as originating from b - quarks in a data sample of 36.1 fb of pp collisions at ps = 13TeV recorded by the ATLAS detector at the Large Hadron Collider is reported. No signi fi cant excess is found and limits are set on vector- like quark, fourtop- quark, and same- sign top- quark pair production. The observed ( expected) 95% CL mass limits for a vector- like T - and B - quark singlet are mT > 0 : 98 ( 0 : 99) TeV and mB > 1 : 00 ( 1 : 01) TeV respectively. Limits on the production of the vector- like T5=3 - quark are also derived considering both pair and single production; in the former case the lower limit on the mass of the T5=3 - quark is ( expected to be) 1.19 ( 1.21) TeV. The Standard Model fourtop- quark production cross- section upper limit is ( expected to be) 69 ( 29) fb. Constraints are also set on exotic four- top- quark production models. Finally, limits are set on samesign top- quark pair production. The upper limit on uu ! tt production is ( expected to be) 89 ( 59) fb for a mediator mass of 1TeV, and a dark- matter interpretation is also derived, excluding a mediator of 3TeV with a dark- sector coupling of 1.0 and a coupling to ordinary matter above 0.31.

  • 19.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    In situ calibration of large-radius jet energy and mass in 13TeVproton-proton collisions with the ATLAS detector2019In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 79, no 2, article id 135Article in journal (Refereed)
    Abstract [en]

    The response of the ATLAS detector to large-radius jets is measured in situ using 36.2 fb(-1) of root s = 13TeV proton-proton collisions provided by the LHC and recorded by the ATLAS experiment during 2015 and 2016. The jet energy scale is measured in events where the jet recoils against a reference object, which can be either a calibrated photon, a reconstructed Z boson, or a system of well-measured small-radius jets. The jet energy resolution and a calibration of forward jets are derived using dijet balance measurements. The jet mass response is measured with two methods: using mass peaks formed by W bosons and top quarks with large transverse momenta and by comparing the jet mass measured using the energy deposited in the calorimeter with that using the momenta of charged-particle tracks. The transverse momentum and mass responses in simulations are found to be about 2-3% higher than in data. This difference is adjusted for with a correction factor. The results of the different methods are combined to yield a calibration over a large range of transverse momenta (p(T)). The precision of the relative jet energy scale is 1-2% for 200 GeV < p(T) < TeV, while that of the mass scale is 2-10%. The ratio of the energy resolutions in data and simulation is measured to a precision of 10-15% over the same p(T) range.

  • 20.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    Search for long-lived particles in final states with displaced dimuon vertices in pp collisions at root s=13 TeV with the ATLAS detector2019In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 99, no 1, article id 012001Article in journal (Refereed)
    Abstract [en]

    A search is performed for a long-lived particle decaying into a final state that includes a pair of muons of opposite-sign electric charge, using proton-proton collision data collected at root s = 13 TeV by the ATLAS detector at the Large Hadron Collider corresponding to an integrated luminosity of 32.9 fb(-1). No significant excess over the Standard Model expectation is observed. Limits at 95% confidence level on the lifetime of the long-lived particle are presented in models of new phenomena including gauge-mediated supersymmetry or decay of the Higgs boson, H, to a pair of dark photons, Z(D). Lifetimes in the range c tau = 1-2400 cm are excluded, depending on the parameters of the model. In the supersymmetric model, the lightest neutralino is the next-to-lightest supersymmetric particle, with a relatively long lifetime due to its weak coupling to the gravitino, the lightest supersymmetric particle. The lifetime limits are determined for very light gravitino mass and various assumptions for the neutralino mass in the range 300-1000 GeV. In the dark photon model, the lifetime limits are interpreted as exclusion contours in the plane of the coupling between the Z(D) and the Standard Model Z boson versus the Z(D) mass (in the range 20-60 GeV), for various assumptions for the H -> Z(D)Z(D) branching fraction.

  • 21.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    et al.,
    Measurements of differential cross sections of top quark pair production in association with jets in pp collisions at root s=13 TeV using the ATLAS detector2018In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 10, article id 159Article in journal (Refereed)
    Abstract [en]

    Measurements of di ff erential cross sections of top quark pair production in association with jets by the ATLAS experiment at the LHC are presented. The measurements are performed as functions of the top quark transverse momentum, the transverse momentum of the top quark-antitop quark system and the out-of-plane transverse momentum using data from pp collisions at p s = 13TeV collected by the ATLAS detector at the LHC in 2015 and corresponding to an integrated luminosity of 3.2 fb. The top quark pair events are selected in the lepton (electron or muon) + jets channel. The measured cross sections, which are compared to several predictions, allow a detailed study of top quark production.

  • 22.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    et al.,
    Observation of Centrality-Dependent Acoplanarity for Muon Pairs Produced via Two-Photon Scattering in Pb plus Pb Collisions at root s(NN)=5.02 TeV with the ATLAS Detector2018In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 121, no 21, article id 212301Article in journal (Refereed)
    Abstract [en]

    This Letter presents a measurement of gamma gamma -> mu(+)mu(-)- production in Pb + Pb collisions recorded by the ATLAS detector at the Large Hadron Collider at root s(NN) = 5.02 TeV with an integrated luminosity of 0.49 nb(-1). The azimuthal angle and transverse momentum correlations between the muons are measured as a function of collision centrality. The muon pairs are produced from gamma gamma through the interaction of the large electromagnetic fields of the nuclei. The contribution from background sources of muon pairs is removed using a template fit method. In peripheral collisions, the muons exhibit a strong back-to-back correlation consistent with previous measurements of muon pair production in ultraperipheral collisions. The angular correlations are observed to broaden significantly in central collisions. The modifications arc qualitatively consistent with rescattering of the muons while passing through the hot matter produced in the collision.

  • 23.
    Aaboud, M.
    et al.
    Faculté des SciencesUniversité Mohamed Premier and LPTPMOujdaMorocco.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Operation and performance of the ATLAS Tile Calorimeter in Run 12018In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 78, no 12, article id 987Article in journal (Refereed)
    Abstract [en]

    The Tile Calorimeter is the hadron calorimeter covering the central region of the ATLAS experiment at the Large Hadron Collider. Approximately 10,000 photomultipliers collect light from scintillating tiles acting as the active material sandwiched between slabs of steel absorber. This paper gives an overview of the calorimeter's performance during the years 2008-2012 using cosmic-ray muon events and proton-proton collision data at centre-of-mass energies of 7 and 8 TeV with a total integrated luminosity of nearly 30 fb(-1). The signal reconstruction methods, calibration systems as well as the detector operation status are presented. The energy and time calibration methods performed excellently, resulting in good stability of the calorimeter response under varying conditions during the LHC Run 1. Finally, the Tile Calorimeter response to isolated muons and hadrons as well as to jets from proton-proton collisions is presented. The results demonstrate excellent performance in accord with specifications mentioned in the Technical Design Report.

  • 24.
    Aaboud, M.
    et al.
    Univ Mohamed Premier & LPTPM, Fac Sci, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Royal Inst Technol, Dept Phys, Stockholm, Sweden..
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    et al.,
    Search for dark matter in events with a hadronically decaying vector boson and missing transverse momentum in pp collisions at root s=13 TeV with the ATLAS detector2018In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 10, article id 180Article in journal (Refereed)
    Abstract [en]

    A search for dark matter (DM) particles produced in association with a hadronically decaying vector boson is performed using pp collision data at a centre-of-mass energy of TeV corresponding to an integrated luminosity of 36.1 fb(-1), recorded by the ATLAS detector at the Large Hadron Collider. This analysis improves on previous searches for processes with hadronic decays of W and Z bosons in association with large missing transverse momentum (mono-W/Z searches) due to the larger dataset and further optimization of the event selection and signal region definitions. In addition to the mono-W/Z search, the as yet unexplored hypothesis of a new vector boson Z produced in association with dark matter is considered (mono-Z search). No significant excess over the Standard Model prediction is observed. The results of the mono-W/Z search are interpreted in terms of limits on invisible Higgs boson decays into dark matter particles, constraints on the parameter space of the simplified vector-mediator model and generic upper limits on the visible cross sections for W/Z+DM production. The results of the mono-Z search are shown in the framework of several simplified-model scenarios involving DM production in association with the Z boson.

  • 25.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    et al.,
    Search for doubly charged scalar bosons decaying into same-sign W boson pairs with the ATLAS detector2019In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 79, no 1, article id 58Article in journal (Refereed)
    Abstract [en]

    A search for doubly charged scalar bosons decaying into W boson pairs is presented. It uses a data sample from proton-proton collisions corresponding to an integrated luminosity of 36.1fb-1 collected by the ATLAS detector at the LHC at a centre-of-mass energy of 13TeV in 2015 and 2016. This search is guided by a model that includes an extension of the Higgs sector through a scalar triplet, leading to a rich phenomenology that includes doubly charged scalar bosons H +/-+/-. Those bosons are produced in pairs in proton-proton collisions and decay predominantly into electroweak gauge bosons H +/-+/- W +/- W +/-. Experimental signatures with several leptons, missing transverse energy and jets are explored. No significant deviations from the Standard Model predictions are found. The parameter space of the benchmark model is excluded at 95% confidence level for H +/-+/- bosons with masses between 200 and 220 GeV.

  • 26.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    et al.,
    Search for Higgs boson pair production in the gamma gamma b(b)over-bar final state with 13TeV pp collision data collected by the ATLAS experiment2018In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 11, article id 040Article in journal (Refereed)
    Abstract [en]

    A search is performed for resonant and non-resonant Higgs boson pair production in the final state. The data set used corresponds to an integrated luminosity of 36.1 fb(-1) of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. No significant excess relative to the Standard Model expectation is observed. The observed limit on the non-resonant Higgs boson pair cross-section is 0.73 pb at 95% confidence level. This observed limit is equivalent to 22 times the predicted Standard Model cross-section. The Higgs boson self-coupling (=(HHH)/SM) is constrained at 95% confidence level to -8.2 < < 13.2. For resonant Higgs boson pair production through , the limit is presented, using the narrow-width approximation, as a function of m(X) in the range 260 GeV < m(X) < 1000 GeV. The observed limits range from 1.1 pb to 0.12 pb over this mass range.

  • 27.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    et al.,
    Search for lepton-flavor violation in different-flavor, high-mass final states in pp collisions at root s=13 TeV with the ATLAS detector2018In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 98, no 9, article id 092008Article in journal (Refereed)
    Abstract [en]

    A search is performed for a heavy particle decaying into different-flavor, dilepton pairs (e mu, e tau or mu tau), using 36.1 fb(-1) of proton-proton collision data at root s = 13 TeV collected in 2015-2016 by the ATLAS detector at the Large Hadron Collider. No excesses over the Standard Model predictions are observed. Bayesian lower limits at the 95% credibility level are placed on the mass of a Z' boson, the mass of a supersymmetric tau-sneutrino, and on the threshold mass for quantum black-hole production. For the Z' and sneutrino models, upper cross-section limits are converted to upper limits on couplings, which are compared with similar limits from low-energy experiments and which are more stringent for the e tau and mu tau modes.

  • 28.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    et al.,
    Search for lepton-flavor-violating decays of the Z boson into a r lepton and a light lepton with the ATLAS detector2018In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 98, no 9, article id 092010Article in journal (Refereed)
    Abstract [en]

    Direct searches for lepton flavor violation in decays of the Z boson with the ATLAS detector at the LHC are presented. Decays of the Z boson into an electron or muon and a hadronically decaying r lepton are considered. The searches are based on a data sample of proton-proton collisions collected by the ATLAS detector in 2015 and 2016, corresponding to an integrated luminosity of 36.1 fb(-1) at a center-of-mass energy of root s = 13 TeV. No statistically significant excess of events above the expected background is observed, and upper limits on the branching ratios of lepton-flavor-violating decays are set at the 95% confidence level: B(Z -> e tau) < 5.8 x 10(-5) and B(Z -> mu tau) < 2.4 x 10(-5). This is the first limit on B(Z -> e tau) with ATLAS data. The upper limit on 13(Z -> mu tau) is combined with a previous ATLAS result based on 20.3 fb(-1) of proton protoncollision data at a center-of-mass energy of root s = 8 TeV and the combined upper limit at 95% confidence level is B(Z -> mu tau) < 1.3 x 10(-5).

  • 29.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L
    CERN, Geneva, Switzerland.
    et al.,
    Search for pair and single production of vectorlike quarks in final states with at least one Z boson decaying into a pair of electrons or muons in pp collision data collected with the ATLAS detector at root s=13 TeV2018In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 98, no 11, article id 112010Article in journal (Refereed)
    Abstract [en]

    A search for vectorlike quarks is presented, which targets their decay into a Z boson and a third-generation Standard Model quark. In the case of a vectorlike quark T (B) with charge +2/3e (-1/3e), the decay searched for is T -> Zt (B -> Zb). Data for this analysis were taken during 2015 and 2016 with the ATLAS detector at the Large Hadron Collider and correspond to an integrated luminosity of 36.1 fb(-1) of pp collisions at root s = 13 TeV. The final state used is characterized by the presence of b-tagged jets, as well as a Z boson with high transverse momentum, which is reconstructed from a pair of opposite-sign same-flavor leptons. Pair and single production of vectorlike quarks are both taken into account and are each searched for using optimized dileptonic exclusive and trileptonic inclusive event selections. In these selections, the high scalar sum of jet transverse momenta, the presence of high-transverse-momentum large-radius jets, as well as-in the case of the single-production selections-the presence of forward jets are used. No significant excess over the background-only hypothesis is found and exclusion limits at 95% confidence level allow masses of vectorlike quarks of m(T) > 1030 GeV (m(T) > 1210 GeV) and m(B) > 1010 GeV (m(B) > 1140 GeV) in the singlet (doublet) model. In the case of 100% branching ratio for T -> Zt (B -> Zb), the limits are m(T) > 1340 GeV (m(B) > 1220 GeV). Limits at 95% confidence level are also set on the coupling to Standard Model quarks for given vectorlike quark masses.

  • 30.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    et al.,
    Search for squarks and gluinos in final states with hadronically decaying tau-leptons, jets, and missing transverse momentum using pp collisions at root s=13 TeV with the ATLAS detector2019In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 99, no 1, article id 012009Article in journal (Refereed)
    Abstract [en]

    A search for supersymmetry in events with large missing transverse momentum, jets, and at least one hadronically decaying tau-lepton is presented. Two exclusive final states with either exactly one or at least two tau-leptons are considered. The analysis is based on proton-proton collisions at root s = 13 TeV corresponding to an integrated luminosity of 36.1 fb(-1) delivered by the Large Hadron Collider and recorded by the ATLAS detector in 2015 and 2016. No significant excess is observed over the Standard Model expectation. At 95% confidence level, model-independent upper limits on the cross section are set and exclusion limits are provided for two signal scenarios: a simplified model of gluino pair production with tau-rich cascade decays, and a model with gauge-mediated supersymmetry breaking (GMSB). In the simplified model, gluino masses up to 2000 GeV are excluded for low values of the mass of the lightest supersymmetric particle (LSP), while LSP masses up to 1000 GeV are excluded for gluino masses around 1400 GeV. In the GMSB model, values of the supersymmetry-breaking scale are excluded below 110 TeV for all values of tan beta in the range 2 <= tan beta <= 60, and below 120 TeV for tan beta > 30.

  • 31.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ristić, B
    KTH, School of Engineering Sciences (SCI), Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    et al.,
    Search for pairs of highly collimated photon-jets in pp collisions at root s=13 TeV with the ATLAS detector2019In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 99, no 1, article id 012008Article in journal (Refereed)
    Abstract [en]

    Results of a search for the pair production of photon-jets-collimated groupings of photons-in the ATLAS detector at the Large Hadron Collider are reported. Highly collimated photon-jets can arise from the decay of new, highly boosted particles that can decay to multiple photons collimated enough to be identified in the electromagnetic calorimeter as a single, photonlike energy cluster. Data from proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 36.7 fb(-1), were collected in 2015 and 2016. Candidate photon-jet pair production events are selected from those containing two reconstructed photons using a set of identification criteria much less stringent than that typically used for the selection of photons, with additional criteria applied to provide improved sensitivity to photon-jets. Narrow excesses in the reconstructed diphoton mass spectra are searched for. The observed mass spectra are consistent with the Standard Model background expectation. The results are interpreted in the context of a model containing a new, high-mass scalar particle with narrow width, X, that decays into pairs of photon-jets via new, light particles, a. Upper limits are placed on the cross section times the product of branching ratios sigma x B(X -> aa) x B(a -> gamma gamma)(2) for 200 GeV < m(X) < 2 TeV and for ranges of m(a) from a lower mass of 100 MeV up to between 2 and 10 GeV, depending upon m(X). Upper limits are also placed on sigma x B(X -> aa) x B(a -> 3 pi(0))(2) for the same range of m(X) and for ranges of m(a) from a lower mass of 500 MeV up to between 2 and 10 GeV.

  • 32. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    et al.,
    Measurement of the azimuthal anisotropy of charged particles produced in root s NN=5.02 TeV Pb+ Pb collisions with the ATLAS detector2018In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 78, no 12, article id 997Article in journal (Refereed)
    Abstract [en]

    Measurements of the azimuthal anisotropy in lead-lead collisions at v s NN = 5.02 TeV are presented using a data sample corresponding to 0.49 nb -1 integrated luminosity collected by the ATLAS experiment at the LHC in 2015. The recorded minimum-bias sample is enhanced by triggers for " ultra-central" collisions, providing an opportunity to perform detailed study of flow harmonics in the regime where the initial state is dominated by fluctuations. The anisotropy of the charged-particle azimuthal angle distributions is characterized by the Fourier coefficients, v2-v7, which are measured using the two-particle correlation, scalar-product and event-plane methods. The goal of the paper is to provide measurements of the differential as well as integrated flow harmonics vn over wide ranges of the transverse momentum, 0.5 < pT < 60 GeV, the pseudorapidity, |.| < 2.5, and the collision centrality 0-80%. Results from different methods are compared and discussed in the context of previous and recent measurements in Pb+ Pb collisions at v s NN = 2.76TeV and 5.02TeV. In particular, the shape of the pT dependence of elliptic or triangular flow harmonics is observed to be very similar at different centralities after scaling the vn and pT values by constant factors over the centrality interval 0-60% and the pT range 0.5 < pT < 5 GeV.

  • 33. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Evidence for the H -> b(b)over-bar decay with the ATLAS detector2017In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 12, article id 024Article in journal (Refereed)
    Abstract [en]

    A search for the decay of the Standard Model Higgs boson into a b (b) over bar pair when produced in association with a W or Z boson is performed with the ATLAS detector. The analysed data, corresponding to an integrated luminosity of 36.1 fb(-1), were collected in proton-proton collisions in Run 2 of the Large Hadron Collider at a centre-of-mass energy of 13 TeV. Final states containing zero, one and two charged leptons (electrons or muons) are considered, targeting the decays Z -> vv, W -> lv and Z -> ll. For a Higgs boson mass of 125 GeV, an excess of events over the expected background from other Standard Model processes is found with an observed significance of 3.5 standard deviations, compared to an expectation of 3.0 standard deviations. This excess provides evidence for the Higgs boson decay into b-quarks and for its production in association with a vector boson. The combination of this result with that of the Run 1 analysis yields a ratio of the measured signal events to the Standard Model expectation equal to 0.90 +/- 0.18(stat.)(-0.19)(+0.21)(syst.). Assuming the Standard Model production cross-section, the results are consistent with the value of the Yukawa coupling to b-quarks in the Standard Model.

  • 34. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    et al.,
    ATLAS Collaboration,
    Search for doubly charged Higgs boson production in multi-lepton final states with the ATLAS detector using proton–proton collisions at √s=13TeV2018In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 78, no 3Article in journal (Refereed)
    Abstract [en]

    A search for doubly charged Higgs bosons with pairs of prompt, isolated, highly energetic leptons with the same electric charge is presented. The search uses a proton–proton collision data sample at a centre-of-mass energy of 13 TeV corresponding to 36.1 fb - 1of integrated luminosity recorded in 2015 and 2016 by the ATLAS detector at the LHC. This analysis focuses on the decays H± ±→ e±e±, H± ±→ e±μ± and H± ±→ μ±μ±, fitting the dilepton mass spectra in several exclusive signal regions. No significant evidence of a signal is observed and corresponding limits on the production cross-section and consequently a lower limit on m(H± ±) are derived at 95% confidence level. With ℓ±ℓ±= e±e±/ μ±μ±/ e±μ±, the observed lower limit on the mass of a doubly charged Higgs boson only coupling to left-handed leptons varies from 770 to 870 GeV (850 GeV expected) for B(H± ±→ ℓ±ℓ±) = 100 % and both the expected and observed mass limits are above 450 GeV for B(H± ±→ ℓ±ℓ±) = 10 % and any combination of partial branching ratios.

  • 35. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    et. al.,
    ATLAS Collaboration,
    Search for electroweak production of supersymmetric states in scenarios with compressed mass spectra at √s=13  TeV with the ATLAS detector2018In: Physical Review D. Particles and fields, ISSN 0556-2821, E-ISSN 1089-4918, Vol. 97Article in journal (Refereed)
    Abstract [en]

    A search for electroweak production of supersymmetric particles in scenarios with compressed mass spectra in final states with two low-momentum leptons and missing transverse momentum is presented. This search uses proton-proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015–2016, corresponding to 36.1  fb−1 of integrated luminosity at √s=13  TeV. Events with same-flavor pairs of electrons or muons with opposite electric charge are selected. The data are found to be consistent with the Standard Model prediction. Results are interpreted using simplified models of R-parity-conserving supersymmetry in which there is a small mass difference between the masses of the produced supersymmetric particles and the lightest neutralino. Exclusion limits at 95% confidence level are set on next-to-lightest neutralino masses of up to 145 GeV for Higgsino production and 175 GeV for wino production, and slepton masses of up to 190 GeV for pair production of sleptons. In the compressed mass regime, the exclusion limits extend down to mass splittings of 2.5 GeV for Higgsino production, 2 GeV for wino production, and 1 GeV for slepton production. The results are also interpreted in the context of a radiatively-driven natural supersymmetry model with nonuniversal Higgs boson masses.

  • 36. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    et al.,
    ATLAS Collaboration,
    Search for heavy ZZ resonances in the ℓ+ℓ-ℓ+ℓ- and ℓ+ℓ-v-v- final states using proton–proton collisions at √s=13 TeV with the ATLAS detector2018In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 78, no 4Article in journal (Refereed)
    Abstract [en]

    A search for heavy resonances decaying into a pair of Z bosons leading to ℓ+ℓ-ℓ+ℓ- and ℓ+ℓ- final states, where ℓ stands for either an electron or a muon, is presented. The search uses proton–proton collision data at a centre-of-mass energy of 13 TeV corresponding to an integrated luminosity of 36.1 fb - 1 collected with the ATLAS detector during 2015 and 2016 at the Large Hadron Collider. Different mass ranges for the hypothetical resonances are considered, depending on the final state and model. The different ranges span between 200 and 2000 GeV. The results are interpreted as upper limits on the production cross section of a spin-0 or spin-2 resonance. The upper limits for the spin-0 resonance are translated to exclusion contours in the context of Type-I and Type-II two-Higgs-doublet models, while those for the spin-2 resonance are used to constrain the Randall–Sundrum model with an extra dimension giving rise to spin-2 graviton excitations. 

  • 37. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics.
    L.Zwalinski,
    et. al.,
    Search for an invisibly decaying Higgs boson or dark matter candidates produced in association with a Z boson in pp collisions at s=13 TeV with the ATLAS detector2018In: Chemical Physics Letters, ISSN 0009-2614, E-ISSN 1873-4448, Vol. 776, p. 318-337Article in journal (Refereed)
    Abstract [en]

    A search for an invisibly decaying Higgs boson or dark matter candidates produced in association with a leptonically decaying Z boson in proton–proton collisions at s=13 TeV is presented. This search uses 36.1 fb−1 of data collected by the ATLAS experiment at the Large Hadron Collider. No significant deviation from the expectation of the Standard Model backgrounds is observed. Assuming the Standard Model ZH production cross-section, an observed (expected) upper limit of 67% (39%) at the 95% confidence level is set on the branching ratio of invisible decays of the Higgs boson with mass mH=125 GeV. The corresponding limits on the production cross-section of the ZH process with the invisible Higgs boson decays are also presented. Furthermore, exclusion limits on the dark matter candidate and mediator masses are reported in the framework of simplified dark matter models. 

  • 38. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Woods, N.
    et al.,
    Combination of inclusive and differential t(t)over-bar charge asymmetry measurements using ATLAS and CMS data at root S =7 and 8 TeV2018In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 4, article id 033Article in journal (Refereed)
    Abstract [en]

    This paper presents combinations of inclusive and differential measurements of the charge asymmetry (A(C)) in top quark pair (t(t)over-bar) events with a lepton+jets signature by the ATLAS and CMS Collaborations, using data from LHC proton-proton collisions at centre-of-mass energies of 7 and 8 TeV. The data correspond to integrated luminosities of about 5 and 20 fb(-1) for each experiment, respectively. The resulting combined LHC measurements of the inclusive charge asymmetry are A(C)(LHC7) = 0.005 +/- 0.007 (stat) +/- 0.006 (syst) at 7 TeV and A(C)(LHC8) = 0.0055 +/- 0.0023 (stat) +/- 0.0025 (syst) at 8 TeV. These values, as well as the combination of A(C )measurements as a function of the invariant mass of the t(t)over-bar system at 8 TeV, are consistent with the respective standard model predictions.

  • 39. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    Combined measurement of differential and total cross sections in the H → γγ and the H → ZZ⁎ → 4ℓ decay channels at s=13 TeV with the ATLAS detector2018In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 786, p. 114-133Article in journal (Refereed)
    Abstract [en]

    A combined measurement of differential and inclusive total cross sections of Higgs boson production is performed using 36.1 fb−1 of 13 TeV proton–proton collision data produced by the LHC and recorded by the ATLAS detector in 2015 and 2016. Cross sections are obtained from measured H→γγ and H→ZZ⁎→4ℓ event yields, which are combined taking into account detector efficiencies, resolution, acceptances and branching fractions. The total Higgs boson production cross section is measured to be 57.0−5.9 +6.0 (stat.) −3.3 +4.0 (syst.) pb, in agreement with the Standard Model prediction. Differential cross-section measurements are presented for the Higgs boson transverse momentum distribution, Higgs boson rapidity, number of jets produced together with the Higgs boson, and the transverse momentum of the leading jet. The results from the two decay channels are found to be compatible, and their combination agrees with the Standard Model predictions.

  • 40.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    Performance of missing transverse momentum reconstruction with the ATLAS detector using proton proton collisions at root s=13 TeV2018In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 78, no 11, article id 903Article in journal (Refereed)
    Abstract [en]

    The performance of the missing transverse (E-T(miss) momentum) reconstruction with the ATLAS detector is evaluated using data collected in proton-proton collisions at the LHC at a centre-of-mass energy of 13 TeV in 2015. To reconstruct E-T(miss), fully calibrated electrons, muons, photons, hadronically decaying tau-leptons, and jets reconstructed from calorimeter energy deposits and charged-particle tracks are used. These are combined with the soft hadronic activity measured by reconstructed charged-particle tracks not associated with the hard objects. Possible double counting of contributions from reconstructed charged-particle tracks from the inner detector, energy deposits in the calorimeter, and reconstructed muons from the muon spectrometer is avoided by applying a signal ambiguity resolution procedure which rejects already used signals when combining the various E-T(miss) contributions. The individual terms as well as the overall reconstructed E-T(miss) are evaluated with various performance metrics for scale (linearity), resolution, and sensitivity to the data-taking conditions. The method developed to determine the systematic uncertainties of the E-T(miss) scale and resolution is discussed. Results are shown based on the full 2015 data sample corresponding to an integrated luminosity of 3.2 fb(-1).

  • 41. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    Search for exclusive Higgs and Z boson decays to phi gamma and rho gamma with the ATLAS detector2018In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 7, article id 127Article in journal (Refereed)
    Abstract [en]

    A search for the exclusive decays of the Higgs and Z bosons to a phi or rho meson and a photon is performed with a pp collision data sample corresponding to an integrated luminosity of up to 35.6 fb(-1) collected at root s = 13 TeV with the ATLAS detector at the CERN Large Hadron Collider. These decays have been suggested as a probe of the Higgs boson couplings to light quarks. No significant excess of events is observed above the background, as expected from the Standard Model. Upper limits at 95% confidence level were obtained on the branching fractions of the Higgs boson decays to phi gamma and rho gamma of 4.8 x 10(-4) and 8.8 x 10(-4), respectively. The corresponding 95% confidence level upper limits for the Z boson decays are 0.9 x 10(-6) and 25 x 10(-6) for phi gamma and rho gamma, respectively.

  • 42. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    Search for Higgs boson pair production in the..WW * channel using pp collision data recorded at v s=13 TeV with the ATLAS detector2018In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 78, no 12, article id 1007Article in journal (Refereed)
    Abstract [en]

    Searches for non- resonant and resonant Higgs boson pair production are performed in the..WW * channel with the final state of.. .j j using 36.1 fb - 1 of protonpv roton collision data recorded at a centre- of- mass energy of s = 13 TeV by the ATLAS detector at the Large Hadron Collider. No significant deviation from the Standard Model prediction is observed. A 95% confidence- level observed upper limit of 7.7 pb is set on the cross section for nonresonant production, while the expected limit is 5.4 pb. A search for a narrow- width resonance X decaying to a pair of Standard Model Higgs bosons HH is performed with the same set of data, and the observed upper limits on s( pp. X) x B( X. HH) range between 40.0 and 6.1 pb for masses of the resonance between 260 and 500GeV, while the expected limits range between 17.6 and 4.4 pb. When deriving the limits above, the StandardModel branching ratios of the H... and H. WW * are assumed.Searches for non- resonant and resonant Higgs boson pair production are performed in the..WW * channel with the final state of.. .j j using 36.1 fb - 1 of protonpv roton collision data recorded at a centre- of- mass energy of s = 13 TeV by the ATLAS detector at the Large Hadron Collider. No significant deviation from the Standard Model prediction is observed. A 95% confidence- level observed upper limit of 7.7 pb is set on the cross section for nonresonant production, while the expected limit is 5.4 pb. A search for a narrow- width resonance X decaying to a pair of Standard Model Higgs bosons HH is performed with the same set of data, and the observed upper limits on s( pp. X) x B( X. HH) range between 40.0 and 6.1 pb for masses of the resonance between 260 and 500GeV, while the expected limits range between 17.6 and 4.4 pb. When deriving the limits above, the StandardModel branching ratios of the H... and H. WW * are assumed.

  • 43. Aaboud, M
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    Search for supersymmetry in events with four or more leptons in root s=13 TeV pp collisions with ATLAS2018In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 98, no 3, article id 032009Article in journal (Refereed)
    Abstract [en]

    Results from a search for supersymmetry in events with four or more charged leptons (electrons, muons and taus) are presented. The analysis uses a data sample corresponding to 36.1 fb(-1) of proton-proton collisions delivered by the Large Hadron Collider at root s = 13 TeV and recorded by the ATLAS detector. Four-lepton signal regions with up to two hadronically decaying taus are designed to target a range of supersymmetric scenarios that can be either enriched in or depleted of events involving the production and decay of a Z boson. Data yields are consistent with Standard Model expectations and results are used to set upper limits on the event yields from processes beyond the Standard Model. Exclusion limits are set at the 95% confidence level in simplified models of general gauge mediated supersymmetry, where Higgsino masses are excluded up to 295 GeV. In R-parity-violating simplified models with decays of the lightest supersymmetric particle to charged leptons, lower limits of 1.46, 1.06, and 2.25 TeV are placed on wino, slepton and gluino masses, respectively.

  • 44.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Royal Inst Technol, Dept Phys, Stockholm, Sweden..
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Royal Inst Technol, Dept Phys, Stockholm, Sweden..
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Royal Inst Technol, Dept Phys, Stockholm, Sweden..
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Royal Inst Technol, Dept Phys, Stockholm, Sweden..
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Royal Inst Technol, Dept Phys, Stockholm, Sweden..
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Royal Inst Technol, Dept Phys, Stockholm, Sweden..
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    Search for the Higgs boson produced in association with a vector boson and decaying into two spin-zero particles in the H -> aa -> 4b channel in pp collisions at root s=13 TeV with the ATLAS detector2018In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 10, article id 031Article in journal (Refereed)
    Abstract [en]

    A search for exotic decays of the Higgs boson into a pair of spin-zero particles, H -> aa, where the a-boson decays into b-quarks promptly or with a mean proper lifetime c tau(a) up to 6 mm and has a mass in the range of 20-60GeV, is presented. The search is performed in events where the Higgs boson is produced in association with a W or Z boson, giving rise to a signature of one or two charged leptons (electrons or muons) and multiple jets from b-quark decays. The analysis is based on the dataset of proton-proton collisions at root s = 13TeV recorded in 2015 and 2016 by the ATLAS detector at the CERN Large Hadron Collider, corresponding to an integrated luminosity of 36: 1 fb(-1). No significant excess of events above the Standard Model background prediction is observed, and 95% confidence-level upper limits are derived for the production cross-sections for pp -> WH, ZH and their combination, times the branching ratio of the decay chain H -> aa -> 4b. For a-bosons which decay promptly, the upper limit on the combination of cross-sections for WH and ZH times the branching ratio of H -> aa -> 4b ranges from 3.0 pb for m(a) = 20 GeV to 1.3 pb for m(a) = 60 GeV, assuming that the ratio of WH to ZH cros-ssections follows the Standard Model prediction. For a-bosons with longer proper lifetimes, the most stringent limits are 1.8 pb and 0.68 pb, respectively, at c tau(a) similar to 0.4 mm.

  • 45.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    Search for vector-boson resonances decaying to a top quark and bottom quark in the lepton plus jets final state in pp collisions at root s=13 TeV with the ATLAS detector2019In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 788, p. 347-370Article in journal (Refereed)
    Abstract [en]

    A search for new charged massive gauge bosons, W', is performed with the ATLAS detector at the LHC. Data were collected in proton-proton collisions at a center-of-mass energy of root s = 13 TeV and correspond to an integrated luminosity of 36.1 fb(-1). This analysis searches for W' bosons in the W'-> t ( b) over bar decay channel in final states with an electron or muon plus jets. The search covers resonance masses between 0.5 and 5.0 TeV and considers right-handed W' bosons. No significant deviation from the Standard Model (SM) expectation is observed and upper limits are set on theW'-> t ( b) over bar cross section times branching ratio and the W' boson effective couplings as a function of the W' boson mass. For right-handed W' bosons with coupling to the SM particles equal to the SM weak coupling constant, masses below 3.15 TeV are excluded at the 95% confidence level. This search is also combined with a previously published ATLAS result for W'-> t ( b) over bar in the fully hadronic final state. Using the combined searches, right-handed W' bosons with masses below 3.25 TeV are excluded at the 95% confidence level.

  • 46. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    ATLAS Collaboration,
    et. al.,
    Search for additional heavy neutral Higgs and gauge bosons in the ditaufinal state produced in 36 fb(-1) of pp collisions at root s=13 TeV withthe ATLAS detector2018In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, article id 055Article in journal (Refereed)
    Abstract [en]

    A search for heavy neutral Higgs bosons and Z' bosons is performed using a data sample corresponding to an integrated luminosity of 36.1 fb(-1) from proton-proton collisions at root s = 13 TeV recorded by the ATLAS detector at the LHC during 2015 and 2016. The heavy resonance is assumed to decay to tau(+)tau(-) with at least one tau lepton decaying to final states with hadrons and a neutrino. The search is performed in the mass range of 0.2-2.25 TeV for Higgs bosons and 0.2-4.0 TeV for Z' bosons. The data are in good agreement with the background predicted by the Standard Model. The results are interpreted in benchmark scenarios. In the context of the hMSSM scenario, the data exclude tan beta > 1.0 for m(A) = 0.25 TeV and tan beta > 42 for m(A) = 1.5 TeV at the 95% confidence level. For the Sequential Standard Model, Z'(SSM) with m(Z') < 2.42 TeV is excluded at 95% confidence level, while Z'(NU) with m(Z') < 2.25 TeV is excluded for the non-universal G(221) model that exhibits enhanced couplings to third-generation fermions.

  • 47. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    ATLAS Collaboration,
    et. al.,
    Search for heavy resonances decaying into WW in the e nu mu nu final state in pp collisions at root s=13 TeV with the ATLAS detector2018In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 78, no 1Article in journal (Refereed)
    Abstract [en]

    A search for neutral heavy resonances is performed in the WW -> e nu mu nu decay channel using pp collision data corresponding to an integrated luminosity of 36.1 fb(-1), collected at a centre-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider. No evidence of such heavy resonances is found. In the search for production via the quark-antiquark annihilation or gluon-gluon fusion process, upper limits on sigma(X) x B(X -> WW) as a function of the resonance mass are obtained in the mass range between 200 GeV and up to 5 TeV for various benchmark models: a Higgs-like scalar in different width scenarios, a two-Higgs-doublet model, a heavy vector triplet model, and a warped extra dimensions model. In the vector-boson fusion process, constraints are also obtained on these resonances, as well as on a Higgs boson in the Georgi-Machacek model and a heavy tensor particle coupling only to gauge bosons.

  • 48. Aaboud, M
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    A search for resonances decaying into a Higgs boson and a new particle X in the XH -> qqbb final state with the ATLAS detector2018In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 779, p. 24-45Article in journal (Refereed)
    Abstract [en]

    A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb(-1) of proton-proton collision data at root s = 13 TeV collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle Xis assumed to decay to a pair of light quarks, and the fully hadronic final state XH -> q (q) over bar 'b (b) over bar is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the XH -> q (q) over bar 'b (b) over bar resonance.

  • 49. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Combination of searches for heavy resonances decaying into bosonic and leptonic final states using 36 fb(-1) of proton-proton collision data at root s=13 TeV with the ATLAS detector2018In: Physical Review D. Particles and fields, ISSN 0556-2821, E-ISSN 1089-4918, Vol. 98, no 5, article id 052008Article in journal (Refereed)
    Abstract [en]

    Searches for new heavy resonances decaying into different pairings of W, Z, or Higgs bosons, as well as dirffiffiffiectly into leptons, are presented using a data sample corresponding to 36.1 fb(-1) of pp collisions at root s = 13 TeV collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting bosonic decay modes in the qqqq, vvqq, evqq, eeqq, evev, eevv, evee, eeee, qqbb, vvbb, evbb, and eebb final states are combined, searching for a narrow-width resonance. Likewise, analyses selecting the leptonic ev and ee final states are also combined. These two sets of analyses are then further combined. No significant deviation from the Standard Model predictions is observed. Three benchmark models are tested: a model predicting the existence of a new heavy scalar singlet, a simplified model predicting a heavy vector-boson triplet, and a bulk Randall-Sundrum model with a heavy spin-2 Kaluza-Klein excitation of the graviton. Cross section limits are set at the 95% confidence level using an asymptotic approximation and are compared with predictions for the benchmark models. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The data exclude a heavy vector-boson triplet with mass below 5.5 TeV in a weakly coupled scenario and 4.5 TeV in a strongly coupled scenario, as well as a Kaluza-Klein graviton with mass below 2.3 TeV.

  • 50.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    et al.,
    Correlated long-range mixed-harmonic fluctuations measured in pp, p plus Pb and low-multiplicity Pb plus Pb collisions with the ATLAS detector2019In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 789, p. 444-471Article in journal (Refereed)
    Abstract [en]

    Correlations of two flow harmonics v(n) and v(m) via three- and four-particle cumulants are measured in 13 TeV pp, 5.02 TeV p+Pb, and 2.76 TeV peripheral Pb+Pb collisions with the ATLAS detector at the LHC. The goal is to understand the multi-particle nature of the long-range collective phenomenon in these collision systems. The large non-flow background from dijet production present in the standard cumulant method is suppressed using a method of subevent cumulants involving two, three and four subevents separated in pseudorapidity. The results show a negative correlation between v(2) and v(3) and a positive correlation between v(2) and v(4) for all collision systems and over the full multiplicity range. However, the magnitudes of the correlations are found to depend on the event multiplicity, the choice of transverse momentum range and collision system. The relative correlation strength, obtained by normalisation of the cumulants with the < v(n)(2)> from a two-particle correlation analysis, is similar in the three collision systems and depends weakly on the event multiplicity and transverse momentum. These results based on the subevent methods provide strong evidence of a similar long-range multi-particle collectivity in pp, p+Pb and peripheral Pb+Pb collisions. Elsevier B.V.

1234567 1 - 50 of 17029
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf