Digitala Vetenskapliga Arkivet

Change search
Refine search result
1234567 1 - 50 of 915
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    A Monfared, Behzad
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Design and Construction of a Small Ammonia Heat Pump2010Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    In view of the fact that most of the synthetic refrigerants, in case of leakage or release, are harmful to the environment by contributing in global warming or depleting stratospheric ozone layer, many research works have been done recently to find alternative refrigerants posing no or negligible threat to the environment. Among alternative refrigerants, ammonia, a natural refrigerant with zero Global Warming Potential (GWP) and Ozone Depletion Potential (ODP), can be a sensible choice.Although ammonia has been used for many years in large industrial systems, its application in small units is rare. In this project a small heat pump with about 7 kW heating capacity at -5 °C and +40 °C evaporation and condensation temperatures is designed and built to work with ammonia as refrigerant. The heat pump is expected to produce enough heat to keep a single-family house warm in Sweden and to provide tap hot water for the house. After successful completion of this project, it is planned to install the heat pump in a house to test it throughout a heating season to study its performance in real working conditions.Since ammonia is flammable and toxic in high concentrations, the refrigerant charge is tried to be kept low in the heat pump to reduce the risk of fire or poisoning in case of unwanted release of refrigerant to the surroundings. The compact design of the heat pump helps reducing the refrigerant charge. Besides, considering the limited space normally reserved for installation of a heat pump in a house, the compact design of the heat pump is necessary.

    Download full text (pdf)
    B A Monfared 2010_Design and Construction of a Small Ammonia Heat Pump_MSc Thesis
  • 2.
    A Monfared, Behzad
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Magnetic Refrigeration for Near Room-Temperature Applications2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Refrigeration plays a crucial role in many different sectors and consumes about 17% of the electricity produced globally. This significant energy consumption implies large share of refrigeration in primary energy consumption and other environmental impacts. In addition to the environmental impacts associated with energy consumption, the vapor-compression systems contribute in global warming due to the release of their gaseous refrigerants into the atmosphere. As an alternative technology for near room-temperature applications, magnetic refrigeration is proposed by some researchers to eliminate the release of gaseous refrigerants into the atmosphere and to reduce the energy consumption. This thesis is a compilation of a number of studies done on magnetic refrigeration for room-temperature applications.

    In the first study, the environmental impacts associated to magnetic refrigeration are looked at closely through a life cycle assessment. The life cycle assessment indicates that because of the environmental burdens related to the rare-earth materials used in magnetic refrigeration, the reduction in the environmental impacts is not guaranteed by switching to magnetic refrigeration technology. Accordingly to avoid the extra environmental impacts the magnetic refrigeration systems should use magnetic materials frugally, which requires an optimized design. In addition, operation with higher efficiency compared to vapor-compression systems is necessary to have environmental advantages, at least in some impact categories.

    A practical method to optimize the design of magnetic refrigeration systems, e.g. to have a compact design or high efficiency, is utilizing a flexible software model, with which the effect of varying different parameters on the performance of the system can be simulated. Such a software model of the magnetic refrigeration system is developed and validated in this project. In developing the model one goal is to add to the precision of the simulated results by taking more details into consideration. This goal is achieved by an innovative way of modeling the parasitic heat transfer and including the effect of the presence of magnetocaloric materials on the strength of the field created by the magnet assembly. In addition, some efforts are made to modify or correct the existing correlations to include the effect of binding agents used in some active magnetic regenerators. Validation of the developed software model is done using the experimental results obtained from the prototype existing at the Department of Energy Technology, KTH Royal Institute of Technology.

    One of the parameters that can be modified by the developed software model is the choice of the magnetocaloric materials for each layer in a layered active magnetic regenerator. Utilizing the software model for optimizing the choice of the materials for the layers reveals that materials with critical temperatures equal to the cyclic average temperature of the layers in which they are used do not necessarily result in the desired optimum performance. In addition, for maximizing different outputs of the models, such as energy efficiency or temperature lift sustained at the two ends of the regenerators, different choice of materials for the layers are needed. Therefore, in other studies seeking to improve one of the outputs of a system, the choice of the transition or critical temperatures of the materials for each layer is an additional parameter to be optimized.

    The prototype existing at the Department of Energy Technology, KTH Royal Institute of Technology, was initially designed for replacing the vapor-compression system of a professional refrigerator. However, it could not fulfil the requirements for which it was initially designed. The aforementioned developed simulation model is used to see how much the choice of the materials, size of the particles, and number of layers can enhance the performance while the operation frequency and flow rate of the heat transfer fluid are at their optimum values. In other words, in that study the room for improvement in the performance without applying major changes in the system such as the geometry of the regenerator, which implies redesigning the whole magnet assembly, is investigated. In the redesign process the effect of binding agent and the limitations associated to different properties of it is also investigated theoretically. Nevertheless, the study did not show that with keeping the geometry of the regenerators and the currently existing magnetocaloric materials the initial goals of the prototype can be achieved.

    In the next study more flexible choice of geometries and magnetocaloric materials are considered. In fact, in this study it is investigated how much the magnetocaloric materials need to be improved so that magnetic refrigeration systems can compete with vapor-compression ones in terms of performance. For the two investigated cases, the magnetic-field dependent properties of the currently existing materials are enough provided that some other issues such as low mechanical stability and inhomogeneity of the properties are solved. Nevertheless, for more demanding design criteria, such as delivering large cooling capacity over a considerable temperature span while the magnetic materials are used sparingly, the magnetic-field dependent properties need to be enhanced, as well.

    A less explored area in room-temperature magnetic refrigeration is the subject of another study included in the thesis. In this study, solid-state magnetic refrigeration systems with Peltier elements as heat switches are modeled. Since the Peltier elements consume electricity to pump heat, the modeled systems can be considered hybrid magnetocaloric-Peltier cooling systems. For such systems the detailed transient behavior of the Peltier elements together with layers of magnetocaloric materials are modeled. The mathematical model is suitable for implementation in programing languages without the need for commercial modeling platforms. The parameters affecting the performance of the modeled system are numerous, and optimization of them requires a separate study. However, the preliminary attempts on optimizing the modeled system does not give promising results. Accordingly, focusing on passive heat switches can be more beneficial.

    Download full text (pdf)
    fulltext
  • 3.
    Abdi, Amir
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Analysis of heat recovery in supermarket refrigeration system using carbon dioxide as refrigerant2014Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    The aim of this study is to investigate the heat recovery potential in supermarket refrigeration systems using CO2 as refrigerants. The theoretical control strategy to recover heating demand from refrigeration system is explained thoroughly and the heat recovery process from two existing supermarket using CO2 booster units is analyzed and evaluated. The measured data of refrigeration systems is obtained through Iwmac interface, processed using Excel and Refprop. The aim is to see what control strategy is used in these systems and weather it matches the theoretical one and at what level heat is recovered from the system.

    Besides, a simulation model is made by EES to investigate the potential of higher rate of heat recovery in the supermarkets. The simulation results are compared with field measurement and validated by measured values. Then, the ability of refrigeration system to do heat recovery at quite high rates for covering the total heating demand without using parallel heating system is evaluated and efficiency of the system is calculated. At the next step the heat recovery potential at other refrigeration solutions such as R404A conventional and CO2-ammonia cascade systems are studied and the results are compared to booster units. Finally, the potential for selling heat from the refrigeration system in supermarket to district heating network is investigated. Two different scenarios are made for such purpose and the results are evaluated.

    The heat recovery control strategy of existing supermarkets does not match the theoretical strategy and regarding the capacity of the system, heat is recovered to low extent. Simulation shows that heat can be recovered to higher extent at quite high heating COP of 3-5. Additionally the other heat recovery solutions for R404A conventional and CO2-ammonia cascade systems are found to be competitive to CO2 booster system.  The analysis of selling heat to district heating network shows that CO2 booster system is capable of covering the demand at reasonable heating COP as the first priority and selling the rest to district heating network at heating COP of 2 as second priority.  

    Download full text (pdf)
    fulltext
  • 4.
    Abdi, Amir
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Heat Transfer Enhancement of Latent Thermal Energy Storage in Rectangular Components2022Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Latent Thermal Energy Storage (LTES) is an interesting choice to storethermal energy in a sustainable energy system. The primary benefit of LTESis the relatively high latent heat of fusion of the materials, known as PhaseChange Materials (PCM), used in such a system as the storage medium.However, as the thermal conductivity of PCMs is often very low, there is aneed to enhance the rate of heat transfer within the charging/dischargingprocess and to improve the thermal performance of the LTES systems.This thesis addresses the enhancing effect of extending heat transfer area inrectangular LTES enclosures. A key contribution of this thesis is acomprehensive visualization of the phase change processes for an organicPCM, including solidification and melting, constrained as well asunconstrained, known as Close-Contact Melting (CCM), in a cavity with andwithout fins. Observations have been carried out for fins of different lengthsand numbers with a varying angle of inclination, and a comprehensive analysisin terms of phase change time and thermal power is conducted.The observations show fins are more influential in solidification than inmelting, reducing the solidification time by 80% and increasing the meanpower by 395%, at a cost of 10% loss in the extracted energy. In contrast, inmelting, fins have a modest effect in enhancing the process. The relativeenhancement effect of fin is higher in constrained melting than inunconstrained melting. In a case with maximum enhancement, a reduction by52% in the constrained melting time and a relative enhancement in the meanpower by 90% is achieved at a cost of 9% loss in the stored energy. As thevolume fraction of fin increases, the discrepancies in melting time betweenthe constrained and unconstrained melting diminishes.A numerical model for solidification and constrained melting is validatedbased on the experiments, and a more inclusive sensitivity analysis of finparameters is performed. The enhancing effect of different parameters on thephase change time and the thermal power is analyzed and the relatively moreeffective measures are identified. Analyzing the simulation data withdimensionless parameters for a cavity oriented horizontally and enhancedwith vertical fins, overall dimensionless groups for solidification and constrained melting have been obtained. The dimensionless groupscontribute in general to achieving a better understanding of fins parametersand to facilitating the LTES designs.In addition, this thesis investigates a novel idea of extending the surface areavia incorporating mini-channels into LTES enclosures, used as passages forair as a low thermal conductive Heat Transfer Fluid (HTF). The mini-scaleinternal hydraulic diameter of the mini-channels and their high external areato-volume ratios make a potential for dual enhancement on both the PCMside and the HTF side. An existing design and a conceptual one with thepossibility of adding fins on the PCM side, capable of being manufactured viaproduction methods of extrusion and Additive Manufacturing (AM),respectively, have been simulated and studied.The two mini-channel types provide considerable enhancements in the rateof heat transfer for a PCM heat exchanger working with air. The degree ofenhancement increases as the air flow rate increases, at the cost of anincreasingly higher pressure drop. Regarding this, increasing the number ofchannels is identified as a more effective enhancing measure than adding finsto the PCM side. In addition, the conceptual design with a higher internalhydraulic diameter and considerably a higher aspect ratio has a lower pressuredrop than the existing design, charging/discharging the thermal energy at asimilar rate but with a lower fan power. More optimized designs withminimization of pressure drop, contribute to paving the way in facilitation ofthe utilization of the enhanced air-PCM heat exchanger in variousapplications.

    Download full text (pdf)
    Kappa
  • 5.
    Abdi, Amir
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Chiu, Justin NingWei
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
    Martin, Viktoria
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology. KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Numerical Investigation of Latent Thermal Storage in a Compact Heat Exchanger Using Mini-Channels2021In: Applied Sciences, E-ISSN 2076-3417, Vol. 11, no 13, p. 5985-, article id 5985Article in journal (Refereed)
    Abstract [en]

    This paper aims to numerically investigate the thermal enhancement of a latent thermal energy storage component with mini-channels as air passages. The investigated channels in two sizes of internal air passages (channel-1 with d(h) = 1.6 mm and channel-2 with d(h) = 2.3 mm) are oriented vertically in a cuboid of 0.15 x 0.15 x 0.1 m(3) with RT22 as the PCM located in the shell. The phase change is simulated with a fixed inlet temperature of air, using ANSYS Fluent 19.5, with a varying number of channels and a ranging air flow rate entering the component. The results show that the phase change power of the LTES improves with by increasing the number of channels at the cost of a decrease in the storage capacity. Given a constant air flow rate, the increase in the heat transfer surface area of the increased number of channels dominates the heat transfer coefficient, thus increasing the mean heat transfer rate (UA). A comparison of the channels shows that the thermal performance depends largely on the area to volume ratio of the channels. The channel type two (channel-2) with a slightly higher area to volume ratio has a slightly higher charging/discharging power, as compared to channel type one (channel-1), at a similar PCM packing factor. Adding fins to channel-2, doubling the surface area, improves the mean UA values by 15-31% for the studied cases. The variation in the total air flow rate from 7 to 24 L/s is found to have a considerable influence, reducing the melting time by 41-53% and increasing the mean UA values within melting by 19-52% for a packing factor range of 77.4-86.8%. With the increase in the air flow rate, channel type two is found to have considerably lower pressure drops than channel type one, which can be attributed to its higher internal hydraulic diameter, making it superior in terms of achieving a relatively similar charging/discharging power in exchange for significantly lower fan power. Such designs can further be optimized in terms of pressure drop in future work, which should also include an experimental evaluation.

  • 6.
    Abdi, Amir
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Chiu, Justin NingWei
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
    Martin, Viktoria
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology. KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    State of the art in hydrogen liquefaction2020In: Proceedings of the ISES Solar World Congress 2019 and IEA SHC International Conference on Solar Heating and Cooling for Buildings and Industry 2019, International Solar Energy Society , 2020, p. 1311-1320Conference paper (Refereed)
    Abstract [en]

    Hydrogen is a potential option to replace fossil fuels considering the increasing demand of energy applications. It is naturally abundant and is regarded as a suitable energy carrier. There has been extensive research to improve the efficiency of storing hydrogen with different methods, including gas compression, liquefaction and sorption in metal hydrides or carbon nanotubes. A comparison of the storage methods shows that liquefaction of hydrogen is more beneficial than compression of hydrogen in terms of higher volumetric capacity, and it is more technologically mature than sorption technologies. This makes it more plausible for long distance distribution. On the other hand, the obstacles in full exploitation of the method are low energy efficiency of the liquefaction process and associated high cost. The recent research has been focusing on increasing the energy efficiency of the storage process. This paper provides, with regard to the conventional methods, a state of the art review of the novel and modified liquefaction process and the latest developments in increasing the efficiency of the energy intensive process. Furthermore, the developments in combining the hydrogen liquefaction plants with renewable energy sources are covered and reviewed. Finally, the ongoing development of hydrogen liquefaction is highlighted.

  • 7.
    Abdi, Amir
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Ignatowicz, Monika
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Gunasekara, Saman Nimali
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology. KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Chiu, Justin NingWei
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
    Martin, Viktoria
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology. KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Experimental investigation of thermo-physical properties of n-octadecane and n-eicosane2020In: International Journal of Heat and Mass Transfer, ISSN 0017-9310, E-ISSN 1879-2189, Vol. 161, article id 120285Article in journal (Refereed)
    Abstract [en]

    Reliable knowledge of phase change materials (PCM) thermo-physical properties is essential to model and design latent thermal energy storage (LTES) systems. This study aims to conduct a methodological measurement of thermo-physical properties, including latent enthalpy, isobaric specific heat, thermal conductivity and dynamic viscosity, of two n-alkanes, n-octadecane and n-eicosane. The enthalpy and isobaric specific heat of the materials are measured via differential scanning calorimetry (DSC) technique, using a pDSC evo7 from Setaram Instrumentation with a sample mass of 628.4 mg. The influence of the scanning rates, varying from 0.5 K/min to 0.025 K/min, in dynamic continuous mode within temperature range of 10-65 degrees C is investigated. The thermal conductivity and the dynamic viscosity are measured via Hot Disk TPS-2500S instrument and Brookfield rotational viscometer, respectively, up to 70 degrees C. The thermal analysis results via the pDSC show that the isothermal condition can be approached at a very low scanning rate, however at the cost of a higher noise level. A trade-off is observed for n-octadecane, achieving the lowest deviation of 0.7% in latent heat measurement at 0.05 K/min, as compared to the American Petroleum Table values. For n-eicosane, the lowest deviation of 1.2% is seen at the lowest scanning rate of 0.025 K/min. The thermal conductivity measured values show good agreements with a number of documented literature studies in the solid phase, within deviations of 2%. Larger deviations of 5-16% are found for the measurement in the liquid phase. The viscosity values also show a good agreement with the literature values with maximum deviations of 2.9% and 6.3%, with respect to the values of American Petroleum Tables, for n-octadecane and n-eicosane, respectively. The good agreements achieved in measurements establish the reliable thermo-physical properties contributing to the future simulations and designs. 

  • 8.
    Abdi, Amir
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Martin, Viktoria
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Chiu, Justin NingWei
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
    Numerical investigation of melting in a cavity with vertically oriented fins2019In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 235, p. 1027-1040Article in journal (Refereed)
    Abstract [en]

    This paper investigates the effect of vertical fins, as an enhancement technique, on the heat transfer rate and energy density of a latent heat thermal energy storage system. This contributes with knowledge on the interaction of heat transfer surface with the storage material for optimizing storage capacity (energy) and power (heat transfer rate). For the assessment, numerical modeling is employed to study the melting process in a two-dimensional rectangular cavity. The cavity is considered heated isothermally from the bottom with surface temperatures of 55 degrees C, 60 degrees C or 70 degrees C, while the other surfaces are insulated from the surrounding. Aluminum and lauric acid are considered as fin/enclosure material and phase change material, respectively. Vertical fins attached to the bottom surface are employed to enhance the charging rate, and a parametric study is carried out by varying the fin length and number of fins. Thus, a broad range of data is provided to analyze the influence of fin configurations on contributing natural convection patterns, as well as the effects on melting time, enhanced heat transfer rate and accumulated energy. The results show that in addition to increasing the heat transfer surface area, the installation of vertically oriented fins does not suppress the natural convection mechanism. This is as opposed to horizontal fins which in previous studies have shown tendencies to reduce the impact of natural convection. This paper also highlights how using longer fins offers a higher rate of heat transfer and a better overall heat transfer coefficient rather than increasing the number of fins. Also, fins do not only enhance the heat transfer performance in the corresponding melting time, but also maintain similar total amount of stored energy as compared to the no-fin case. This paper discusses how this is the result of the enhanced heat transfer allowing a larger portion of sensible heat to be recovered. For example, in the case with long fins, the relative mean power enhancement is about 200% with merely 6% capacity reduction, even though the amount of PCM in the cavity has been reduced by 12% as compared to the no-fin case. Although the basis for these results stems from the principles of thermodynamics, this paper is bringing it forward with design consideration. This is because despite its importance for making appropriate comparisons among heat transfer enhancement techniques in latent heat thermal energy storage, it has not been previously discussed in the literature. In the end, the aim is to accomplish robust storage systems in terms of power and energy density.

  • 9.
    Abdi, Amir
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Rastan, Hamidreza
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Experimental comparative analysis of close-contact and constrained melting of n-eicosane in a finned rectangular cavity2023In: Applied Thermal Engineering, ISSN 1359-4311, E-ISSN 1873-5606, Vol. 219, article id 119677Article in journal (Refereed)
    Abstract [en]

    The present study demonstrates and visualizes the two modes of constrained melting and close-contact melting in a rectangular cavity enhanced with fins. Three configurations of fin with different lengths and numbers are tested in different horizontal, inclined, and vertical orientations. N-eicosane is used as the phase change material, and the experiments are performed with water as the heat transfer fluid at the inlet conditions of 50 degrees C, 55 degrees C, and 60 degrees C. In general, the close-contact melting time is shorter by 42-50%, compared to the convection dominated constrained melting in the unenhanced cavity without fins. By using fins to enhance the process, the melting time is reduced by 49% and 35% in the constrained and the close-contact modes, respectively, compared to the unfinned cavity in each mode. The thermal performance is observed to be superior in the horizontal and the inclined orientations. In these orientations, the buoyancy-driven structures are not blocked by fins in the con-strained mode. In the close-contact mode, the solid specimens attain more consistent contact with the base of the cavity and with the extended heat transfer area at the inclined and horizontal conditions. In the vertical orientation, the asymmetrical melting by the fins results in a rotational movement of the solid PCM and close -contact perturbations. The variations in the number of fins are found to have minor effects on the overall close-contact-induced melting. On the other hand, increasing the length of the fins is a more promising measure, providing consistent and prolonged contact.

  • 10.
    Abdi, Amir
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Sawalha, Samer
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Karampour, Mazyar
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Heat recovery investigation of a supermarket refrigeration system using carbon dioxide as refrigerant2014In: 11th IIR Gustav Lorentzen Conference on Natural Refrigerants: Natural Refrigerants and Environmental Protection, GL 2014, International Institute of Refrigeration, 2014, p. 277-285Conference paper (Refereed)
    Abstract [en]

    This study investigates the heat reclaim of trans-critical CO2-booster refrigeration unit in a supermarket in Sweden. The aim is to compare the control strategy for heat recovery in real supermarket installation to the optimum control strategy.

    The optimum control strategy based on theoretical analysis is explained. By analyzing field measurement of a supermarket, heat recovery in the refrigeration system is studied and compared to the optimum case. To investigate the potential of higher heat recovery rate, a computer model is developed based on the optimum control strategy.  The model is also used to calculate the boundary conditions at which the system should run for highest COP.

    The results show that heat can be recovered at heating COP of 3-4.5. The theoretical analysis shows that the amount of heat that can be recovered from the refrigeration system is about 1.3 times (130 %) the cooling demand in the system. However the analysis of the field measurements shows that only between 30-60 % of the available heat to be recovered is utilized, the rest is released to outdoors. The analysis in this study shows that there is a potential to recover much more heat from the refrigeration system at relatively high heating COP compared to heat pump.

  • 11.
    Abdi, Amir
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Shahrooz, Mina
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Chiu, Justin NingWei
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
    Martin, Viktoria
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology. KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Experimental investigation of solidification and melting in a vertically finned cavity2021In: Applied Thermal Engineering, ISSN 1359-4311, E-ISSN 1873-5606, Vol. 198, article id 117459Article in journal (Refereed)
    Abstract [en]

    Extending the heat transfer area is a simple technique to improve the thermal performance of phase change materials with low thermal conductivity. However, as the governing mechanisms differ in solidification and melting, fins can affect the processes in different ways. This demands assessment of fin enhancement in a combined analysis on both solidification and melting, often neglected in literature. This paper presents visual-izations of solidification and melting of n-eicosane in a rectangular cavity and experimentally investigates the enhancing effect of vertical fins with varying number and length. Experiments were conducted at water inlet temperature ranges of 15-25 degrees C and 50-60 degrees C for the solidification and melting processes, respectively. The results show that the vertical fins can be more influential in solidification rather than in melting with similar losses in the storage capacity. In the solidification process, as natural convection is absent, the mean power is enhanced by a maximum of 395% with a 10% loss in the storage capacity, as compared to the benchmark. In the melting case, the mean power is increased by a maximum of 90% with a 9% loss in the storage capacity. Although increasing the surface area with vertical fins contributes to development of convective structures, it makes a modest enhancement. In overall, increasing the fin volume fraction, in exchange for the loss in the storage capacity, enhances the solidification significantly while it has relatively low enhancement effect in melting. At the end, the performed experiments could be helpful for validation of future simulation tools with complex features, particularly solidification models lacking in literature.

  • 12.
    Abuasbeh, Mohammad
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Palm, Björn (Editor)
    KTH, Superseded Departments (pre-2005), Energy Technology. KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Aquifer Thermal Energy Storage Insight into the future2018Report (Refereed)
    Abstract [en]

    Underground Thermal Energy Storage (UTES) systems, such as Aquifer thermal energy storage(ATES) are used in several countries. The regulation and research on the potential impacts of ATESon groundwater resources and the subsurface environment often lag behind the technologicaldevelopment of an ever-growing demand for this renewable energy source. The lack of a clear andscientifically supported risk management strategy implies that potentially unwanted risks might betaken at vulnerable locations such as near well fields used for drinking water production. At othersites, on the other side, the application of ATES systems is avoided without proper reasons. Thisresults in limiting the utilization of the ATES technology in many occasions, affecting the possibilityto increase the share of renewable energy use. Therefore, further studies to characterizegroundwater resources, performance monitoring and identification of environmental impacts areneeded to understand the advantages and limitations of ATES systems.

    The environmental impact and technical performance of a Low Temperature ATES (LT-ATES)system in operation since 2016 is presented. The system is called Rosenborg and is owned byVasakronan. It is located in the northern part of Stockholm, on a glaciofluvial deposit called theStockholm esker. The ATES system is used to heat and cool two commercial buildings with a totalarea of around 30,000 m2. The ATES consists of 3 warm and 2 cold pumping wells that are able topump up to 50 liters per second.

    Analysis of groundwater sampling included a period of 9 months prior to ATES operation as well asthe first full season of heating and cooling operation. The sampling was conducted in a group ofwells in the vicinity of the installation and within the system. Means of evaluation constituted astatistical approach that included Kruskal-Wallis test by ranks, to compare the wells before and afterthe ATES was used. Then principal component analysis (PCA) and clustering analysis were used tostudy the ground water conditions change before and after the ATES. Aquifer Variation Ratio(AVR) was suggested as mean to evaluate the overall conditions of the aquifer pre- and post- ATES.

    The results showed some variations in redox potential, particularly at the cold wells which likely wasdue to the mixing of groundwater considering the different depths of groundwater beingabstracted/injected from different redox zones. Arsenic, which has shown to be sensitive to hightemperatures in other research showed a decrease in concentration. A lower specific conductivityand total hardness at the ATES well compared to their vicinity was found. That indicates that theyare less subject to salinization and that no accumulation has occurred to date. It is evident that theenvironmental impact from ATES is governed by the pre-conditions in soil- and groundwater. ThePCA and clustering analysis showed very little change in the overall conditions in the aquifer whencomparing the ATES before and after operation. Temperature change showed negligible impact.This can be mainly attributed to the relatively small temperature change (+6 and – 5 degrees) fromthe undisturbed Aquifer temperature which is 10.5°C.

    Performance of Aquifer Thermal Energy Storage (ATES) systems for seasonal thermal storagedepends on the temperature of the extracted/injected groundwater, water pumping rates and thehydrogeological conditions of the aquifer. ATES systems are therefore often designed to work witha temperature difference between the warm side and cold side of the aquifer without riskinghydraulic and thermal intrusion between them, and avoiding thermal leakage to surrounding area, i.e. optimize hydraulic and thermal recovery. The hydraulic and thermal recovery values of the first yearof operation in Rosenorg weres 1.37 and 0.33, respectively, indicating that more storage volume(50500m3) was recovered during the cooling season than injected (36900m3) in the previous heatingseason.

    Monitoring the operation of pumping and observation wells is crucial for the validation of ATESgroundwater models utilized for their design, and measured data provides valuable information forresearchers and practitioners working in the field. After months of planning and installation work,selected measurements recorded in an ATES monitoring project in Sweden during the first threeseasons of operation are reported in this report.

    The monitoring system consists of temperature sensors and flow meters placed at the pumpingwells, a distributed temperature-sensing rig employing fiber optic cables as linear sensor andmeasuring temperature every 0.25 m along the depth of all pumping and several observation wells,yielding temporal and spatial variation data of the temperature in the aquifer. The heat injection andextraction to and from the ground is measured using power meters at the main line connecting thepumping wells to the system. The total heat and cold extracted from the aquifer during the firstheating and cooling season is 190MWh and 237MWh, respectively. A total of 143 MWh of heatwere extracted during the second heating season. The hydraulic and thermal recovery values of thefirst year of operation was 1.37 and 0.33, respectively, indicating that more storage volume(50500m3) was recovered during the cooling season than injected (36900m3) in the previous heatingseason. The DTS data showed traces of the thermal front from the warm storage reaching the coldone. Only 33% of the thermal energy was recovered. These losses are likely due to ambientgroundwater flow as well as conduction losses at the boundaries of the storage volume. Additionally,the net energy balance over the first year corresponds to 0.12 which indicates a total net heating ofthe ATES over the first year. It is recommended to increase the storage volume and achieve morehydraulic and thermal balance in the ATES system. This can enhance the thermal recovery andoverall performance. Continuous monitoring of the ATES is and will be ongoing for at least 3 moreyears. The work presented in this report is an initial evaluation of the system aiming to optimize theATES performance.

    Furthermore, data management and processing tool has been established for the ATES system in Rosenborg. Additionally, a conceptual model of the ATES area has been established. Current andfuture work is focussed on completing a full scale numerical model in FEFLOW and validated themodel (both hydraulically and thermally) with the available monitoring data. Furthermore,establishing recommendations for optimum design and operation of ATES system.

    Download full text (pdf)
    fulltext
  • 13.
    Abuasbeh, Mohammad
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Fault Detection and Diagnosis for Brine to Water Heat Pump Systems2016Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    The overall objective of this thesis is to develop methods for fault detection and diagnosis for ground source heat pumps that can be used by servicemen to assist them to accurately detect and diagnose faults during the operation of the heat pump. The aim of this thesis is focused to develop two fault detection and diagnosis methods, sensitivity ratio and data-driven using principle component analysis.

    For the sensitivity ratio method model, two semi-empirical models for heat pump unit were built to simulate fault free and faulty conditions in the heat pump. Both models have been cross-validated by fault free experimental data. The fault free model is used as a reference. Then, fault trend analysis is performed in order to select a pair of uniquely sensitive and insensitive parameters to calculate the sensitivity ratio for each fault. When a sensitivity ratio value for a certain fault drops below a predefined value, that fault is diagnosed and an alarm message with that fault appears. The simulated faults data is used to test the model and the model successfully detected and diagnosed the faults types that were tested for different operation conditions.

    In the second method, principle component analysis is used to drive linear correlations of the original variables and calculate the principle components to reduce the dimensionality of the system. Then simple clustering technique is used for operation conditions classification and fault detection and diagnosis process. Each fault is represented by four clusters connected with three lines where each cluster represents different fault intensity level. The fault detection is performed by measuring the shortest orthogonal distance between the test point and the lines connecting the faults’ clusters. Simulated fault free and faulty data are used to train the model. Then, a new set of simulated faults data is used to test the model and the model successfully detected and diagnosed all faults type and intensity level of the tested faults for different operation conditions.

    Both models used simple seven temperature measurements, two pressure measurements (from which the condensation and evaporation temperatures are calculated) and the electrical power, as an input to the fault detection and diagnosis model. This is to reduce the cost and make it more convenient to implement. Finally, for each models, a user friendly graphical user interface is built to facilitate the model operation by the serviceman.

    Download full text (pdf)
    fulltext
  • 14.
    Abuasbeh, Mohammad
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Acuña, José
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    ATES SYSTEM MONITORING PROJECT, FIRST MEASUREMENT AND PERFORMANCE EVALUATION: CASE STUDY IN SWEDEN2018In: Proceedings of the IGSHPA Research Track 2018, 2018Conference paper (Refereed)
    Abstract [en]

    Performance of Aquifer Thermal Energy Storage (ATES) systems for seasonal thermal storage depends on the temperature of the extracted/injected groundwater, water pumping rates and the hydrogeological conditions of the aquifer. ATES systems are therefore often designed to maintain a temperature difference possible between the warm side and cold side of the aquifer, without risking hydraulic and thermal intrusion between them or thermal leakage to surrounding area, i.e. maximize hydraulic and thermal recovery. Monitoring the operation of pumping and observation wells is crucial for the validation of ATES groundwater models utilized for their design, and measured data provides valuable information for researchers and practitioners working in the field. After months of planning and installation work, selected measurements recorded in an ATES monitoring project in Sweden during the first three seasons of operation are reported in this paper. The ATES system is located in Solna, in Stockholm esker, and it is used to heat and cool two commercial buildings with a total area of around 30,000 m 2 . The ATES consists of 3 warm and 2 cold pumping wells that are able to pump up to 50 liters per second. The monitoring system consists of temperature sensors and flow meters placed at the pumping wells, a distributed temperature-sensing rig employing fiber optic cables as linear sensor and measuring temperature every 0.25 m along the depth of all pumping and several observation wells, yielding temporal and spatial variation data of the temperature in the aquifer. The heat injection and extraction to and from the ground is measured using power meters at the main line connecting the pumping wells to the system. The total heat and cold extracted from the aquifer during the first heating and cooling season is 190MWh and 237MWh, respectively. A total of 143 MWh of heat were extracted during the second heating season. The hydraulic and thermal recovery values of the first year of operation was 1.37 and 0.33, respectively, indicating that more storage volume (50500m3 ) was recovered during the cooling season than injected (36900m3 ) in the previous heating season. The DTS data showed traces of the thermal front from the warm storage reaching the cold one. Only 33% of the thermal energy was recovered. These losses are likely due to ambient groundwater flow as well as conduction losses at the boundaries of the storage volume. Additionally, the net energy balance over the first year corresponds to 0.12 which indicates a total net heating of the ATES over the first year. It is recommended to increase the storage volume and achieve more hydraulic and thermal balance in the ATES system. This can enhance the thermal recovery and overall performance. Continuous monitoring of the ATES is and will be ongoing for at least 3 more years. The work presented in this paper is an initial evaluation of the system aiming to optimize the ATES performance.

    Download full text (pdf)
    fulltext
  • 15.
    Abuasbeh, Mohammad
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Acuña, José
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Lazzarotto, Alberto
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Palm, Björn
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Long term performance monitoring and KPIs' evaluation of Aquifer Thermal Energy Storage system in Esker formation: Case study in Stockholm2021In: Geothermics, ISSN 0375-6505, E-ISSN 1879-3576, Vol. 96, article id 102166Article in journal (Refereed)
    Abstract [en]

    The majority of Aquifer Thermal Energy Storage (ATES) systems studies have been conducted in aquifer systems located in large sand aquifers. Esker formation present a more challenging geometrical complexity compared to typical sand aquifers. This study aims to conduct comprehensive and long term performance evaluation of doublet type ATES system in esker geological formation in Stockholm, Sweden. The total heating and cooling used from the ATES are 673 MWh and 743 MWh respectively during the first 3 annual storage cycles of operation. The licensed total amount of water extraction and injection is 50 liters per second with undisturbed groundwater temperature of 9.5 degrees C. Over the first three storage cycles, the average injection and extraction temperatures for the warm side are 13.3 degrees C and 12.1 degrees C, and for the cold side 7.6 degrees C and 10.5 degrees C. The average temperature differences across the main heat exchanger from the ATES side are 4.5 K during winter and 2.8 K during summer which is 4-5 degrees lower than the optimum value. The average thermal recovery efficiency over the first 3 storage cycles were 47 % and 60 % for warm and cold storages respectively. The data analysis indicated annual energy and hydraulic imbalances which results into undesirable thermal breakthrough between the warm and cold side of the aquifer. This was mainly due to suboptimal operation of the building energy system which led to insufficient heat recovery from the warm side, and subsequently insufficient cold injection in the cold wells, despite the building heating demand and the available suitable temperatures in the ATES. The cause of the suboptimal operation is the oversizing of the heat pumps which were designed to be coupled to larger thermal loads as compared to the ones in the final system implementation. As a result, the heat pumps could not be operated during small-medium loads. Additionally, the paper discusses the limitations of currently used energy and thermal key performance indicators (KPI) for ATES and propose an additional thermal KPI named heat exchanger efficiency balance (beta HEX) that connects and evaluate the optimum operational point of temperature differences from both the building and ATES prospective. In addition to ATES energy and hydraulic KPIs, beta HEX can contribute in providing more complete picture on the ATES-building interaction performance as well as highlights if the losses in energy recovery from ATES are due to the subsurface processes or building energy system operation which has been proven to be critical for the optimum ATES performance.

  • 16.
    Acuna, José
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Fossa, Marco
    University of Genova.
    Monzó, Patricia
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Palm, Björn
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Numerically generated g-functions for ground coupled heat pump applications2012In: Proceedings of the COMSOL Conference in Milan, 2012Conference paper (Refereed)
    Abstract [en]

    In most ground-coupled heat pump systems, Borehole Heat Exchangers (BHE) represent the typical engineering solution for utilizing renewable energy from the ground. The design of a complex BHE field is a challenging task, due the inherent transient nature of the thermal interaction between the heat exchangers and the surrounding soil. A computation effective method for solving the 3D transient conduction equation describing the ground response to a variable heat load profile is the temporal superposition of pre-calculated temperature response factors or g-functions. In this study Comsol heat conduction models have been developed to calculate g-function values for a borehole field with 64 boreholes. The aim of the investigation is to get an insight on the numerical generation of temperature transfer functions and to some extent provide new information on the Finite Line Source method for analytically generated g-functions as well as on those existing behind existing design software such as EED. The results generally showed a good agreement in lower time ranges. Further in time, the Comsol model revealed to be influenced either by the domain dimensions or the simulation end time.

  • 17.
    Acuña, José
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Bergvärmepumpar Kan Göras Ännu Mer Effektiva2008In: Enegi&Miljö, ISSN 1101-0568, no 3Article in journal (Other (popular science, discussion, etc.))
  • 18.
    Acuña, José
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Characterization and Temperature Measurement Techniques of Energy Wells for Heat Pumps2008Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Ground source heat pumps are a widely used approach to efficiently heat single family houses. In addition to using the ground as a heat source during the winter, it can be used as heat sink and as a free cooling source during the summer. The most common way to carry out the heat exchange with the ground is with the help of energy collectors (borehole heat exchangers) in vertical wells. The quality of the heat exchange depends on the type of collector and on the flow conditions of the circulating fluid. For a complete understanding of the heat transfer performance, it is necessary to carry out careful temperature measurements at research installations and to do a preliminary characterization of the boreholes. These activities might represent a significant cost saving since the system can be optimized based on their outcome. The characterization consists of determining the type of rock and its thermal properties, the groundwater flow at different depths, and the borehole deviation according to the expected position. A comprehensive study about these characterization actions as well as temperature measurement techniques in boreholes using thermocouples and fiber optic technology are described in this report. Study cases from real installations are also presented to exemplify the characterization and measurement methods.

  • 19.
    Acuña, José
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Distributed thermal response tests: New insights on U-pipe and Coaxial heat exchangers in groundwater-filled boreholes2013Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    U-pipe Borehole Heat Exchangers (BHE) are widely used today in ground source heating and cooling systems in spite of their less than optimal performance. This thesis provides a better understanding on the function of U-pipe BHEs and Investigates alternative methods to reduce the temperature difference between the circulating fluid and the borehole wall, including one thermosyphon and three different types of coaxial BHEs.

    Field tests are performed using distributed temperature measurements along U-pipe and coaxial heat exchangers installed in groundwater filled boreholes. The measurements are carried out during heat injection thermal response tests and during short heat extraction periods using heat pumps. Temperatures are measured inside the secondary fluid path, in the groundwater, and at the borehole wall. These type of temperature measurements were until now missing.

    A new method for testing borehole heat exchangers, Distributed Thermal Response Test (DTRT), has been proposed and demonstrated in U-pipe, pipe-in-pipe, and multi-pipe BHE designs. The method allows the quantification of the BHE performance at a local level.

    The operation of a U-pipe thermosyphon BHE consisting of an insulated down-comer and a larger riser pipe using CO2 as a secondary fluid has been demonstrated in a groundwater filled borehole, 70 m deep. It was found that the CO2 may be sub-cooled at the bottom and that it flows upwards through the riser in liquid state until about 30 m depth, where it starts to evaporate.

    Various power levels and different volumetric flow rates have been imposed to the tested BHEs and used to calculate local ground thermal conductivities and thermal resistances. The local ground thermal conductivities, preferably evaluated at thermal recovery conditions during DTRTs, were found to vary with depth. Local and effective borehole thermal resistances in most heat exchangers have been calculated, and their differences have been discussed in an effort to suggest better methods for interpretation of data from field tests.

    Large thermal shunt flow between down- and up-going flow channels was identified in all heat exchanger types, particularly at low volumetric flow rates, except in a multi-pipe BHE having an insulated central pipe where the thermal contact between down- and up-coming fluid was almost eliminated.

    At relatively high volumetric flow rates, U-pipe BHEs show a nearly even distribution of the heat transfer between the ground and the secondary fluid along the depth. The same applies to all coaxial BHEs as long as the flow travels downwards through the central pipe. In the opposite flow direction, an uneven power distribution was measured in multi-chamber and multi-pipe BHEs.

    Pipe-in-pipe and multi-pipe coaxial heat exchangers show significantly lower local borehole resistances than U-pipes, ranging in average between 0.015 and 0.040 Km/W. These heat exchangers can significantly decrease the temperature difference between the secondary fluid and the ground and may allow the use of plain water as secondary fluid, an alternative to typical antifreeze aqueous solutions. The latter was demonstrated in a pipe-in-pipe BHE having an effective resistance of about 0.030 Km/W.

    Forced convection in the groundwater achieved by injecting nitrogen bubbles was found to reduce the local thermal resistance in U-pipe BHEs by about 30% during heat injection conditions. The temperatures inside the groundwater are homogenized while injecting the N2, and no radial temperature gradients are then identified. The fluid to groundwater thermal resistance during forced convection was measured to be 0.036 Km/W. This resistance varied between this value and 0.072 Km/W during natural convection conditions in the groundwater, being highest during heat pump operation at temperatures close to the water density maximum.

    Download full text (pdf)
    José Acuña - Doctoral Thesis
  • 20.
    Acuña, José
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Effektivare Utnyttjande av Energibrunnar för Värmepumpar Undersöks på KTH2010In: KYLA Värmepumpar, ISSN 1100-343X, Vol. 6Article in journal (Other (popular science, discussion, etc.))
  • 21.
    Acuña, José
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Forskningsprojekt Ska Ge Effektivare Bergvärme2009In: VVS Forum, ISSN 0346-4644, no 1Article in journal (Other (popular science, discussion, etc.))
  • 22.
    Acuña, José
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Framtidens värmesystem med borrhålsvärmeväxlare2011In: Energi&Miljö, ISSN 1101-0568, no 2Article in journal (Other (popular science, discussion, etc.))
  • 23.
    Acuña, José
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Improvements of U-pipe Borehole Heat Exchangers2010Licentiate thesis, monograph (Other academic)
    Abstract [en]

    The sales of Ground Source Heat Pumps in Sweden and many other countries are having a rapid growth in the last decade. Today, there are approximately 360 000 systems installed in Sweden, with a growing rate of about 30 000 installations per year. The most common way to exchange heat with the bedrock in ground source heat pump applications is circulating a secondary fluid through a Borehole Heat Exchanger (BHE), a closed loop in a vertical borehole. The fluid transports the heat from the ground to a certain heating and/or cooling application. A fluid with one degree higher or lower temperature coming out from the borehole may represent a 2-3% change in the COP of a heat pump system. It is therefore of great relevance to design cost effective and easy to install borehole heat exchangers. U-pipe BHEs consisting of two equal cylindrical pipes connected together at the borehole bottom have dominated the market for several years in spite of their relatively poor thermal performance and, still, there exist many uncertainties about how to optimize them. Although more efficient BHEs have been discussed for many years, the introduction of new designs has been practically lacking. However, the interest for innovation within this field is increasing nowadays and more effective methods for injecting or extracting heat into/from the ground (better BHEs) with smaller temperature differences between the heat secondary fluid and the surrounding bedrock must be suggested for introduction into the market.

    This report presents the analysis of several groundwater filled borehole heat exchangers, including standard and alternative U-pipe configurations (e.g. with spacers, grooves), as well as two coaxial designs. The study embraces measurements of borehole deviation, ground water flow, undisturbed ground temperature profile, secondary fluid and groundwater temperature variations in time, theoretical analyses with a FEM software, Distributed Thermal Response Test (DTRT), and pressure drop. Significant attention is devoted to distributed temperature measurements using optic fiber cables along the BHEs during heat extraction and heat injection from and to the ground.

    Download full text (pdf)
    FULLTEXT01
  • 24.
    Acuña, José
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Optimera med Rätt Kollektorval2010In: Borrsvängen, ISSN 1103-7938, no 2Article in journal (Other (popular science, discussion, etc.))
  • 25.
    Acuña, José
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Slang intill bergväggen ger effektivare värmeväxling2009In: HUSBYGGAREN, ISSN 0018-7968, no 6Article in journal (Other (popular science, discussion, etc.))
  • 26.
    Acuña, José
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Mogensen, Palne
    Palm, Björn
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Distributed Thermal Response Tests on a Multi-pipe Coaxial Borehole Heat Exchanger2011In: HVAC & R RESEARCH, ISSN 1078-9669, E-ISSN 1938-5587, Vol. 17, no 6, p. 1012-1029Article in journal (Refereed)
    Abstract [en]

    In a distributed thermal response test, distributed temperature measurements are taken along a borehole heat exchanger during thermal response tests, allowing the determination of local ground thermal conductivities and borehole thermal resistances. In this article, the first results from six heat injection distributed thermal response tests carried out on a new, thermally insulated leg type, multi-pipe coaxial borehole heat exchanger are presented. The borehole heat exchanger consists of 1 insulated central and 12 peripheral pipes. Temperature measurements are carried out using fiber-optic cables placed inside the borehole heat exchanger pipes. Unique temperature and thermal power profiles along the borehole depth as a function of the flow rate and the total thermal power injected into the borehole are presented. A line source model is used for simulating the borehole heat exchanger thermal response and determining local variations of the ground thermal conductivity and borehole thermal resistance. The flow regime in the peripheral pipes is laminar during all distributed thermal response tests and average thermal resistances remain relatively constant, independently of the volumetric flow rate, being lower than those corresponding to U-pipe borehole heat exchangers. The thermal insulation of the central pipe significantly reduces the thermal shunt to the peripheral pipes even at low volumetric flow rates.

  • 27.
    Acuña, José
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Mogensen, Palne
    Palm, Björn
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Evaluation of a coaxial borehole heat exchanger prototype2010In: Proceedings of the 14th ASME International Heat Transfer Conference, ASME Press, 2010Conference paper (Refereed)
    Abstract [en]

    Different borehole heat exchanger designs have been discussed for many years. However, the U-pipe design has dominated the market, and the introduction of new designs has been practically lacking. The interest for innovation within this field is rapidly increasing and other designs are being introduced on the market. This paper presents a general state of the art summary of the borehole heat exchanger research in the last years. A first study of a prototype coaxial borehole heat exchanger consisting of one central pipe and five external channels is also presented. The particular geometry of the heat exchanger is analyzed thermally in 2-D with a FEM software. An experimental evaluation consisting of two in situ thermal response tests and measurements of the pressure drop at different flow rates is also presented. The latter tests are carried out at two different flow directions with an extra temperature measurement point at the borehole bottom that shows the different heat flow distribution along the heat exchanger for the two flow cases. The borehole thermal resistance of the coaxial design is calculated both based on experimental data and theoretically.

  • 28.
    Acuña, José
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Mogensen, Preben
    Palne Mogensen AB.
    Palm, Björn
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Distributed Thermal Response Test on a U-Pipe Borehole Heat Exchanger2009In: Proc. Effstock 2009, 11th International Conference on Thermal Energy Storage, Stockholm, Sweden: Academic Conferences Publishing, 2009Conference paper (Refereed)
    Abstract [en]

    In a Distributed Thermal Response Test (DTRT) the ground thermal conductivity and boreholethermal resistance are determined at many instances along the borehole. Here, such a testis carried out at a 260 m deep water filled energy well, equipped with a U-pipe borehole heatexchanger, containing an aqueous solution of ethanol as working fluid. Distributed temperaturemeasurements are carried out using fiber optic cables placed inside the U-pipe, duringfour test phases: undisturbed ground conditions, fluid pre-circulation, constant heat injection,and borehole recovery. A line source model is used for simulating the borehole thermal response.Fluid temperature profiles during the test are presented. The results show local variationsof the ground thermal conductivity and borehole thermal resistance along the boreholedepth, as well as a deviation of the latter as compared to the one resulting from a standardthermal response test.

  • 29.
    Acuña, José
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Palm, Björn
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    A novel coaxial BHE: Description and first Distributed Thermal Response Test Measurements2010In: Proceedings World Geothermal Congress 2010, 2010, p. paper 2953-Conference paper (Refereed)
    Abstract [en]

    The thermal performance of a Borehole Heat Exchanger plays a significant role when defining the quality of heat exchange with the ground in Ground Source Heat Pumps. Different designs have been discussed and increased interest on innovation within this field has taken place during the last years. This paper presents the first measurement results from a 189 meters deep novel coaxial Borehole Heat Exchanger, consisting of an inner central pipe and an annular channel in direct contact with the surrounding bedrock. The measurements were taken during a distributed thermal response test using fiber optic cables installed in the energy well. Fluid temperature every ten meters along the borehole depth are presented and compared with similar measurements from a common U-pipe heat exchanger. A unique measurement of the borehole wall temperature in the coaxial collector illustrates how effective the heat transfer performance is through the annular channel.

  • 30.
    Acuña, José
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Palm, Björn
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Comprehensive Summary of Borehole Heat Exchanger Research at KTH2010In: IIR/Eurotherm Sustainable Refrigeration and Heat Pump Technology Conference, Stockholm: KTH Royal Institute of Technology, 2010, p. 69-Conference paper (Refereed)
    Abstract [en]

    A research project that aims at presenting recommendations for improving the COP of ground source heat pump systems by 10-20% through better design of Borehole Heat Exchangers (BHE) is described in this paper. Experiments are carried out with temperature measurements taken in different BHE types during heat pump operation conditions as well as during the thermal response tests. It is also expected to point out methods for having natural fluid circulation in the BHE, i.e. demonstrating that the heat carrier fluid can naturally circulate thanks to temperature induced density differences along the borehole depth, and thereby avoiding the use of electricity consuming pumps. A brief background presenting the most relevant work regarding BHE research around the world is first presented, followed by a comprehensive description of the current research at KTH. Some new measurements and obtained results are presented as an estimation of to what extent the project results have been achieved is discussed. An analysis on how the project results could allow reducing the borehole depth keeping today’s Coefficient of Performance is presented.

  • 31.
    Acuña, José
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Palm, Björn
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Distributed Temperature Measurements on a Multi-pipe Coaxial Borehole Heat Exchanger2011In: IEA Heat Pump Conference, International Energy Agency , 2011, p. 4.19-Conference paper (Refereed)
    Abstract [en]

    The first experiences with a multi-pipe borehole heat exchanger prototype consisting of an insulated central pipe and twelve parallel peripheral pipes are described. Secondary fluid distributed temperature measurements along the borehole depth, being the only ones of its kind in this type of heat exchanger, are presented and discussed. The measurements are carried out with fiber optic cables during heat injection into the ground, giving a detailed visualization of what happens both along the central and peripheral flow channels. The heat exchange with the ground mainly occurs along the peripheral channels and an indication of almost no thermal short circuiting, even while having large temperature differences between the down and upwards channels, is observed.

  • 32.
    Acuña, José
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Palm, Björn
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Distributed thermal response tests on pipe-in-pipe borehole heat exchangers2013In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 109, no SI, p. 312-320Article in journal (Refereed)
    Abstract [en]

    Borehole Thermal Energy Storage systems typically use U-pipe Borehole Heat Exchangers (BHE) having borehole thermal resistances of at least 0.06 K m/W. Obviously, there is room for improvement in the U-pipe design to decrease these values. Additionally, there is a need for methods of getting more detailed knowledge about the performance of BHEs. Performing Distributed Thermal Response Tests (DTRT) on new proposed designs helps to fill this gap, as the ground thermal conductivity and thermal resistances in a BHE can be determined at many instances in the borehole thanks to distributed temperature measurements along the depth. In this paper, results from three heat injection DTRTs carried out on two coaxial pipe-in-pipe BHEs at different flow rates are presented for the first time. The tested pipe-in-pipe geometry consists of a central tube inserted into a larger external flexible pipe, forming an annular space between them. The external pipe is pressed to the borehole wall by applying a slight overpressure at the inside, resulting in good thermal contact and at the same time opening up for a novel method for measuring the borehole wall temperature in situ, by squeezing a fiber optic cable between the external pipe and the borehole wall. A reflection about how to calculate borehole thermal resistance in pipe-in-pipe BHEs is presented. Detailed fluid and borehole wall temperatures along the depth during the whole duration of the DTRTs allowed to calculate local and effective borehole thermal resistances and ground thermal conductivities. Local thermal resistances were found to be almost negligible as compared to U-pipe BHEs, and the effective borehole resistance equal to about 0.03 K m/W. The injected power was found to be almost evenly distributed along the depth.

  • 33.
    Acuña, José
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Palm, Björn
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Experimental Comparison of Four Borehole Heat Exchangers2008In: Refrigeration Science and Technology Proceedings, Copenhagen: International Institute of Refrigeration, 2008, p. SEC09-W1-09Conference paper (Refereed)
    Abstract [en]

    The most common way to exchange heat with the bedrock in ground source heat pump applications is circulating a secondary fluid through a closed U-pipe loop in a vertical borehole. This fluid transports the heat from the rock to the ground source heat pump evaporator. The quality of the heat exchange with the ground and the necessary pumping power to generate the fluid circulation are dependent on the type of fluid and its flow conditions along the pipe. Four different borehole heat exchangers are tested using ethyl alcohol with 20% volume concentration. The fluid temperatures are logged at the borehole inlet, bottom, and outlet. The collectors are compared based on their borehole thermal resistance and pressure drop at different flow rates. The results indicate that the pipe dimensions play an important roll, spacers might not contribute to better heat transfer, and inner micro fins in the pipes improve the performance of the collectors.

  • 34.
    Acuña, José
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Palm, Björn
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    First Experiences with Coaxial Borehole Heat Exchangers2011In: Proceedings of the IIR Conference on Sources/Sinks alternative to the outside Air for HPs and AC techniques, International Institute of Refrigeration, 2011Conference paper (Refereed)
    Abstract [en]

    Some experiences with coaxial borehole heat exchanger prototypes are discussed here. Four different designs are described as they have been part of a research project at KTH: two pipe-inpipe annular designs, one multi-pipe and one multi-chamber design. A special focus is given to two of the prototypes, a pipe-in-pipe design with the external flow channel consisting of an annular cross section and partly insulated central pipe, and a multi-pipe design with twelve parallel peripheral pipes and an insulated central channel. The secondary fluid temperature profiles at low volumetric flow rates are presented for these two prototypes, measured with fiber optic cables during thermal response tests and allowing a detailed visualization of what happens along the heat exchanger depth. It is the first time this is carried out in these types of borehole heat exchangers. The measurements indicate good thermal performance and point at potential uses for these heat exchangers in different ground coupled applications.

  • 35.
    Acuña, José
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Palm, Björn
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Hill, Peter
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Characterization of Boreholes: Results from a U-pipe Borehole Heat Exchanger Installation2008In: Proceedings 9th IEA Heat Pump Conference 2008: Conference Proceedings, Zurich, Switzerland: International Energy Agency , 2008, p. 4-19Conference paper (Refereed)
    Abstract [en]

    Heat exchange with the bedrock for ground source heat pumps is commonly done with the help of U-pipe energy collectors in vertical boreholes. At the moment, there exist many uncertainties about how efficient the heat transfer between the rock and the collector is. For a complete performance analysis of these systems, a 260 m deep water filled borehole is characterized, by measuring the borehole deviation, the ground water flow and the undisturbed ground temperature. Significant attention is devoted to detailed temperature measurements along the borehole depth during operation providing a complete description of the temperature variations in time both for the secondary working fluid and for the ground water. The results show a deviated borehole from the vertical direction without any relevant ground water flow. The undisturbed ground temperature gradient varies from negative to positive at approximately half of the borehole depth. The transient response of the borehole during the heat pump start up is illustrated and it is observed that there does not exist any thermal short circuiting between the down and up-going pipes when the system is in operation.

  • 36.
    Acuña, José
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Palm, Björn
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Khodabandeh, Rahmat
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Weber, Kenneth
    Distributed Temperature Measurements on a U-pipe Thermosyphon Borehole Heat Exchanger With CO22010In: Refrigeration Science and Technology Proceedings, Sydney, Australia: International Institute of Refrigeration, 2010Conference paper (Refereed)
    Abstract [en]

    In thermosyphon Borehole Heat Exchangers, a heat carrier fluid circulates while exchanging heat with the ground without the need of a circulation pump, representing an attractive alternative when compared to other more conventional systems. Normally, the fluid is at liquid-vapor saturation conditions and circulation is maintained by density differences between the two phases as the fluid absorbs energy from the ground. This paper presents some experimental experiences from a 65 meter deep thermosyphon borehole heat exchanger loop using Carbon Dioxide as heat carrier fluid, instrumented with a fiber optic cable for distributed temperature measurements along the borehole depth. The heat exchanger consists of an insulated copper tube through which the liquid CO2 flows downwards, and a copper tube acting as a riser. The results show temperatures every two meters along the riser, illustrating the heat transfer process in the loop during several heat pump cycles.

  • 37.
    Adesanya, Adewale A.
    et al.
    Energy and Environmental Analysis Group, New York State Energy Research and Development Authority (NYSERDA), Albany, NY, 12203, USA; Havenergy Consulting Inc, Albany, NY, 12203, USA.
    Sommerfeldt, Nelson
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Pearce, Joshua M.
    Department of Electrical and Computer Engineering, Ivey School of Business, University of Western Ontario, London, ON, N6A 5B9, Canada.
    Achieving 100% Renewable and Self-Sufficient Electricity in Impoverished, Rural, Northern Climates: Case Studies from Upper Michigan, USA2022In: Electricity, E-ISSN 2673-4826, Vol. 3, no 3, p. 264-296Article, review/survey (Refereed)
    Abstract [en]

    The development of 100% renewable electricity (RE) systems play a pivotal role in ensuring climate stability. Many municipalities blessed with wealth, an educated and progressive citizenry, and large RE resources, have already reached 100% RE generation. Impoverished municipalities in unwelcoming environments both politically and climatically (e.g., northern latitudes with long, dark winter conditions) appear to be incapable of transitioning to renewables. This study challenges that widespread assumption by conducting a detailed technical and economic analysis for three representative municipalities in the Western Upper Peninsula of Michigan. Each municipality is simulated with their own hourly electricity demand and climate profiles using an electrical supply system based on local wind, solar, hydropower, and battery storage. Sensitivities are run on all economic and technical variables. Results show that transition to 100% RE is technically feasible and economically viable. In all baseline scenarios, the 100% RE systems produced a levelized cost of electricity up to 43% less than the centralized utility rates, which are predominantly fueled by gas and coal. Current policies, however, prevent such self-sufficient systems from being deployed, which are not only detrimental to the global environment, but also aggravate the economic depression of such regions. Potential energy savings advance the prohibitive energy justice principle.

  • 38.
    af Burén, Claës
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Piska eller morot?: En studie av möjligheter och hinder samt förslag på åtgärder till förändringar inom den svenska industrin i syfte att öka energieffektiviseringsarbetet.2013Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Our nation is dependent on secure energy supply at competitive prices. Even though energy efficiency tools are available Sweden hasn’t achieved its full potential. The Swedish industry and its energy efficiency is affected by a number of instruments concerning climate and energy, such as energy- and carbon taxes, the European emission trading system (EU ETS) and the Swedish program for energy efficiency (PFE). 

    Optional or obligatory, today there is a difference of opinion concerning the design of energy efficiency instruments. This paper focus on the research of energy efficiency instruments in the industry and to identify potential opportunities, obstacles and give recommendations of actions to improve the energy efficiency. This paper is a part of a project,”Ett energieffektivt samhälle”,   initiated by the Royal Swedish Academy of Engineering Sciences (IVA).  The research is based on interviews with industry related representatives of companies, associations, government agencies and other independent operators.

    PFE, EKC, the environmental code, ErP, energy- and carbon taxes, ETS and the Swedish system of electricity certificates, influences the energy efficiency work. None of these instruments have an overall impact on the industry. PFE and ErP are popular instruments but EKC has to improve to be an incentive for the industry.  The environmental code is criticized for its interpretation and enforcement. Competitiveness is adversely affected by taxes and ETS in contrary to PFE and EKC. Continuously energy work is only required by PFE and the environmental code.

    Both authorities and companies have to provide clear guidelines, follow-ups and the gains to be obtained of the energy efficiency work. Authorities have to support critical investments and to avoid interfering with the competition on the market. Long-term planning, cost-effectiveness, technology neutrality and being a legitimate stakeholder is of vital importance. Companies have to provide the financial structure suited for energy efficiency work. They also have to apply a continuous and long-term efficiency work, for example by highlighting new ratios and to encourage employees to participate in the development process. Collaboration in the form of co-production between different universities, institutes, lobby-associations and companies have to be encouraged to improve knowledge exchange and reduced costs.

    The question is if energy efficiency instruments should be based on “the stick or carrot approach”? Research about energy efficiency shows, that a combination of voluntary, mandatory and economical instruments is absolutely necessary for a favourable development.  Parts with different interests and qualifications demands a number of arrangements that both is a “stick and a carrot approach” to a necessary energy efficiency work.  Many of the participants in the study underline the importance to address the heterogeneity of the parts otherwise it will disfavour the energy efficiency work when the industry moves abroad. Actually the following conclusion could be made, that the initial question about the “stick or carrot approach” must be put in a different way. About an effective energy efficiency work it’s absolutely necessary to create a combination of both “the stick and the carrot” approach and the wider look on the concept energy efficiency. It’s most important to have a very well done combination and harmonization of the instruments to support the energy efficiency work, the industry and the society at large.

    Download full text (pdf)
    af Burén Claës EGI-2013-100MSC
  • 39.
    Ahangar Zonouzi, S.
    et al.
    University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran.
    Khodabandeh, Rahmatollah
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Safarzadeh, H.
    University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran.
    Aminfar, H.
    University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran.
    Mohammadpourfard, M.
    University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran.
    Ghanbarpour, Morteza
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Experimental study of the subcooled flow boiling heat transfer of magnetic nanofluid in a vertical tube under magnetic field2020In: Journal of thermal analysis and calorimetry (Print), ISSN 1388-6150, E-ISSN 1588-2926, Vol. 140, no 6, p. 2805-2816Article in journal (Refereed)
    Abstract [en]

    In this study, the subcooled boiling heat transfer of a Fe3O4/water magnetic nanofluid flowing through a vertical tube has been investigated experimentally in the presence and absence of a magnetic field. The magnetic field has been generated by quadrupole magnets. The subcooled boiling heat transfer coefficient and the boiling curves of the ferrofluid flow under the action of the magnetic field have been compared with those in the absence of magnetic field. The results showed that magnetic actuation contributes to have higher heat fluxes at the same wall superheat in comparison with heat fluxes achieved in the no magnetic field case. Therefore, the local subcooled boiling heat transfer coefficients are increased by the magnetic field. The maximum measured enhancement in local subcooled boiling heat transfer coefficient along the length of the tube by applying magnetic field is 46.58% at applied heat flux of 77,000 W m−2 and mass flux of 270 kg m−2 s−1. Furthermore, the enhancement of local heat transfer coefficient by applying magnetic field decreases as the applied heat flux in the subcooled boiling region is increased.

  • 40. Ahangar Zonouzi, S.
    et al.
    Khodabandeh, Rahmatollah
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Safarzadeh, H.
    Aminfar, H.
    Trushkina, Y.
    Mohammadpourfard, M.
    Ghanbarpour, Morteza
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Salazar Alvarez, G.
    Experimental investigation of the flow and heat transfer of magnetic nanofluid in a vertical tube in the presence of magnetic quadrupole field2018In: Experimental Thermal and Fluid Science, ISSN 0894-1777, E-ISSN 1879-2286, Vol. 91, p. 155-165Article in journal (Refereed)
    Abstract [en]

    In this paper, the effects of applying magnetic field on hydrodynamics and heat transfer of Fe3O4/water magnetic nanofluid flowing inside a vertical tube have been studied experimentally. The applied magnetic field was resulted from quadrupole magnets located at different axial positions along the tube length. The variations of the local heat transfer coefficient and also the pressure drop of the ferrofluid flow along the length of the tube by applying the magnetic quadrupole field have been investigated for different Reynolds numbers. The obtained experimental results show maximum enhancements of 23.4%, 37.9% and 48.9% in the local heat transfer coefficient for the magnetic nanofluid with 2 vol% Fe3O4 in the presence of the quadrupole magnets located at three different axial installation positions for the Reynolds number of 580 and the relative increase in total pressure drop by applying the magnetic field is about 1% for Re = 580. The increase of the heat transfer coefficient is due to the radial magnetic force toward the heated wall generated by magnetic quadrupole field acting over the ferrofluid flowing inside the tube so that the velocity of the ferrofluid in the vicinity of the heated wall is increased. It is also observed that the enhancement of heat transfer coefficient by applying magnetic quadrupole is decreased with increasing the Reynolds number.

  • 41.
    Al Shadidi, Kamilla
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Oil Cooling of Electric Motor using CFD2014Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    This thesis investigated the heat transfer of internally oil cooled rotors in permanent magnet electric machines which are, among other things, used in hybrid vehicles or zero emission vehicles. The magnets become sensitive and can be demagnetized at high working temperatures, hence the need of cooling. The scope of this work included CFD simulations in STAR-CCM+. Three different 3D multiphase models simulating the oil propagation in the rotor were performed. A Lagrangian multiphase model combined with a fluid film model was the most suitable model for simulating the spray of the oil and the film thickness along the inner rotor wall. It was noticed that periodic boundaries caused problems for the fluid film model, therefore a complete geometry was preferred over a truncated model. The 3D solutions provided thicker film thicknesses than the analytical solutions from the fluid film thickness theory. The maximum analytical thickness was of the same order of magnitude as the surface average film thickness provided by the multiphase models. This thickness was assumed to be constant when used as the base for the fluid region in the 2D one-phase models.The study showed that aluminum was the most suitable rotor material due to its high conductive capacity, which provided a more even distribution of the temperature in the solid and hence resulted in lower overall temperatures. The cooling power increased linearly with the volumetric flow rate, however the heat transfer coefficient decreased for the higher flow rates. A volumetric flow rate of 10dl/min was recommended. A 2D model was compared to a preliminary experiment and showed that these were not correlated. The conclusion was that more experiments and simulations are needed in order to confirm the validity of the 2D model.

    Download full text (pdf)
    Oil Cooling of Electric Motor using CFD
  • 42.
    Al Taweel, Maher
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    CFD simulering av kallras: Undersökning av temperatur- och luftbeteende intill höga glasfasader och i vistelsezon med golvvärme som en värmekälla2013Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Glass has sophisticated front properties and are used as facades in high buildings. During cold periods, these glass facades could cause thermal discomfort, due to cold downdraught. Cold downdraught can be countered by placing heaters under glass surfaces. Nowadays technology offers highly insulating windows, which is why there is an interest to investigate the indoor climate with only underfloor heating. The research in this area is limited, and few empirical methods are available. Theoretical analysis has begun but it still brand new.

    The aim of this investigation was to present the thermal indoor climate influenced by various parameters, such as outdoor temperature, U-value and the glass height. The results were also meant to be used as reference tools in future projects. A reference building was modeled in simulation software called CFD Star-CCM+.

    The assignment was initiated by Incoord, a leading consulting company in energy, indoor climate and installation planning.

    The results showed that the air velocity increases with decreasing outdoor temperature and decreases with increasing thermal insulation (lower U-value). At the edges of the glass the air velocity becomes twice as large compared to the velocity of the air in the middle of the atrium. The air velocity (maximum and average) at 0.1 m above the floor is always higher than at 2.0 m. The lowest air velocities start from about 0.25 m/s at 0 ℃ and reaches to 0.60 m/s at -20 ℃. That means these air velocities are too high for what is accepted as a good indoor climate, where the maximum allowable air velocity is 0.15 m/s.

    The outdoor temperatures and the glass facade’s U-value also have an effect on the surface temperature of the glass facade. This decreases the surface temperature with decreased outdoor temperature, and the surface temperature increases at lower U-value.

    The height of the glass facades proved to affect both the air velocity in the occupied zone and in the glass surface temperature. The air velocity increases with the glass’ height. The increase is higher at 0.1 m than at 2.0 m above the floor.

    The result shows also that the average air velocity is lower than 0,15 m/s at window height lower than 5 m. But, at the same height the maximum air velocity is higher than 0.3 m/s. The surface temperature of the glass facades increases with the glass’ height. This is because the indoor heat transfer coefficient increases with height. The outdoor heat transfer coefficient is a function of the wind speed and was assumed to be constant.

    The underfloor heating, which is represented in the simulations with a floor surface temperature of 27 ℃, is not enough to maintain a good indoor climate in any of simulations.

    The results of this thesis showed a strong relation between indoor climate, outdoor temperature, U-value and the glass height. This study also showed that the floor heating is not enough to counteract the cold draft during extreme cold periods, in high glass buildings. The presented results can be used as a reference tool for the assessment of air velocities and surface temperatures, in similar high buildings.

    Download full text (pdf)
    Al Taweel Maher EGI-2013-150MSC
  • 43.
    Albiz, Niccolas
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Identifying Relevant Versus Received Sustainability Education at Industrial Engineering and Management Programs2017In: Handbook of Theory and Practice of Sustainable Development in Higher Education Vol 3 / [ed] Walter Leal Filho, Mark Mifsud, Chris Shiel, Rudi Pretorius, Springer , 2017, p. 115-131Chapter in book (Refereed)
    Abstract [en]

    Implementing and evaluating sustainable development in higher education poses particular difficulties, as the field remains contested. This paper presents an innovative approach to understanding the current sustainability education at university programs and envisioning its desired future state. This approach is based on the convergence seen in current scientific literature within the field. This study utilized this method on Sweden's five largest industrial engineering and management programs (covering 74% of the particular population), involving 111 interviews and resulting in identification of the relevant sustainability content and mapping of the received content at these programs. This paper documents the process-oriented, as supposed to results-oriented, approach used, as well as certain key results and insights. The revealed adoption challenges were structured according to their interconnectedness, allowing points of high leverage to be found for future interventions. This paper is appealing to all who wish to conduct pre-studies to engaging in developing program curricula at larger scale through collaboration between various universities. The paper will outline the process, the key success factors (as identified by the author) and the insights that have a bearing on a broader audience than industrial engineering faculty.

  • 44.
    Ali, Rashid
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Phase Change Phenomena During Fluid Flow in Microchannels2010Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Phase change phenomena of a fluid flowing in a micro channel may be exploited to make the heat exchangers more compact and energy efficient. Compact heat exchangers offer several advantages such as light weight, low cost, energy efficiency, capability of removing high heat fluxes and charge reduction are a few to mention. Phase change phenomena in macro or conventional channels have been investigated since long but in case of micro channels, fewer studies of phase change have been conducted and underlying phenomena during two-phase flow in micro channels are not yet fully understood. It is clear from the literature that the two-phase flow models developed for conventional channels do not perform well when extrapolated to micro scale.

    In the current thesis, the experimental flow boiling results for micro channels are reported. Experiments were conducted in circular, stainless steel and quartz tubes in both horizontal and vertical orientations. The internal diameters of steel tubes tested were 1.70 mm, 1.224 mm and the diameter of quartz tube tested was 0.781 mm. The quartz tube was coated with a thin, electrically conductive, transparent layer of Indium-Tin-Oxide (ITO) making simultaneous heating and visualization possible. Test tubes were heated electrically using DC power supply. Two refrigerants R134a and R245fa were used as working fluids during the tests. Experiments were conducted at a wide variety of operating conditions.

    Flow visualization results obtained with quartz tube clearly showed the presence of confinement effects and consequently an early transition to annular flow for micro channels. Several flow pattern images were captured during flow boiling of R134a in quartz tube. Flow patterns recorded during the experiments were presented in the form of Reynolds number versus vapour quality and superficial liquid velocity versus superficial gas velocity plots. Experimental flow pattern maps so obtained were also compared with the other flow pattern maps available in the literature showing a poor agreement. Flow boiling heat transfer results for quartz and steel tubes indicate that the heat transfer coefficient increases with heat flux and system pressure but is independent on mass flux and vapour quality. Experimental flow boiling heat transfer coefficient results were compared with those obtained using different correlations from the literature. Heat transfer experiments with steel tubes were continued up to dryout condition and it was observed that dryout conditions always started close to the exit of the tube. The dryout heat flux increased with mass flux and decreased with exit vapour quality. The dryout data were compared with some well known CHF correlations available in the literature. Two-phase frictional pressure drop for the quartz tube was also obtained under different operating conditions. As expected, two-phase frictional pressure drop increased with mass flux and exit vapour quality.

    Download full text (pdf)
    FULLTEXT01
  • 45.
    Ali, Rashid
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Palm, Björn E.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Dryout Characteristics During Flow Boiling of R134a in Vertical Circular Minichannels2011In: International Journal of Heat and Mass Transfer, ISSN 0017-9310, E-ISSN 1879-2189, Vol. 54, no 11-12, p. 2434-2445Article in journal (Refereed)
    Abstract [en]

    In this paper, the experimental results of dryout during flow boiling in minichannels are reported and analysed. Experiments were carried out in vertical circular minichannels with internal diameters of 1.22 mm and 1.70 mm and a fixed heated length of 220 mm. R134a was used as working fluid. Mass flux was varied from 50 kg/m(2) s to 600 kg/m(2) s and experiments were performed at two different system pressures corresponding to saturation temperatures of 27 degrees C and 32 degrees C. Experimental results show that the dryout heat flux increases with mass flux and decreases with tube diameter while system pressure has no clear effect for the range of experimental conditions covered. Finally, the prediction capabilities of the well known critical heat flux (CHF) correlations are also tested.

  • 46.
    Ali, Rashid
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Palm, Björn E.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Claudi, Martin-Callizo
    Maqbool, Mohammad H.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Flow Patterns and Flow Pattern Maps for Microchannels2010In: 2010 3rd International Conference on Thermal Issues in Emerging Technologies, Theory and Applications - Proceedings, ThETA3 2010, 2010, p. 33-42Conference paper (Refereed)
    Abstract [en]

    Dense packaging of electronic components generates very high heat fluxes and therefore results in challenges for proper thermal management of such components. Microchannel based evaporators with phase changing liquids are regarded as a promising solution for such high heat flux cooling applications. Due to confinement of flow and differences in the relative importance of governing phenomena, the two-phase flow and heat transfer characteristics of microchannels have been shown to be different from those of conventional sized channels. The fact that microchannel is an attractive cooling option but at the same time there is a clear lack of understanding of related hydrodynamic and thermal transport phenomena which provides an impetus for microchannel research. This paper presents the flow patterns and flow pattern maps obtained for an experimental study of R134a during flow boiling in a horizontal microchannel. The microchannel was a fused silica tube, the outer surface of which was coated with thin, transparent and electrically conductive layer of Indium-Tin-Oxide (ITO). The microchannel was 781 m in internal diameter and 191 mm in heated length. Operating parameters during the experiments were: mass flux 100-400 kg/m2 s, heat flux 5-45 kW/m2, saturation temperature 25 and 30 °C. A High speed camera was used with a close up lens to capture the flow patterns evolved along the channel. Flow pattern maps are presented in terms of superficial gas and liquid velocity and in terms of Reynolds number and vapor quality plots. The results are compared with some flow pattern maps for conventional and micro scale channels available in literature.

  • 47.
    Ali, Rashid
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Palm, Björn E.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Maqbool, Mohammad H.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    A Visualization Study During Flow Boiling of R134a In A Horizontal Microchannel2010In: ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, ICNMM2010, 2010, p. 85-94Conference paper (Refereed)
    Abstract [en]

    In this paper, the experimental flow boiling visualization results of a microchannel are presented and discussed. A series of visualization experiments have been conducted in a horizontal, circular, uniformly heated microchannel, to record the two-phase flow patterns evolved during the boiling process and to study the ebullition process. A high speed camera (REDLAKE HG50LE) with a maximum of 100000 fps together with tungsten lights was used to capture the images along the test section. Microchannel was made of circular fused silica tube having an internal diameter of 0.781 mm and a uniformly heated length of 191 mm. Outside of the test tube was coated with a thin, electrically conductive layer of Indium Tin Oxide (ITO) for direct heating of the test section. Refrigerant R134a was used as working fluid and experiments were performed at two different system pressures corresponding to saturation temperatures of 25 degrees C and 30 degrees C. Mass flux was varied from 100 kg/m(2)s to 400 kg/m(2)s and heat flux ranged from 5 kW/m(2) to 45 kW/m(2). Visualization results show that the bubble growth is restricted by the tube diameter which results in very short existence of isolated bubbly flow regime except essentially restricted to a very short length of test tube. Flow patterns observed along the length were: Isolated bubble, elongated bubble, slug flow, semi annular and annular flow. Rigorous boiling and increased coalescence rates were observed with increase in heat flux. Bubble frequency was observed to increase with both heat and mass flux. A comparison with our previous flow boiling visualization studies, carried out for a test tube of 1.33 mm internal diameter, shows that the number of active nucleation sites is less while the bubble frequency is higher for the current study. Mean bubble length and bubble velocity during elongated bubble flow pattern have also been calculated from the images obtained during the tests.

  • 48.
    Ali, Rashid
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Palm, Björn E.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Maqbool, Mohammad H.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Experimental Investigation of Two-phase Pressure Drop in a Microchannel2011In: Heat Transfer Engineering, ISSN 0145-7632, E-ISSN 1521-0537, Vol. 32, no 13/14, p. 1126-1138Article in journal (Refereed)
    Abstract [en]

    Experimental results of two-phase pressure drop in a horizontal circular microchannel are reported in this paper. A test tube was made of fused silica having an internal diameter of 781 mu m with a total length of 261 mm and a heated length of 191 mm. The outer surface of the test tube was coated with an electrically conductive thin layer of ITO (indium tin oxide) for direct heating of the test section. Refrigerants R134a and R245fa were used as the working fluids, and mass flux during the experiments was varied between 100 and 650 kg/m(2)-s. Experiments were performed at two different system pressures corresponding to saturation temperatures of 25 degrees C and 30 degrees C for R134a and at three different system pressures corresponding to saturation temperatures of 30 degrees C, 35 degrees C, and 40 degrees C for R245fa. Two-phase frictional pressure drop characteristics with variation of mass flux, vapor fraction, saturation temperature, and heat flux were explored in detail. Finally, the prediction capability of some well-known correlations available in the literature, some developed for macrochannels and others especially developed for microchannels, was assessed.

  • 49.
    Ali, Rashid
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Palm, Björn E.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Maqbool, Mohammad H.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Flow Boiling Heat Transfer Characteristics of a Minichannel up to Dryout Condition2011In: Journal of heat transfer, ISSN 0022-1481, E-ISSN 1528-8943, Vol. 133, no 8, p. 081501-Article in journal (Refereed)
    Abstract [en]

    In this paper, the experimental flow boiling heat transfer results of a minichannel are presented. A series of experiments was conducted to measure the heat transfer coefficients in a minichannel made of stainless steel (AISI 316) having an internal diameter of 1.70 mm and a uniformly heated length of 220 mm. R134a was used as a working fluid, and experiments were performed at two different system pressures corresponding to saturation temperatures of 27 degrees C and 32 degrees C. Mass flux was varied from 50 kg/m(2) s to 600 kg/m(2) s, and heat flux ranged from 2 kW/m(2) to 156 kW/m(2). The test section was heated directly using a dc power supply. The direct heating of the channel ensured uniform heating, which was continued until dryout was reached. The experimental results show that the heat transfer coefficient increases with imposed wall heat flux, while mass flux and vapor quality have no considerable effect. Increasing the system pressure slightly enhances the heat transfer coefficient. The heat transfer coefficient is reduced as dryout is reached. It is observed that the dryout phenomenon is accompanied with fluctuations and a larger standard deviation in outer wall temperatures.

  • 50.
    Ali, Rashid
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Palm, Björn E.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Maqbool, Mohammad H.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Flow Boiling Heat Transfer Characteristics of a Minichannel up to Dryout Condition2010In: MNHMT2009, VOL 2, New York: AMER SOC MECHANICAL ENGINEERS , 2010, p. 25-34Conference paper (Refereed)
    Abstract [en]

    In this paper the experimental flow boiling heat transfer results of a minichannel are presented. A series of experiments was conducted to measure the heat transfer coefficients in a minichannel made of stainless steel (AISI 316) having an internal diameter of 1.7mm and a uniformly heated length of 220mm. R134a was used as working fluid and experiments were performed at two different system pressures corresponding to saturation temperatures of 27 degrees C and 32 degrees C. Mass flux was varied from 50 kg/m(2) s to 600 kg/m(2) s and heat flux ranged from 2kW/m(2) to 156 kW/m(2). The test section was heated directly using a DC power supply. The direct heating of the channel ensured uniform heating and heating was continued until dry out was reached. The experimental results show that the heat transfer coefficient increases with imposed wall heat flux while mass flux and vapour quality have no considerable effect. Increasing the system pressure slightly enhances the heat transfer coefficient. The heat transfer coefficient is reduced as dryout is reached. It is observed that dryout phenomenon is accompanied with fluctuations and a larger standard deviation in outer wall temperatures.

1234567 1 - 50 of 915
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf