Change search
Refine search result
1234567 1 - 50 of 2250
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Abdalmoaty, Mohamed
    et al.
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Hjalmarsson, Håkan
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    A Simulated Maximum Likelihood Method for Estimation of Stochastic Wiener Systems2016In: 2016 IEEE 55th Conference on Decision and Control, CDC 2016, Institute of Electrical and Electronics Engineers (IEEE), 2016, 3060-3065 p., 7798727Conference paper (Refereed)
    Abstract [en]

    This paper introduces a simulation-based method for maximum likelihood estimation of stochastic Wienersystems. It is well known that the likelihood function ofthe observed outputs for the general class of stochasticWiener systems is analytically intractable. However, when the distributions of the process disturbance and the measurement noise are available, the likelihood can be approximated byrunning a Monte-Carlo simulation on the model. We suggest the use of Laplace importance sampling techniques for the likelihood approximation. The algorithm is tested on a simple first order linear example which is excited only by the process disturbance. Further, we demonstrate the algorithm on an FIR system with cubic nonlinearity. The performance of the algorithm is compared to the maximum likelihood method and other recent techniques.

  • 2.
    Abdalmoaty, Mohamed
    et al.
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre. KTH Royal Institute of Technology.
    Hjalmarsson, Håkan
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Simulated Pseudo Maximum Likelihood Identification of Nonlinear Models2017In: The 20th IFAC World Congress, Elsevier, 2017, Vol. 50, 14058-14063 p.Conference paper (Refereed)
    Abstract [en]

    Nonlinear stochastic parametric models are widely used in various fields. However, for these models, the problem of maximum likelihood identification is very challenging due to the intractability of the likelihood function. Recently, several methods have been developed to approximate the analytically intractable likelihood function and compute either the maximum likelihood or a Bayesian estimator. These methods, albeit asymptotically optimal, are computationally expensive. In this contribution, we present a simulation-based pseudo likelihood estimator for nonlinear stochastic models. It relies only on the first two moments of the model, which are easy to approximate using Monte-Carlo simulations on the model. The resulting estimator is consistent and asymptotically normal. We show that the pseudo maximum likelihood estimator, based on a multivariate normal family, solves a prediction error minimization problem using a parameterized norm and an implicit linear predictor. In the light of this interpretation, we compare with the predictor defined by an ensemble Kalman filter. Although not identical, simulations indicate a close relationship. The performance of the simulated pseudo maximum likelihood method is illustrated in three examples. They include a challenging state-space model of dimension 100 with one output and 2 unknown parameters, as well as an application-motivated model with 5 states, 2 outputs and 5 unknown parameters.

  • 3.
    Adaldo, Antonio
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Event-triggered control of multi-agent systems: pinning control, cloud coordination, and sensor coverage2016Licentiate thesis, monograph (Other academic)
    Abstract [en]

    A multi-agent system is composed of interconnected subsystems, or agents. In control of multi-agent systems, the aim is to obtain a coordinated behavior of the overall system through local interactions among the agents. Communication among the agents often occurs over a wireless medium with finite capacity. In this thesis, we investigate multiagent control systems where inter-agent communication is modelled by discrete events triggered by state conditions.

    In the first part, we consider event-triggered pinning control for a network of agents with nonlinear dynamics and time-varying topologies. Pinning control is a strategy to steer the behavior of a multi-agent system in a desired manner by controlling only a small fraction of the agents. We express the controllability of the network in terms of an average value of the network connectivity over time, and we show that all the agents can be driven to a desired reference trajectory.

    In the second part, we propose a control algorithm for multi-agent systems where inter-agent communication is substituted with a shared remote repository hosted on a cloud. Communication between each agent and the cloud is modelled as a sequence of events scheduled recursively by the agent. We quantify the connectivity of the network and we show that it is possible to synchronize the multi-agent system to the same state trajectory, while guaranteeing that two consecutive cloud accesses by the same agent are separated by a finite time interval.

    In the third part, we propose a family of distributed algorithms for coverage and inspection tasks for a network of mobile sensors with asymmetric footprints. We develop an abstract model of the environment under inspection and define a measure of the coverage attained by the sensor network. We show that the sensor network attains nondecreasing coverage, and we characterize the equilibrium configurations. The results presented in the thesis are corroborated by simulations or experiments.

  • 4.
    Adaldo, Antonio
    et al.
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Alderisio, Francesco
    KTH, School of Electrical Engineering (EES), Automatic Control.
    Liuzza, Davide
    KTH, School of Electrical Engineering (EES), Automatic Control.
    Shi, Guodong
    KTH, School of Electrical Engineering (EES), Automatic Control.
    Dimarogonas, Dimos V.
    KTH, School of Electrical Engineering (EES), Automatic Control.
    di Bernardo, Mario
    Johansson, Karl Henrik
    KTH, School of Electrical Engineering (EES), Automatic Control.
    Event-triggered pinning control of complex networks with switching topologies2014In: Proceedings of the 53rd annual IEEE Conference on Decision and Control, 2014, 2783-2788 p.Conference paper (Refereed)
    Abstract [en]

    This paper investigates the problem of eventtriggered pinning control for the synchronization of networks of nonlinear dynamical agents onto a desired reference trajectory. The pinned agents are those that have access to the reference trajectory. We consider both static and switching topologies. We prove that the system is well posed and identify conditions under which the network achieves exponential convergence. A lower bound for the rate of convergence is also derived. Numerical examples demonstrating the effectiveness of the results are provided.

  • 5.
    Adaldo, Antonio
    et al.
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Alderisio, Francesco
    Liuzza, Davide
    KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Shi, Guodong
    KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Dimarogonas, Dimos V.
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    di Bernardo, Mario
    KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre. University of Naples Federico II, Italy.
    Johansson, Karl Henrik
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Event-Triggered Pinning Control of Switching Networks2015In: IEEE Transactions on Control of Network Systems, ISSN 2325-5870, Vol. 2, no 2, 204-213 p., 7098382Article in journal (Refereed)
    Abstract [en]

    This paper investigates event-triggered pinning control for the synchronization of complex networks of nonlinear dynamical systems. We consider networks described by time-varying weighted graphs and featuring generic linear interaction protocols. Sufficient conditions for the absence of Zeno behavior are derived and exponential convergence of a global normed error function is proven. Static networks are considered as a special case, wherein the existence of a lower bound for interevent times is also proven. Numerical examples demonstrate the effectiveness of the proposed control strategy.

  • 6.
    Adaldo, Antonio
    et al.
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Liuzza, D.
    Dimarogonas, Dimos V.
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Johansson, Karl Henrik
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Coordination of multi-agent systems with intermittent access to a cloud repository2017In: Workshop on Sensing and Control for Autonomous Vehicles: Applications to Land, Water and Air Vehicles, 2017, Springer, 2017, Vol. 474, 453-471 p.Conference paper (Refereed)
    Abstract [en]

    A cloud-supported multi-agent system is composed of autonomous agents required to achieve a common coordination objective by exchanging data over a shared cloud repository. The repository is accessed asychronously by different agents, and direct inter-agent commuication is not possible. This model is motivated by the problem of coordinating a fleet of autonomous underwater vehicles, with the aim to avoid the use of expensive and power-hungry modems for underwater communication. For the case of agents with integrator dynamics, a control law and a rule for scheduling the cloud access are formally defined and proven to achieve the desired coordination. A numerical simulation corroborate the theoretical results.

  • 7.
    Adaldo, Antonio
    et al.
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Liuzza, Davide
    Dimarogonas, Dimos V.
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Johansson, Karl H.
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Multi-Agent Trajectory Tracking with Self-Triggered Cloud Access2016In: 2016 IEEE 55th Conference on Decision and Control, CDC 2016, Institute of Electrical and Electronics Engineers (IEEE), 2016, 2207-2214 p., 7798591Conference paper (Refereed)
    Abstract [en]

    This paper presents a cloud-supported control algorithm for coordinated trajectory tracking of networked autonomous agents. The motivating application is the coordinated control of Autonomous Underwater Vehicles. The control objective is to have the vehicles track a reference trajectory while keeping an assigned formation. Rather than relying on inter-agent communication, which is interdicted underwater, coordination is achieved by letting the agents intermittently access a shared information repository hosted on a cloud. An event-based law is proposed to schedule the accesses of each agent to the cloud. We show that, with the proposed scheduling of the cloud accesses, the agents achieve the required coordination objective. Numerical simulations corroborate the theoretical results.

  • 8.
    Adaldo, Antonio
    et al.
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Liuzza, Davide
    KTH, School of Electrical Engineering (EES), Automatic Control.
    Dimarogonas, Dimos V.
    KTH, School of Electrical Engineering (EES), Automatic Control.
    Johansson, Karl Henrik
    KTH, School of Electrical Engineering (EES), Automatic Control.
    Control of Multi-Agent Systems with Event-Triggered Cloud Access2015In: Proceedings of the 14th annual European Control Conference, 2015Conference paper (Refereed)
  • 9.
    Adams, David C.
    et al.
    MIT.
    Du, Jinfeng
    KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre. KTH, School of Electrical Engineering (EES), Communication Theory. Massachusetts Institute of Technology, USA.
    Médard, Muriel
    Department of Electrical Engineering and Computer Science, MIT.
    Yu, Christopher C.
    Draper Laboratory.
    Delay constrained throughput-reliability tradeoff in network-coded wireless systems2014Conference paper (Refereed)
    Abstract [en]

    We investigate the performance of delay constrained data transmission over wireless networks without end-to-end feedback. Forward error-correction coding (FEC) is performed at the bit level to combat channel distortions and random linear network coding (RLNC) is performed at the packet level to recover from packet erasures. We focus on the scenario where RLNC re-encoding is performed at intermediate nodes and we assume that any packet that contains bit errors after FEC decoding can be detected and erased. To facilitate explicit characterization of data transmission over network-coded wireless systems, we propose a generic two-layer abstraction of a network that models both bit/symbol-level operations at the lower layer (termed PHY-layer) over several heterogeneous links and packet-level operations at the upper layer (termed NET-layer). Based on this model, we propose a network reduction method to characterize the throughput-reliability function of the end-to-end transmission. Our approach not only reveals an explicit tradeoff between data delivery rate and reliability, but also provides an intuitive visualization of the bottlenecks within the underlying network. We illustrate our approach via a point-to-point link and a relay network and highlight the advantages of this method over capacity-based approaches.

  • 10.
    ADIL, MUHAMMAD NAEEM
    KTH, School of Electrical Engineering (EES), Communication Theory. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Analysis and Optimization of Transmission Strategies for Two Hop Networks with Multiple Antennas2013Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Two hop relay based networks consist of three network nodes: source,relay station, and destination in which relay station assists the sourceto communicate reliably and efficiently with the destination. Moreover,these networks provide cost efficient solution for achieving highdata rate via cooperative communication between relays with singleantennas. In two hop relay based networks, communication from a source todestination takes place over two phases, i.e , in first phase from sourceto relay station and in second phase from relay station to the destination.Therefore, it is essential to formulate transmission strategies,i.e, TDMA, SDMA, Hybrid TDMA-SDMA and multicast in terms ofresource allocation, beamforming over two phases so that interferenceis taken into account and high data rates are achieved. In this thesis,some relay selection methods have been proposed to optimize thenetwork performance. Different proposed transmission strategies arecompared in different scenario settings in order to analyse and decidethe best strategy in each setting. Based upon simulation results it is recommended to use adaptivetime split ratio between the two phases. Brute force relay selection givesthe optimal relay assignment but Hungarian assignment algorithm alsoperforms pretty close to brute force performance. SDMA with cooperativerelays connection with multiple antennas at the relays performsmuch better than the other transmission strategies. However, multicaststrategy performs much better if second phase channel knowledge is notavailable at the base station.

  • 11.
    Agüero, Juan C.
    et al.
    The University of Newcastle, Australia.
    Rojas, Cristian R.
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Goodwin, Graham C.
    The University of Newcastle, Australia.
    Fundamental Limitations on the Accuracy of MIMO Linear Models Obtained by PEM for Systems Operating in Open Loop2009In: Proceedings of the Joint 48th IEEE Conference on Decision and Control (CDC’09) and 28th Chinese Control Conference (CCC’09), 2009, 482-487 p.Conference paper (Refereed)
    Abstract [en]

    In this paper we show that the variance of estimated parametric models for open loopMultiple-Input Multiple-Output (MIMO) systems obtained by the prediction error method (PEM) satisfies a fundamental integral limitation. The fundamental limitation gives rise to a multivariable 'water-bed' effect.

  • 12.
    Agüero, Juan C.
    et al.
    The University of Newcastle, Australia.
    Rojas, Cristian R.
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Hjalmarsson, Håkan
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Goodwin, Graham C.
    The University of Newcastle, Australia.
    Accuracy of linear multiple-input multiple-output (MIMO) models obtained by maximum likelihood estimation2012In: Automatica, ISSN 0005-1098, Vol. 48, no 4, 632-637 p.Article in journal (Refereed)
    Abstract [en]

    In this paper, we study the accuracy of linear multiple-input multiple-output (MIMO) models obtained by maximum likelihood estimation. We present a frequency-domain representation for the information matrix for general linear MIMO models. We show that the variance of estimated parametric models for linear MIMO systems satisfies a fundamental integral trade-off. This trade-off is expressed as a multivariable 'water-bed' effect. An extension to spectral estimation is also discussed.

  • 13.
    Ahmadi, Seyed Alireza
    et al.
    KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Shames, Iman
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Scotton, Francesco
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Huang, Lirong
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Sandberg, Henrik
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Johansson, Karl Henrik
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Wahlberg, Bo
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Towards more efficient building energy management systems2012In: Proceedings - 2012 7th International Conference on Knowledge, Information and Creativity Support Systems, KICSS 2012, IEEE , 2012, 118-125 p.Conference paper (Refereed)
    Abstract [en]

    As a first step towards developing efficient building energy management techniques, in this paper, we first study the energy consumption patterns of heating, ventilation and cooling (HVAC) systems across the KTH Royal Institute of Technology campus and we identify some possible areas where energy consumption can be made less wasteful. Later, we describe a test-bed where wireless sensor networks are used to collect data and eventually control the HVAC system in a distributed way. We present some of the data, temperature, humidity, and CO2 measurements, that are collected by the aforementioned network and compare them with the measurements collected by the legacy sensors already in place. In the end we present a preliminary result on modelling the dynamics of the temperature, humidity, and CO2 using the data gather by the sensor network. We check the validity of the model via comparing the out put of the system with measured data. As a future work we identify the possibility of using the models obtained here for model based control, and fault detection and isolation techniques.

  • 14. Ahmed, J.
    et al.
    Johnsson, A.
    Yanggratoke, Rerngvit
    KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre. KTH, School of Electrical Engineering (EES), Communication Networks.
    Ardelius, J.
    Flinta, C.
    Stadler, Rolf
    KTH, School of Electrical Engineering (EES), Communication Networks. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Predicting SLA conformance for cluster-based services using distributed analytics2016In: Proceedings of the NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium, IEEE conference proceedings, 2016, 848-852 p.Conference paper (Refereed)
    Abstract [en]

    Service assurance for the telecom cloud is a challenging task and is continuously being addressed by academics and industry. One promising approach is to utilize machine learning to predict service quality in order to take early mitigation actions. In previous work we have shown how to predict service-level metrics, such as frame rate for a video application on the client side, from operational data gathered at the server side. This gives the service provider early indications on whether the platform can support the current load demand. This paper extends previous work by addressing scalability issues for cluster-based services. Operational data being generated in large volumes, from several sources, and at high velocity puts strain on computational and communication resources. We propose and evaluate a distributed machine learning system based on the Winnow algorithm to tackle scalability issues, and then compare the new distributed solution with the previously proposed centralized solution. We show that network overhead and computational execution time is substantially reduced while maintaining high prediction accuracy making it possible to achieve real-time service quality predictions in large systems.

  • 15. Ahnström, Ulrika
    et al.
    Falk, Johan
    KTH, Superseded Departments, Signals, Sensors and Systems.
    Händel, Peter
    KTH, Superseded Departments, Signals, Sensors and Systems. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Wikström, Maria
    Detection and direction-finding of spread spectrum signals using correlation and narrowband interference rejection2003In: Nordic Matlab Conference 2003, 2003Conference paper (Refereed)
    Abstract [en]

    An algorithm for correlation-based detection of direct sequence spread spectrum signals with direction finding, including direction-filtering and narrow-band interference rejection, is implemented and evaluated in MATLAB. An analog noise-free signal is generated and sampled by a test-bed system. Numerical simulations are run based on data corrupted by mutually uncorrelated white Gaussian noise sequences, and also with recorded noise from two spatially separated HF radio receivers. The simulations and measurements show promising results for detection and direction-finding of covert wideband signals in low SNR and in presence of narrowband interferers. Direction filtering is shown to improve the results.

  • 16.
    Ainomäe, Ahti
    et al.
    KTH, School of Electrical Engineering (EES), Signal Processing. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre. Tallinn Univ. of Technol., Tallinn, Estonia.
    Trump, Tõnu
    Tallinn Univ. of Technol., Tallinn, Estonia.
    Bengtsson, Mats
    KTH, School of Electrical Engineering (EES), Signal Processing. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Distributed Diffusion LMS based Energy Detection2014In: Proceedings of 6th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), 2014, 2014, 176-183 p.Conference paper (Refereed)
    Abstract [en]

    Cognitive radio (CR) is seen as a promising technology to make radio spectrum usage more effective by providing an opportunistic access for secondary users to the licensed spectrum areas. CR systems need to detect the presence of a primary user (PU) signal by continuously sensing the spectrum area of interest. Radiowave propagation effects like fading and shadowing often complicate sensing of spectrum holes because the PU signal can be weak in a particular area. Cooperative spectrum sensing is seen as a prospective solution to enhance the detection of PU signals. This paper studies distributed spectrum sensing in a cognitive radio context. We investigate distributed energy detection schemes without using any fusion center. We propose the usage of distributed, diffusion least mean square (LMS) type of power estimation algorithms. In this paper an Adapt and Combine (ATC) diffusion based power estimation scheme is proposed and the performance is compared with the Combine and Adapt (CTA) and ring-around schemes in a common framework. The PU signal is assumed to be slowly fading. We analyse the resulting energy detection performance and verify the theoretical findings through simulations.

  • 17.
    Ainomäe, Ahti
    et al.
    KTH, School of Electrical Engineering (EES), Signal Processing. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre. Department of Radio and Telecommunication Engineering, Tallinn University of Technology, Tallinn, Estonia .
    Trump, Tõnu
    Tallin University of Technology.
    Bengtsson, Mats
    KTH, School of Electrical Engineering (EES), Signal Processing. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Distributed Recursive Energy Detection2014In: Proceedings of Wireless Communications and Networking Conference (WCNC), 2014, IEEE Communications Society, 2014, 1242-1247 p.Conference paper (Refereed)
    Abstract [en]

    Recent studies have shown that, while the available licensed radio spectrum becomes more occupied, the assigned spectrum is significantly underutilized. To alleviate the situation, cognitive radio (CR) technology has been proposed to provide an opportunistic access to the licensed spectrum areas. CR systems are able to serve the secondary users for detecting and utilizing so called spectrum holes by sensing and adapting to the environment without causing harmful effects or interference to the licensed primary users (PU). CR systems need to detect the presence of a primary user by continuously sensing the spectrum area of interest. Radiowave propagation effects like fading and shadowing often complicate sensing of spectrum holes because the PU signal can be weak in a particular area. Cooperative spectrum sensing is seen as a prospective solution to enhance the detection of PU signals. This paper studies distributed spectrum sensing in a cognitive radio context. We investigate a distributed energy detection scheme without using any fusion center. Due to reduced communication such a topology is more energy efficient. The PU signal is assumed to be in slow fading. A recursive distributed power estimation and detection scheme is proposed. The theoretical findings are verified through simulations.

  • 18.
    Aktug, Irem
    et al.
    KTH, School of Computer Science and Communication (CSC), Theoretical Computer Science, TCS. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Dam, Mads
    KTH, School of Computer Science and Communication (CSC), Theoretical Computer Science, TCS. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Gurov, Dilian
    KTH, School of Computer Science and Communication (CSC), Theoretical Computer Science, TCS.
    Provably Correct Runtime Monitoring2009In: Journal of Logic and Algebraic Programming, ISSN 1567-8326, E-ISSN 1873-5940, Vol. 78, no 5, 304-339 p.Article in journal (Refereed)
    Abstract [en]

    Runtime monitoring is an established technique to enforce a wide range of program safety and security properties. We present a formalization of monitoring and monitor inlining, for the Java Virtual Machine. Monitors are security automata given in a special-purpose monitor specification language, ConSpec. The automata operate on finite or infinite strings of calls to a fixed API, allowing local dependencies on parameter values and heap content. We use a two-level class file annotation scheme to characterize two key properties: (i) that the program is correct with respect to the monitor as a constraint on allowed program behavior, and (ii) that the program has a copy of the given monitor embedded into it. As the main application of these results we sketch a simple inlining algorithm and show how the two-level annotations can be completed to produce a fully annotated program which is valid in the standard sense of Floyd/Hoare logic. This establishes the mediation property that inlined programs are guaranteed to adhere to the intended policy. Furthermore, validity can be checked efficiently using a weakest precondition based annotation checker, thus preparing the ground for on-device checking of policy adherence in a proof-carrying code setting.

  • 19.
    Al Alam, Assad
    et al.
    Scania CV AB.
    Gattami, Ather
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Johansson, Karl Henrik
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    An experimental study on the fuel reduction potential of heavy duty vehicle platooning2010In: 13th International IEEE Conference on Intelligent Transportation Systems (ITSC), 2010, IEEE , 2010, 306-311 p.Conference paper (Refereed)
    Abstract [en]

    Vehicle platooning has become important for the vehicle industry. Yet conclusive results with respect to the fuel reduction possibilities of platooning remain unclear. The focus in this study is the fuel reduction that heavy duty vehicle platooning enables and the analysis with respect to the influence of a commercial adaptive cruise control on the fuel consumption. Experimental results show that by using preview information of the road ahead from the lead vehicle, the adaptive cruise controller can reduce the fuel consumption. A study is undertaken for various masses of the lead vehicle. The results show that the best choice with respect to a heavier or lighter lead vehicle depends on the desired time gap. A maximum fuel reduction of 4.7-7.7% depending on the time gap, at a set speed of 70 km/h, can be obtained with two identical trucks. If the lead vehicle is 10 t lighter a corresponding 3.8-7.4% fuel reduction can be obtained depending on the time gap. Similarly if the lead vehicle is 10 t heavier a 4.3-6.9% fuel reduction can be obtained. All results indicate that a maximum fuel reduction can be achieved at a short relative distance, due to both air drag reduction and suitable control.

  • 20. Al Ismaeil, Kassem
    et al.
    Aouada, Djamila
    Mirbach, Bruno
    Ottersten, Björn
    KTH, School of Electrical Engineering (EES), Signal Processing. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Bilateral Filter Evaluation Based on Exponential Kernels2012Conference paper (Refereed)
    Abstract [en]

    The well-known bilateral filter is used to smooth noisy images while keeping their edges. This filter is commonly used with Gaussian kernel functions without real justification. The choice of the kernel functions has a major effect on the filter behavior. We propose to use exponential kernels with L1 distances instead of Gaussian ones. We derive Stein's Unbiased Risk Estimate to find the optimal parameters of the new filter and compare its performance with the conventional one. We show that this new choice of the kernels has a comparable smoothing effect but with sharper edges due to the faster, smoothly decaying kernels.

  • 21.
    Alam, Assad
    et al.
    KTH, School of Electrical Engineering (EES), Automatic Control.
    Asplund, Fredrik
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Mechatronics.
    Behere, Sagar
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Mechatronics.
    Björk, Mattias
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Mechatronics.
    Garcia Alonso, Liliana
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Mechatronics.
    Khaksari, Farzad
    KTH, School of Electrical Engineering (EES), Signal Processing.
    Khan, Altamash
    KTH, School of Electrical Engineering (EES), Signal Processing.
    Kjellberg, Joakim
    KTH, School of Electrical Engineering (EES), Automatic Control.
    Liang, Kuo-Yun
    KTH, School of Electrical Engineering (EES), Automatic Control.
    Lyberger, Rickard
    Scania CV AB.
    Mårtensson, Jonas
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Nilsson, John-Olof
    KTH, School of Electrical Engineering (EES), Signal Processing.
    Pettersson, Henrik
    Scania CV AB.
    Pettersson, Simon
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Mechatronics.
    Stålklinga, Elin
    KTH, School of Electrical Engineering (EES), Automatic Control.
    Sundman, Dennis
    KTH, School of Electrical Engineering (EES), Signal Processing.
    Zachariah, Dave
    KTH, School of Electrical Engineering (EES), Signal Processing.
    Cooperative driving according to Scoop2011Report (Other academic)
    Abstract [en]

    KTH Royal Institute of Technology and Scania are entering the GCDC 2011 under the name Scoop –Stockholm Cooperative Driving. This paper is an introduction to their team and to the technical approach theyare using in their prototype system for GCDC 2011.

  • 22. Alam, Assad
    et al.
    Besselink, Bart
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Turri, Valerio
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Mårtensson, Jonas
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Johansson, Karl Henrik
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Heavy-Duty Vehicle Platooning for Sustainable Freight Transportation A COOPERATIVE METHOD TO ENHANCE SAFETY AND EFFICIENCY2015In: IEEE CONTROL SYSTEMS MAGAZINE, ISSN 1066-033X, Vol. 35, no 6, 34-56 p.Article in journal (Refereed)
    Abstract [en]

    The current system of global trade is largely based on transportation and communication technology from the 20th century. Advances in technology have led to an increasingly interconnected global market and reduced the costs of moving goods, people, and technology around the world [1]. Transportation is crucial to society, and the demand for transportation is strongly linked to economic development. Specifically, road transportation is essential since about 60% of all surface freight transportation (which includes road and rail transport) is done on roads [2]. Despite the important role of road freight transportation in the economy, it is facing serious challenges, such as those posed by increasing fuel prices and the need to reduce greenhouse gas emissions. On the other hand, the integration of information and communication technologies to transportation systems-leading to intelligent transportation systems-enables the development of cooperative methods to enhance the safety and energy efficiency of transportation networks. This article focuses on one such cooperative approach, which is known as platooning. The formation of a group of heavy-duty vehicles (HDVs) at close intervehicular distances, known as a platoon (see Figure 1) increases the fuel efficiency of the group by reducing the overall air drag. The safe operation of such platoons requires the automatic control of the velocity of the platoon vehicles as well as their intervehicular distance. Existing work on platooning has focused on the design of controllers for these longitudinal dynamics, in which simple vehicle models are typically exploited and perfect environmental conditions, such as flat roads, are generally assumed. The broader perspective of how platooning can be effectively exploited in a freight transportation system has received less attention. Moreover, experimental validations of the fuel-saving potential offered by platooning have typically been performed by reproducing the perfect conditions as assumed in the design of the automatic controllers. This article focuses on these two aspects by addressing the following two objectives.

  • 23.
    Alam, Assad
    et al.
    KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre. Scania CV AB, SE-15187 Södertälje, Sweden.
    Gattami, Ather
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Johansson, Karl H.
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Tomlin, Claire J.
    UC Berkeley.
    Guaranteeing safety for heavy duty vehicle platooning: Safe set computations and experimental evaluations2014In: Control Engineering Practice, ISSN 0967-0661, Vol. 24, no 1, 33-41 p.Article in journal (Refereed)
    Abstract [en]

    In this paper, we consider the problem of finding a safety criteria between neighboring heavy duty vehicles traveling in a platoon. We present a possible framework for analyzing safety aspects of heavy duty vehicle platooning. A nonlinear underlying dynamical model is utilized, where the states of two neighboring vehicles are conveyed through radar information and wireless communication. Numerical safe sets are derived through the framework, under a worst-case scenario, and the minimum safe spacing is studied for heterogenous platoons. Real life experimental results are presented in an attempt to validate the theoretical results in practice. The findings show that a minimum relative distance of 1.2 m at maximum legal velocity on Swedish highways can be maintained for two identical vehicles without endangering a collision. The main conclusion is that the relative distance utilized in commercial applications today can be reduced significantly with a suitable automatic control system.

  • 24. Alam, Assad
    et al.
    Gattami, Ather
    KTH, School of Electrical Engineering (EES), Automatic Control.
    Johansson, Karl Henrik
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Suboptimal Decentralized Controller Design for Chain Structures: Applications to Vehicle Formations2011In: IEEE 50th Annual Conference on Decision and Control and European Control Conference, Orlando, December, 2011, IEEE , 2011, 6894-6900 p.Conference paper (Refereed)
    Abstract [en]

    We consider suboptimal decentralized controllerdesign for subsystems with interconnected dynamics and costfunctions. A systematic design methodology is presented overthe class of linear quadratic regulators (LQR) for chain graphs.The methodology is evaluated on heavy duty vehicle platooningwith physical constraints. A simulation and frequency analysisis performed. The results show that the decentralized controllergives good tracking performance and a robust system. We alsoshow that the design methodology produces a string stablesystem for an arbitrary number of vehicles in the platoon, ifthe vehicle configurations and the LQR weighting parametersare identical for the considered subsystems.

  • 25.
    Alam, Assad
    et al.
    KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Mårtensson, Jonas
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Johansson, Karl
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Experimental evaluation of decentralized cooperative cruise control for heavy-duty vehicle platooning2015In: Control Engineering Practice, ISSN 0967-0661, Vol. 38, 11-25 p.Article in journal (Refereed)
    Abstract [en]

    In this paper, we consider the problem of finding decentralized controllers for heavy-duty vehicle (HDV) platooning by establishing empiric results for a qualitative verification of a control design methodology. We present a linear quadratic control framework for the design of a high-level cooperative platooning controller suitable for modern HDVs. A nonlinear low-level dynamical model is utilized, where realistic response delays in certain modes of operation are considered. The controller performance is evaluated through numerical and experimental studies. It is concluded that the proposed controller behaves well in the sense that experiments show that it allows for short time headways to achieve fuel efficiency, without compromising safety. Simulation results indicate that the model mimics real life behavior. Experiment results show that the dynamic behavior of the platooning vehicles depends strongly on the gear switching logic, which is confirmed by the simulation model. Both simulation and experiment results show that the third vehicle never displays a bigger undershoot than its preceding vehicle. The spacing errors stay bounded within 6.8. m in the simulation results and 7.2. m in the experiment results for varying transient responses. Furthermore, a minimum spacing of -0.6. m and -1.9. m during braking is observed in simulations and experiments, respectively. The results indicate that HDV platooning can be conducted at close spacings with standardized sensors and control units that are already present on commercial HDVs today.

  • 26.
    Alam, Assad
    et al.
    KTH, School of Electrical Engineering (EES), Automatic Control.
    Mårtensson, Jonas
    KTH, School of Electrical Engineering (EES), Automatic Control.
    Johansson, Karl H.
    KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre. KTH, School of Electrical Engineering (EES), Automatic Control.
    Look-Ahead Cruise Control for Heavy Duty Vehicle Platooning2013In: Proceedings of the 16th International IEEE Annual Conference onIntelligent Transportation Systems (ITSC 2013), IEEE conference proceedings, 2013, 928-935 p.Conference paper (Refereed)
    Abstract [en]

    Vehicle platooning has become important for thevehicle industry. Yet conclusive results with respect to thefuel reduction possibilities of platooning remain unclear, inparticular when considering constraints imposed by the topography.The focus of this study is to establish whether itis more fuel-efficient to maintain or to split a platoon that isfacing steep uphill and downhill segments. Two commercialcontrollers, an adaptive cruise controller and a look-aheadcruise controller, are evaluated and alternative novel controlstrategies are proposed. The results show that an improvedfuel-efficiency can be obtained by maintaining the platoonthroughout a hill. Hence, a cooperative control strategy basedon preview information is presented, which initiates the changein velocity at a specific point in the road for all vehiclesrather than simultaneously changing the velocity to maintainthe spacing. A fuel reduction of up to 14% can be obtainedover a steep downhill segment and a more subtle benefit of0.7% improvement over an uphill segment with the proposedcontroller, compared to the combination of the commerciallyavailable cruise controller and adaptive cruise controller thatcould be used for platooning. The findings show that it isboth fuel-efficient and desirable in practice to consider previewinformation of the topography in the control strategy.

  • 27.
    Alayon Glasunov, Andrés
    et al.
    KTH, School of Electrical Engineering (EES), Electromagnetic Engineering.
    Prasad, S.
    Händel, Peter
    KTH, School of Electrical Engineering (EES), Signal Processing. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Experimental characterization of the propagation channel along a very large virtual array in a reverberation chamber2014In: Progress in Electromagnetics Research B, ISSN 1937-6472, no 59, 205-217 p.Article in journal (Refereed)
    Abstract [en]

    We show that the combined use of radio frequency absorbers and directive antennas can produce significant changes of the radio propagation channel properties along the positions of a virtual array inside a reverberation chamber. A multidimensional characterization of the channel was performed at 40 antenna positions with spacing of 0:233λ at 1 GHz. The average power, the Ricean K-factor, the coherence bandwidth, the r.m.s. delay spread, the mean delay, the beamforming power angle spectrum and array antenna correlation have been studied for different arrangements in the reverberation chamber. The analysis shows that the joint average over time and frequency channel behavior is, as expected, rather homogeneous along the very large array. However, individual realizations of the channel present a pronounced selective behavior in space, time and frequency with parameters varying along the positions of the virtual array suggesting that a heterogeneous behavior of the radio channels can be emulated in reverberation chambers. An important application of the presented study comprises testing of antenna array designs and algorithms in multipath environments. Further development may lead to Over The Air testing of Multiple Input Multiple Output antenna systems of various sizes, i.e., from small to very large arrays.

  • 28.
    Alayon Glazunov, Andres
    et al.
    KTH, School of Electrical Engineering (EES), Electromagnetic Engineering.
    Prasad, Sathyaveer
    KTH, School of Electrical Engineering (EES), Signal Processing.
    Händel, Peter
    KTH, School of Electrical Engineering (EES), Signal Processing. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Bolin, Thomas
    Prytz, Kjell
    Impact of Scattering Within a Multipath Simulator Antenna Array on the Ricean Fading Distribution Parameters in OTA Testing2014In: IEEE Transactions on Antennas and Propagation, ISSN 0018-926X, E-ISSN 0096-1973, Vol. 62, no 6, 3257-3269 p.Article in journal (Refereed)
    Abstract [en]

    In this paper, we investigate the unwanted scattering that exists within the multipath simulator (MPS) array antennas employed in over the air (OTA) testing of mobile terminals. The impact of scattering is evaluated in terms of the measurement uncertainty of the average received power and the Ricean K-factor. The maximum ratio combining diversity is investigated for a generic device under test comprising two half-wavelength dipole antennas. We provide closed-form expressions for the uncertainties of the average received power and the Ricean K-factor for a uniform circular array of MPS antennas and a 2-D uniformly distributed angle-of-arrival spectrum. We also derive the maximum number of MPS antennas and the minimum ring radius of the MPS system as a function of the separation between the most distant antenna elements if the device under test employs a uniform linear array. As a result, we provide design guidelines for MPS array in terms of the number antennas, the radius of the MPS array and the wavelength of the carrier frequency.

  • 29.
    Alberer, Daniel
    et al.
    Johannes Kepler University.
    Hjalmarsson, HåkanKTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.del Re, LuigiJohannes Kepler University.
    Identification for Automotive Systems2012Collection (editor) (Refereed)
  • 30.
    Alberer, Daniel
    et al.
    Johannes Kepler University.
    Hjalmarsson, Håkan
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    del Re, Luigi
    Johannes Kepler University.
    System Identification for Automotive Systems: Opportunities and Challenges2012In: Identification for Automotive Systems / [ed] Daniel Alberer, Håkan Hjalmarsson, Luigi del Re, Springer London, 2012, 1-10 p.Chapter in book (Refereed)
    Abstract [en]

    Without control many essential targets of the automotive industry could not be achieved. As control relies directly or indirectly on models and model quality directly influences the control performance, especially in feedforward structures as widely used in the automotive world, good models are needed. Good first principle models would be the first choice, and their determination is frequently difficult or even impossible. Against this background methods and tools developed by the system identification community could be used to obtain fast and reliably models, but a large gap seems to exist: neither these methods are sufficiently well known in the automotive community, nor enough attention is paid by the system identification community to the needs of the automotive industry. This introduction summarizes the state of the art and highlights possible critical issues for a future cooperation as they arose from an ACCM Workshop on Identification for Automotive Systems recently held in Linz, Austria.

  • 31.
    Aldayel, Omar
    et al.
    KTH, School of Electrical Engineering (EES), Signal Processing. King Saud University, Saudi Arabia.
    Bengtsson, Mats
    KTH, School of Electrical Engineering (EES), Signal Processing. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Alshebeili, Saleh A.
    King Saud University, Saudi Arabia.
    Evaluation of MIMO channel non-stationarity2013In: 2013 Proceedings of the 21st European Signal Processing Conference (EUSIPCO), IEEE , 2013, 6811769- p.Conference paper (Refereed)
    Abstract [en]

    Several MIMO processing algorithms have been proposed that exploit long-term channel statistics, relaying on the critical assumption that this long-term information is valid long enough. In this paper, we consider the Correlation Matrix Distance (CMD) method previously proposed for the evaluation of MIMO channel non-stationarity. We highlight a couple of problems with the CMD measure and propose two new metrics that are more appropriate for non-stationarity evaluation. The performance of the CMD method and new correlation matrix distance metrics is investigated using measured 4×4 MIMO channels. Both Line-of-Sight (LOS) and Non-LOS (NLOS) environments are considered.

  • 32. Alesii, Roberto
    et al.
    Congiu, Roberto
    Santucci, Fortunato
    Di Marco, Piergiuseppe
    KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Fischione, Carlo
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Architectures and protocols for fast identification in large-scale RFID systems2014In: ISCCSP 2014 - 2014 6th International Symposium on Communications, Control and Signal Processing, Proceedings, 2014, 243-246 p.Conference paper (Refereed)
    Abstract [en]

    Passive tags based on backscattered signals yield low energy consumption for large-scale applications of RFIDs. In this paper, system architectures and protocol enhancements for fast identifications in ISO/IEC 18000-6C systems that integrate UWB technology are investigated. The anti-collision protocol is studied by considering various tag populations. A novel algorithm is proposed to adapt the UHF air interface parameters with the use of UWB ranging information. The results show that the proposed algorithm yields up to 25% potential performance improvement compared to the ISO/IEC 18000-6C standard.

  • 33. Alexandre, Seuret
    et al.
    Dimarogonas, Dimos V.
    Johansson, Karl Henrik
    KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre. KTH, School of Electrical Engineering (EES), Automatic Control.
    Consensus of Double Integrator Multi-agents under Communication Delay2009In: IFAC Proceedings Volumes (IFAC-PapersOnline), 2009, 376-381 p.Conference paper (Refereed)
    Abstract [en]

    This paper deals with the consensus problem under network induced communication delays. It is well-known that introducing a delay generally leads to a reduce of the performance or to instability. Thus, investigating the impact of time-delays in the consensus problem is an important issue. Another important issue is to obtain an estimate of the convergence rate, which is not straightforward when delays appear in the network. In this paper, the agents are modelled as double integrator systems. It is assumed that each agent receives instantaneously its own output information but receives the information from its neighbors after a constant delay. A stability criterion is provided based on Lyapunov-Krasovskii techniques and is expressed in terms of LMI. An expression of the consensus equilibrium which depends on the delay and on the initial conditions taken in an interval is derived. The results are supported through several simulations for different network symmetric communication schemes.

  • 34.
    Alpcan, Tansu
    et al.
    Deutsche Telekom Laboratories, TU Berlin.
    Buchegger, Sonja
    KTH, School of Computer Science and Communication (CSC), Theoretical Computer Science, TCS. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Security Games for Vehicular Networks2011In: IEEE Transactions on Mobile Computing, ISSN 1536-1233, E-ISSN 1558-0660, Vol. 10, no 2, 280-290 p.Article in journal (Refereed)
    Abstract [en]

    Vehicular networks (VANETs) can be used to improve transportation security, reliability, and management. This paper investigates security aspects of VANETs within a game-theoretic framework where defensive measures are optimized with respect to threats posed by malicious attackers. The formulations are chosen to be abstract on purpose in order to maximize applicability of the models and solutions to future systems. The security games proposed for vehicular networks take as an input centrality measures computed by mapping the centrality values of the car networks to the underlying road topology. The resulting strategies help locating most valuable or vulnerable points (e.g., against jamming) in vehicular networks. Thus, optimal deployment of traffic control and security infrastructure is investigated both in the static (e.g., fixed roadside units) and dynamic cases (e. g., mobile law enforcement units). Multiple types of security games are studied under varying information availability assumptions for the players, leading to fuzzy game and fictitious play formulations in addition to classical zero-sum games. The effectiveness of the security game solutions is evaluated numerically using realistic simulation data obtained from traffic engineering systems.

  • 35.
    Altaf, Faisal
    et al.
    KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Araujo, José
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Hernandez, Aitor
    KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Sandberg, Henrik
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Johansson, Karl Henrik
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Wireless event-triggered controller for a 3D tower crane lab process2011In: 2011 19th Mediterranean Conference on Control and Automation, MED 2011, 2011, 994-1001 p.Conference paper (Refereed)
    Abstract [en]

    This paper studies the design and real-time implementation of an event-triggered controller for a nonlinear 3D tower crane where the communication between the controller and the actuators is performed over a low-power wireless network. A flexible Event-Generation Circuit (EGC) is proposed in order to implement event-driven controllers for Networked Control Systems. Furthermore, a detailed experimental analysis on the performance of the event-triggered controller and the influence of packet losses on the transmitted actuation messages are presented. The results show that the event-triggered controllers in networked control systems are able to maintain the same level of performance as compared to periodic controllers, while increasing the sensors/actuators lifetime by reducing network bandwidth utilization.

  • 36. Alur, R.
    et al.
    D'Innocenzo, A.
    Johansson, Karl Henrik
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Pappas, G. J.
    Weiss, G.
    Modeling and analysis of multi-hop control networks: RTAS 2009, Proceedings2009In: 15TH IEEE REAL-TIME AND EMBEDDED TECHNOLOGY AND APPLICATION SYMPOSIUM: RTAS 2009, Proceedings, IEEE Computer Society, 2009, 223-232 p.Conference paper (Refereed)
    Abstract [en]

    We propose a mathematical framework, inspired by the WirelessHART specification, for modeling and analysing multi-hop communication networks. The framework is designed for systems consisting of multiple control loops closed over a multi-hop communication network. We separate control, topology, routing, and scheduling and propose formal syntax and semantics for the dynamics of the composed system. The main technical contribution of the paper is an explicit translation of multi-hop control networks to switched systems. We describe a Mathematica notebook that automates the translation of multihop control networks to switched systems, and use this tool to show how techniques for analysis of switched systems can be used to address control and networking co-design challenges.

  • 37. Alur, Rajeev
    et al.
    D'Innocenzo, Alessandro
    Johansson, Karl H.
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Pappas, George J.
    Weiss, Gera
    Compositional Modeling and Analysis of Multi-Hop Control Networks2011In: IEEE Transactions on Automatic Control, ISSN 0018-9286, E-ISSN 1558-2523, Vol. 56, no 10, 2345-2357 p.Article in journal (Refereed)
    Abstract [en]

    We propose a mathematical framework for modeling and analyzing multi-hop control networks designed for systems consisting of multiple control loops closed over a multi-hop (wireless) communication network. We separate control, topology, routing, and scheduling and propose formal syntax and semantics for the dynamics of the composed system, providing an explicit translation of multi-hop control networks to switched systems. We propose formal models for analyzing robustness of multi-hop control networks, where data is exchanged through a multi-hop communication network subject to disruptions. When communication disruptions are long, compared to the speed of the control system, we propose to model them as permanent link failures. We show that the complexity of analyzing such failures is NP-hard, and discuss a way to overcome this limitation for practical cases using compositional analysis. For typical packet transmission errors, we propose a transient error model where links fail for one time slot independently of the past and of other links. We provide sufficient conditions for almost sure stability in presence of transient link failures, and give efficient decision procedures. We deal with errors that have random time span and show that, under some conditions, the permanent failure model can be used as a reliable abstraction. Our approach is compositional, namely it addresses the problem of designing scalable scheduling and routing policies for multiple control loops closed on the same multi-hop control network. We describe how the translation of multi-hop control networks to switched systems can be automated, and use it to solve control and networking co-design challenges in some representative examples, and to propose a scheduling solution in a mineral floatation control problem that can be implemented on a time triggered communication protocols for wireless networks.

  • 38.
    Al-Zubaidy, Hussein
    et al.
    KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Fodor, Viktoria
    KTH, School of Electrical Engineering (EES), Network and Systems engineering. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Dán, György
    KTH, School of Electrical Engineering (EES), Network and Systems engineering. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Flierl, Markus
    KTH, School of Electrical Engineering (EES), Information Science and Engineering. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Reliable Video Streaming With Strict Playout Deadline in Multihop Wireless Networks2017In: IEEE transactions on multimedia, ISSN 1520-9210, E-ISSN 1941-0077, Vol. 19, no 10, 2238-2251 p.Article in journal (Refereed)
    Abstract [en]

    Motivated by emerging vision-based intelligent services, we consider the problem of rate adaptation for high-quality and low-delay visual information delivery over wireless networks using scalable video coding. Rate adaptation in this setting is inherently challenging due to the interplay between the variability of the wireless channels, the queuing at the network nodes, and the frame-based decoding and playback of the video content at the receiver at very short time scales. To address the problem, we propose a low-complexity model-based rate adaptation algorithm for scalable video streaming systems, building on a novel performance model based on stochastic network calculus. We validate the analytic model using extensive simulations. We show that it allows fast near-optimal rate adaptation for fixed transmission paths, as well as cross-layer optimized routing and video rate adaptation in mesh networks, with less than 10% quality degradation compared to the best achievable performance.

  • 39.
    Ambat, Sooraj K.
    et al.
    IISc - Indian Institute of Science.
    Chatterjee, Saikat
    KTH, School of Electrical Engineering (EES), Communication Theory. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Hari, K.V.S.
    IISc - Indian Institute of Science.
    Fusion of greedy pursuits for compressed sensing signal reconstruction2012In: 2012 Proceedings Of The 20th European Signal Processing Conference (EUSIPCO), IEEE Computer Society, 2012, 1434-1438 p.Conference paper (Refereed)
    Abstract [en]

    Greedy Pursuits are very popular in Compressed Sensing for sparse signal recovery. Though many of the Greedy Pursuits possess elegant theoretical guarantees for performance, it is well known that their performance depends on the statistical distribution of the non-zero elements in the sparse signal. Inpractice, the distribution of the sparse signal may not be knowna priori. It is also observed that performance of Greedy Pursuits degrades as the number of available measurements decreases from a threshold value which is method dependent. To improve the performance in these situations, we introduce a novel fusion framework for Greedy Pursuits and also propose two algorithms for sparse recovery. Through Monte Carlo simulations we show that the proposed schemes improve sparse signal recovery in clean as well as noisy measurement cases.

  • 40.
    Amin, Shoaib
    et al.
    KTH, School of Electrical Engineering (EES), Signal Processing. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre. University of Gävle, Sweden.
    Händel, Peter
    KTH, School of Electrical Engineering (EES), Signal Processing. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Rönnow, Daniel
    ATM, University of Gävle.
    Digital Predistortion of Single and Concurrent Dual BandRadio Frequency GaN Amplifiers with Strong NonlinearMemory Effects2017In: IEEE transactions on microwave theory and techniques, ISSN 0018-9480, E-ISSN 1557-9670, Vol. 65, no 7, 2453-2464 p.Article in journal (Refereed)
    Abstract [en]

    Electrical anomalies due to trapping effects in gallium nitride (GaN) power amplifiers (PAs) give rise to long-term or strong memory effects. We propose novel models based on infinite impulse response fixed pole expansion techniques for the behavioral modeling and digital predistortion of single-input single-output (SISO) and concurrent dual-band GaN PAs. Experimental results show that the proposed models outperform the corresponding finite impulse response (FIR) models by up to 17 dB for the same number of model parameters. For the linearization of a SISO GaN PA, the proposed models give adjacent channel power ratios (ACPRs) that are 7-17 dB lower than the FIR models. For the concurrent dual-band case, the proposed models give ACPRs that are 9-14 dB lower than the FIR models.

  • 41.
    Amin, Shoaib
    et al.
    KTH, School of Electrical Engineering (EES), Signal Processing. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Khan, Zain Ahmed
    KTH, School of Electrical Engineering (EES), Signal Processing. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Isaksson, Magnus
    Högskolan i Gävle.
    Händel, Peter
    KTH, School of Electrical Engineering (EES), Signal Processing. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Rönnow, Daniel
    Högskolan i Gävle.
    Concurrent Dual-band Power Amplifier Model Modification using Dual Two-Tone Test2016In: European Microwave Week 2016: "Microwaves Everywhere", EuMW 2016 - Conference Proceedings; 46th European Microwave Conference, EuMC 2016, Institute of Electrical and Electronics Engineers (IEEE), 2016, 186-189 p., 7824309Conference paper (Refereed)
    Abstract [en]

    A dual two-tone technique for the characterization of memory effects in concurrent dual-band transmitters is revisited to modify a 2D-DPD model for the linearization of concurrent dual-band transmitters. By taking into account the individual nonlinear memory effects of the self- and cross-kernels, a new2D modified digital pre-distortion (2D-MDPD) model is proposed,which not only supersedes the linearization performance but also reduces the computational complexity compared to the 2DDPDmodel in terms of a number of floating point operations(FLOPs). Experimental results show an improvement of 1.7 dBin normalized mean square error (NMSE) and a 58% reduction in the number of FLOPs.

  • 42.
    Amin, Shoaib
    et al.
    KTH, School of Electrical Engineering (EES), Signal Processing. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre. Högskolan i Gävle.
    Landin, Per
    Chalmers University of Technology.
    Händel, Peter
    KTH, School of Electrical Engineering (EES), Signal Processing. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Rönnow, Daniel
    Högskolan i Gävle.
    Behavioral modeling and linearization of crosstalk and memory effects in RF MIMO transmitters2014In: IEEE transactions on microwave theory and techniques, ISSN 0018-9480, E-ISSN 1557-9670, Vol. 62, no 4, 810-823 p.Article in journal (Refereed)
    Abstract [en]

    This paper proposes three novel models for behavioral modeling and digital pre-distortion (DPD) of nonlinear 2 x 2 multiple-input multiple-output (MIMO) transmitters in the presence of crosstalk. The proposed models are extensions of the single-input single-output generalized memory polynomial model. Three types of crosstalk effects were studied and characterized as linear, nonlinear, and nonlinear & linear crosstalk. A comparative study was performed with previously published models for the linearization of crosstalk in a nonlinear 2 x 2 MIMO transmitter. The experiments indicate that, depending on the type of crosstalk, the selection of the correct model in the transmitter is necessary for behavioral modeling and sufficient DPD performance. The effects of coherent and partially noncoherent signal generation on the performance of DPD were also studied. For crosstalk levels of 30 dB, the difference in the normalized mean square error and adjacent channel power ratio was found to be 3-4 dB between coherent and partially noncoherent signal generation.

  • 43.
    Aminian, Behdad
    et al.
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Araújo, José
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Johansson, Mikael
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Johansson, Karl H.
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    GISOO: A virtual testbed for wireless cyber-physical systems2013In: Industrial Electronics Society, IECON 2013 - 39th Annual Conference of the IEEE, IEEE , 2013, 5588-5593 p.Conference paper (Refereed)
    Abstract [en]

    The increasing demand for wireless cyber-physical systems requires correct design, implementation and validation of computation, communication and control methods. Traditional simulation tools, which focus on either computation, communication or control, are insufficient when the three aspects interact. Efforts to extend the traditional tools to cover multiple domains, e.g., from simulating only control aspects to simulating both control and communication, often rely on simplistic models of a small subset of possible communication solutions. We introduce GISOO, a virtual testbed for simulation of wireless cyber-physical systems that integrates two state-of-the art simulators, Simulink and COOJA. GISOO enables users to evaluate actual embedded code for the wireless nodes in realistic cyber-physical experiments, observing the effects of both the control and communication components. In this way, a wide range of communication solutions can be evaluated without developing abstract models of their control-relevant aspects, and changes made to the networking code in simulations is guaranteed to be translated into production code without errors. A double-tank laboratory experimental setup controlled over a multi-hop relay wireless network is used to validate GISOO and demonstrate its features.

  • 44.
    Andersson, Mattias
    et al.
    KTH, School of Electrical Engineering (EES), Communication Theory. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Khisti, A.
    Skoglund, Mikael
    KTH, School of Electrical Engineering (EES), Communication Theory. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Secure key agreement over reciprocal fading channels in the low SNR regime2013In: 2013 IEEE  14th Workshop on Signal Processing Advances in Wireless Communications, SPAWC, IEEE , 2013, 674-678 p.Conference paper (Refereed)
    Abstract [en]

    We study the low SNR scaling of the non-coherent secret-key agreement capacity over a reciprocal, block-fading channel. For the restricted class of strategies, where one of the nodes is constrained to transmit pilot-only symbols, we show that the secret-key capacity scales as SNR ·log T if T ≤ 1/SNR, where T denotes the coherence period, and as SNR·log(1/SNR) otherwise. Our upper bound is inspired by the genie-aided argument of Borade and Zheng (IT-Trans 2010). Our lower bound is based on bursty communication, channel training, and secret message transmission.

  • 45.
    Andersson, Mattias
    et al.
    KTH, School of Electrical Engineering (EES), Communication Theory. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Khisti, Ashish
    Skoglund, Mikael
    KTH, School of Electrical Engineering (EES), Communication Theory. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Secret-key agreement over a non-coherent block-fading MIMO wiretap channel2012In: Information Theory Workshop (ITW), 2012 IEEE, IEEE , 2012, 153-157 p.Conference paper (Refereed)
    Abstract [en]

    We study secret-key agreement over a non-coherent block-fading multiple input multiple output (MIMO) wiretap channel. We give an achievable scheme based on training and source emulation and analyze the rate in the high SNR regime. Based on this analysis we find the optimal number of antennas to use for training. Our main result is that if the sum of the number of antennas at Alice and Bob is larger than the coherence time of the channel, the achievable rate does not depend on the number of antennas at Eve. In this case source emulation is not needed, and using only training is optimal. We also consider the case when there is no public channel available. In this case we show that secret-key agreement is still possible by using the wireless channel for discussion, giving the same number of secure degrees of freedom as in the case with a public channel.

  • 46.
    Andersson, Mattias
    et al.
    KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre. KTH, School of Electrical Engineering (EES), Communication Theory.
    Rathi, Vishwambhar
    KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Thobaben, Ragnar
    KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Kliewer, Jorg
    Skoglund, Mikael
    KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre. KTH, School of Electrical Engineering (EES), Communication Theory.
    Nested Polar Codes for Wiretap and Relay Channels2010In: IEEE Communications Letters, ISSN 1089-7798, Vol. 14, no 8, 752-754 p.Article in journal (Refereed)
    Abstract [en]

    We show that polar codes asymptotically achieve the whole capacity-equivocation region for the wiretap channel when the wiretapper's channel is degraded with respect to the main channel, and the weak secrecy notion is used. Our coding scheme also achieves the capacity of the physically degraded receiver-orthogonal relay channel. We show simulation results for moderate block length for the binary erasure wiretap channel, comparing polar codes and two edge type LDPC codes.

  • 47.
    Andersson, Mattias
    et al.
    KTH, School of Electrical Engineering (EES), Communication Theory. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Schaefer, Rafael F.
    Oechtering, Tobias J.
    KTH, School of Electrical Engineering (EES), Communication Theory. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Skoglund, Mikael
    KTH, School of Electrical Engineering (EES), Communication Theory. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Polar Coding for Bidirectional Broadcast Channels with Common and Confidential Messages2013In: IEEE Journal on Selected Areas in Communications, ISSN 0733-8716, E-ISSN 1558-0008, Vol. 31, no 9, 1901-1908 p.Article in journal (Refereed)
    Abstract [en]

    The integration of multiple services such as the transmission of private, common, and confidential messages at the physical layer is becoming important for future wireless networks in order to increase spectral efficiency. In this paper, bidirectional relay networks are considered, in which a relay node establishes bidirectional communication between two other nodes using a decode-and-forward protocol. In the broadcast phase, the relay transmits additional common and confidential messages, which then requires the study of the bidirectional broadcast channel (BBC) with common and confidential messages. This channel generalizes the broadcast channel with receiver side information considered by Kramer and Shamai. Low complexity polar codes are constructed that achieve the capacity region of both the degraded symmetric BBC, and the BBC with common and confidential messages. The use of polar codes allows an intuitive interpretation of how to incorporate receiver side information and secrecy constraints as different sets of frozen bits at the different receivers for an optimal code design. In order to show that the constructed codes achieve capacity, a tighter bound on the cardinality of an auxiliary random variable used in the converse is found using a method by Salehi.

  • 48.
    Andersson, Sofie
    et al.
    KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Nikou, Alexandros
    KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Dimarogonas, Dimos V.
    KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Control Synthesis for Multi-Agent Systems under Metric Interval Temporal Logic Specifications2017In: IFAC-PapersOnLine, Elsevier, 2017, Vol. 50, 2397-2402 p.Conference paper (Refereed)
    Abstract [en]

    This paper presents a framework for automatic synthesis of a control sequence for multi-agent systems governed by continuous linear dynamics under timed constraints. First, the motion of the agents in the workspace is abstracted into individual Transition Systems (TS). Second, each agent is assigned with an individual formula given in Metric Interval Temporal Logic (MITL) and in parallel, the team of agents is assigned with a collaborative team formula. The proposed method is based on a correct-by-construction control synthesis method, and hence guarantees that the resulting closed-loop system will satisfy the desired specifications. The specifications considers boolean-valued properties under real-time bounds. Extended simulations has been performed in order to demonstrate the efficiency of the proposed methodology.

  • 49.
    Andersson, Tomas
    et al.
    KTH, School of Electrical Engineering (EES), Signal Processing.
    Händel, Peter
    KTH, School of Electrical Engineering (EES), Signal Processing. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    IEEE standard 1057, Cramer-Rao bound and the parsimony principle2006In: IEEE Transactions on Instrumentation and Measurement, ISSN 0018-9456, Vol. 55, no 1, 44-53 p.Article in journal (Refereed)
    Abstract [en]

    This paper deals with some fundamental properties of the sine-wave-fit algorithm included in IEEE Standards 1057 and 1241. Asymptotic Cramer-Rao bounds (CRBs) for three and four model parameters are derived under the Gaussian assumption. Further, the sine-wave-fitting properties of the algorithm are analyzed by the parsimony principle. A decision criterion whether to use the three- or four-parameter model is derived. It is shown that a three-parameter sine-wave fit produces a better fit than the four-parameter fit if the frequency is known to be within an interval related to the number of samples and the signal-to-noise ratio. By a numerical analysis, the theoretical results are shown to be also valid for the uniform noise model of quantization.

  • 50.
    Andersson, Tomas
    et al.
    KTH, Superseded Departments, Signals, Sensors and Systems.
    Händel, Peter
    KTH, Superseded Departments, Signals, Sensors and Systems. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    IEEE Standard 1057, Cramér-Rao Bound and the Parsimony Principle2003In: International Workshop on ADC Modelling and Testing, 2003, 231-234 p.Conference paper (Refereed)
1234567 1 - 50 of 2250
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf