Digitala Vetenskapliga Arkivet

Change search
Refine search result
1234567 1 - 50 of 348
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Adolfsson, Karin H.
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Xie, L.
    Hassanzadeh, Salman
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Pettersson, Torbjörn
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology.
    Hakkarainen, Minna
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Zero-Dimensional and Highly Oxygenated Graphene Oxide for Multifunctional Poly(lactic acid) Bionanocomposites2016In: ACS Sustainable Chemistry and Engineering, E-ISSN 2168-0485, Vol. 4, no 10, p. 5618-5631Article in journal (Refereed)
    Abstract [en]

    The unique strengths of 2D graphene oxide nanosheets (GONSs) in polymer composites are thwarted by nanosheet agglomeration due to strong intersheet attractions. Here, we reveal that shrinking the planar size to 0D graphene oxide quantum dots (GOQDs), together with the intercalation of rich oxygen functional groups, reduces filler aggregation and enhances interfacial interactions with the host polymer. With poly(lactic acid) (PLA) as a model matrix, atomic force microscopy colloidal probe measurements illustrated that a triple increase in adhesion force to PLA was achieved for GOQDs (234.8 nN) compared to GONSs (80.4 nN), accounting for the excellent exfoliation and dispersion of GOQDs in PLA, in contrast to the notable agglomeration of GONSs. Although present at trace amount (0.05 wt %), GOQDs made a significant contribution to nucleation activity, mechanical strength and ductility, and gas barrier properties of PLA, which contrasted the inferior efficacy of GONSs, accompanied by clear distinction in film transparency (91% and 50%, respectively). Moreover, the GOQDs with higher hydrophilicity accelerated the degradation of PLA by enhancing water erosion, while the GONSs with large sheet surfaces gave a higher hydrolytic resistance. Our findings provide conceptual insights into the importance of the dimensionality and surface chemistry of GO nanostructures in the promising field of bionanocomposites integrating high strength and multifunction (e.g., enhanced transparency, degradation and gas barrier).

  • 2.
    Albertsson, A-C.
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Andersson, S-O.
    Karlsson, S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    The mechanism of biodegradation of polyethylene1987In: Polymer degradation and stability, ISSN 0141-3910, E-ISSN 1873-2321, Vol. 18, p. 73-87Article in journal (Refereed)
  • 3. Albertsson, A-C.
    et al.
    Barenstedt, C.
    Karlsson, S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Degradation of enhanced environmentally degradable polyethylene in biological aqueous media: mechanisms during the first stages1994In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 51, no 6, p. 1097-1105Article in journal (Refereed)
  • 4. Albertsson, A-C.
    et al.
    Barenstedt, C.
    Karlsson, S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Increased biodegradation of a low-density polyethylene (LDPE) matrix in starch-filled LDPE materials1993In: Journal of environmental polymer degradation, ISSN 1064-7546, E-ISSN 1572-8900, Vol. 1, no 4, p. 241-245Article in journal (Refereed)
  • 5. Albertsson, A-C.
    et al.
    Barenstedt, C.
    Karlsson, S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Solid-phase extraction and gas chromatographic-mass spectrometric identification of degradation products from enhanced environmentally degradable polyethylene1995In: Journal of Chromatography A, ISSN 0021-9673, E-ISSN 1873-3778, Vol. 690, no 2, p. 207-217Article in journal (Refereed)
  • 6. Albertsson, A-C.
    et al.
    Barenstedt, C.
    Karlsson, S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Susceptibility of enhanced environmentally degradable polyethylene to thermal and photo-oxidation1992In: Polymer degradation and stability, ISSN 0141-3910, E-ISSN 1873-2321, Vol. 37, no 2, p. 163-171Article in journal (Refereed)
  • 7. Albertsson, A-C.
    et al.
    Barenstedt, C.
    Karlsson, S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Lindberg, T.
    Degradation product pattern and morphology changes as means to differentiate abiotically and biotically aged degradable polyethylene1995In: Polymer, ISSN 0032-3861, E-ISSN 1873-2291, Vol. 36, no 16, p. 3075-83Article in journal (Refereed)
  • 8. Albertsson, A-C.
    et al.
    Griffin, G. J. L.
    Karlsson, S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Nishimoto, K.
    Watanabe, Y.
    Spectroscopic and mechanical changes in irradiated starch-filled LDPE1994In: Polymer degradation and stability, ISSN 0141-3910, E-ISSN 1873-2321, Vol. 45, no 2, p. 173-178Article in journal (Refereed)
  • 9. Albertsson, A-C.
    et al.
    Karlsson, S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Abiotic degradation products from enhanced environmentally degradable polyethylene1994In: Acta Polymerica, ISSN 0323-7648, E-ISSN 1521-4044, Vol. 45, no 2, p. 97-103Article in journal (Refereed)
  • 10. Albertsson, A-C.
    et al.
    Karlsson, S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Aspects of biodeterioration of inert and degradable polymers1993In: International Biodeterioration & Biodegradation, ISSN 0964-8305, E-ISSN 1879-0208, Vol. 31, no 3, p. 161-170Article in journal (Refereed)
  • 11. Albertsson, A-C.
    et al.
    Karlsson, S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Biodegradable polymers1992In: Comprehensive Polymer Science, Supplement Series, Midland, Michigan: Pergamon Press, 1992, p. 285-Chapter in book (Refereed)
  • 12. Albertsson, A-C.
    et al.
    Karlsson, S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Biodegradation and testmethods for environmental and biomedical applications of polymers1990In: Degradable Materials, Boca Raton: CRC Press, 1990, p. 263-Chapter in book (Refereed)
  • 13. Albertsson, A-C.
    et al.
    Karlsson, S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Chemistry and biochemistry of polymer biodegradation1994In: Chemistry and Technology of Biodegradable Polymers / [ed] G.J.L. Griffin, London, England: Blackie Academic & Professional , 1994, p. 7-17Chapter in book (Refereed)
  • 14. Albertsson, A-C.
    et al.
    Karlsson, S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Chromatographic fingerprinting as a means to predict degradation mechanisms1996In: Journal of environmental polymer degradation, ISSN 1064-7546, E-ISSN 1572-8900, Vol. 4, no 1, p. 51-3Article in journal (Refereed)
  • 15. Albertsson, A-C.
    et al.
    Karlsson, S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Controlled degradation by artificial and biological processes1996In: Macromol. Design of Polymeric Materials, Marcel Dekker, 1996, p. 54-Chapter in book (Refereed)
  • 16. Albertsson, A-C.
    et al.
    Karlsson, S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Degradable polyethylene-starch complex1991In: Makromolekulare Chemie, Macromolecular Symposia, Vol. 48-49, no Eur. Polym. Fed. Symp. Polym. Mater., 3rd, 1990, p. 395-402Article in journal (Refereed)
  • 17. Albertsson, A-C.
    et al.
    Karlsson, S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Degradable Polymers1996In: The Polymeric Materials Encyclopedia: Synthesis, Properties and Applications / [ed] J. C. Salamone, Boca Raton, USA: CRC Press, 1996, p. 150-Chapter in book (Refereed)
  • 18. Albertsson, A-C.
    et al.
    Karlsson, S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Degradable polymers for the future1995In: Acta Polymerica, ISSN 0323-7648, E-ISSN 1521-4044, Vol. 46, no 2, p. 114-123Article in journal (Refereed)
  • 19. Albertsson, A-C.
    et al.
    Karlsson, S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Environment-adaptable polymers1993In: Polymer degradation and stability, ISSN 0141-3910, E-ISSN 1873-2321, Vol. 41, no 3, p. 345-349Article in journal (Refereed)
  • 20. Albertsson, A-C.
    et al.
    Karlsson, S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Increased biodegradation of LDPE-matrix in starch-filled LDPE materials1992In: Materials Science and Engineering, Vol. 67, p. 296-297Article in journal (Refereed)
  • 21. Albertsson, A-C.
    et al.
    Karlsson, S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Macromolecular architecture-nature as model for degradable polymers1996In: Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, Vol. 33, no 10, p. 1565-1570Article in journal (Refereed)
  • 22. Albertsson, A-C.
    et al.
    Karlsson, S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    New tools for analyzing degradation1995In: Macromolecular Symposia, ISSN 1022-1360, E-ISSN 1521-3900, Vol. 98, no 35th IUPAC International Symposium on Macromolecules, 1995, p. 797-801Article in journal (Refereed)
  • 23. Albertsson, A-C.
    et al.
    Karlsson, S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Polyethylene degradation and degradation products1990In: Agricultural and Synthetic Polymers: Biodegradability and Utilization, American Chemical Society (ACS), 1990, Vol. 433, no Agricultural & Synthetic Polymers, p. 60-64Chapter in book (Refereed)
  • 24. Albertsson, A-C.
    et al.
    Karlsson, S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    The Influence of Biotic and Abiotic Environments on the Degradation of Polyethylene.1990In: Progress in polymer science, ISSN 0079-6700, E-ISSN 1873-1619, Vol. 15, no 2, p. 177-192Article in journal (Refereed)
  • 25. Albertsson, A-C.
    et al.
    Sares, C.
    Karlsson, S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Increased biodegradation of low-density polyethylene (LDPE) with nonionic surfactant1993In: Acta Polymerica, ISSN 0323-7648, E-ISSN 1521-4044, Vol. 44, no 5, p. 243-246Article in journal (Refereed)
  • 26.
    Albertsson, Ann-Christine
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Frontiers in Biomacromolecules: Functional Materials from Nature2012In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 13, no 12, p. 3901-3901Article in journal (Other academic)
  • 27.
    Albertsson, Ann-Christine
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Long-Term Properties of Polyolefins2004Collection (editor) (Refereed)
    Abstract [en]

    We dedicate the current volume entitled "Long-Term Properties of Polyolefins"to Professor Kausch on his 25th anniversary as editor of Advances in PolymerScience. Professor Kausch pioneered the work on molecular effects in thefracture of polymers. This is beautifully summarized in his books on polymerfracture. Professor Kausch is also the perfect gentleman - always eager to helpnewcomers to make their entrance into the scientific community and to assisthis colleagues in their work and accomplishments. With his work, ProfessorKausch has demonstrated the importance of "source science" - to present newdata - and to present reviews of previously published material. This book ispresented in the spirit of Professor Kausch, namely showing a good selection ofdata and explaining what they mean.The main focus of this book is the relation between structure and propertiesand the trend towards better quality and reproducibility. The first chapterdescribes the metallocene polymerisation catalysts and their possihility notonly of tailoring polymer properties but also of manufacturing entirely newmaterials. Due to improved control of microstructure, it will also be possible toproduce specialty polyolefins which could compete with non-olefinic polymers.The next chapter shows how in each new development step catalyst and processinnovations have gone hand in hand and how the control over polymer structureand the ability to tailor material properties has increased. For a betterunderstanding of properties and behaviour, the basic of morphology is fundamentaland is described in chapter three, followed by chapter four aboutfracture properties and microdeformation behaviour. Promising model systemsfor the investigations of the relations between crack-tip deformation, fractureand molecular structure are also presented. Chapter five gives an overviewof stabilization of polyethylene crucial for long-term properties. Two mainapproaches have been used; the first advocates the use of biological antioxidants,and the second relies on the use of reactive antioxidants that are chemicallyattached onto the polymer backbone for greater performance and safety.Chemiluminescence is presented as a too1 for studying the initial stages inoxidative degradation and is explained in chapter six. However, for many years,tailor-made structures specially designed for environmental degradation havealso been a reality. One of the key questions for successhl development and useof environmentally degradable polymers is the interaction between the degradationprodncts and nature and this is illustrated in chapter seven. The developmentof chromatographic methods and use of chromatographic fingerprintinggives not only degradation products bnt also information about degradationmechanisms as well as interaction between the polymer and different environments.The obstacles and possibilities for recycling of polyolefins are discussedin chapter eigbt with special emphasis on analytical methods useful in theqnality concept. It is also shown how recycled material could be a valuable resourcein the Future together with renewable resources. Finally, chapter ninegives examples of existing as we11 as emerging techniques of surface modificationof polyethylene.These chapters together will hopefuiiy inspire to a new generation of polyethyleneby mimicking nature and use of new molecular architecture, newmorphology and also "activated" additives in microdomains, with even morereproducible properties within oarrow limits and with predetermined lifetimes.

  • 28.
    Albertsson, Ann-Christine
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Edlund, Ulrica
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Barrier layers for packaging laminates and packaging laminates comprising such barrier layers2009Patent (Other (popular science, discussion, etc.))
  • 29.
    Albertsson, Ann-Christine
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Edlund, Ulrica
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Efficient conversion of wood hydrolysates into renewable materials2012In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 244Article in journal (Other academic)
  • 30.
    Albertsson, Ann-Christine
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Edlund, Ulrica
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    New matrices for controlled drug delivery.2000In: ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, American Chemical Society (ACS), 2000Conference paper (Refereed)
  • 31.
    Albertsson, Ann-Christine
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Edlund, Ulrica
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Novel release systems from biodegradable polymers1998In: ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, American Chemical Society (ACS), 1998Conference paper (Refereed)
  • 32.
    Albertsson, Ann-Christine
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Edlund, Ulrica
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Vedrester blir förnybar råvara2009In: Miljöforskning, ISSN 1650-4925, no 5, p. 20-21Article in journal (Other (popular science, discussion, etc.))
    Abstract [sv]

    Cellulosa används sedan länge i många produkter. Än så länge gäller det främst inom trävaru-, pappers- och massaindustrin. Men veden innehåller även andra ämnen, som idag mest ses som onödiga restprodukter. Aktuell forskning vid KTH visar att sådana produkter i framtiden kan bli användbara i till exempel förpackningar, läkemedelsindustri och jordbruk.

  • 33.
    Albertsson, Ann-Christine
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Edlund, Ulrica
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Wood hydrolysates turned valuable2012In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 243Article in journal (Other academic)
  • 34.
    Albertsson, Ann-Christine
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Edlund, Ulrica
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Källrot, Martina
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Surface modification of degradable polymers2005In: ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, American Chemical Society (ACS), 2005Conference paper (Refereed)
  • 35.
    Albertsson, Ann-Christine
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Edlund, Ulrica
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Varma, Indra Kumari
    Centre for Polymer Science and Engineering, Indian Institute of Technology, Dehli, India.
    Synthesis, Chemistry and Properties of Hemicelluloses2011In: Biopolymers: New Materials for Sustainable Films and Coatings / [ed] David Plackett, Chichester: John Wiley & Sons, 2011, 1, p. 135-150Chapter in book (Other academic)
  • 36.
    Albertsson, Ann-Christine
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Erlandsson, Bengt
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Hakkarainen, Minna
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Karlsson, Sigbritt
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Molecular weight changes and polymeric matrix changes correlated with the formation of degradation products in biodegraded polyethylene1999In: Journal of environmental polymer degradation, ISSN 1064-7546, E-ISSN 1572-8900, Vol. 64, p. 91-99Article in journal (Refereed)
    Abstract [en]

    The molecular weight changes in abiotically and biotically degraded LDPE and LDPE modified with starch and/or prooxidant were compared with the formation of degradation products, The samples were thermooxidized for 6 days at 100 degrees C to initiate degradation and then either inoculated with Arthobacter paraffineus or kept sterile. After 3.5 years homologous series of mono- and dicarboxylic acids and ketoacids were identified by GC-MS in abiotic samples, while complete disappearance of these acids was observed in biotic environments. The molecular weights of the biotically aged samples were slightly higher than the molecular weights of the corresponding abiotically aged samples, which is exemplified by the increase in (M) over bar(n) from 5200 g/mol for a sterile sample with the highest amount of prooxidant to 6000 g/mol for the corresponding biodegraded sample. The higher molecular weight in the biotic environment is explained by the assimilation of carboxylic acids and low molecular weight polyethylene chains by microorganisms. Assimilation of the low molecular weight products is further confirmed by the absence of carboxylic acids in the biotic samples. Fewer carbonyls and more double bonds were seen by FTIR in the biodegraded samples, which is in agreement with the biodegradation mechanism of polyethylene.

  • 37.
    Albertsson, Ann-Christine
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Finne-Wistrand, Anna
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Edlund, Ulrica
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Degradable polymers with tailored properties for biomedical materials2009In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 238Article in journal (Other academic)
  • 38.
    Albertsson, Ann-Christine
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Gröning, Mikael
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Hakkarainen, Minna
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Chromatographic analysis as a tool for predicting material performance2005In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, p. 247-248Article in journal (Other academic)
  • 39.
    Albertsson, Ann-Christine
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Hakkarainen, Minna
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Degradable polymers and their interaction with the environment2007In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 223, p. 566-567Article in journal (Other academic)
  • 40.
    Albertsson, Ann-Christine
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Karlsson, Sigbritt
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    The three stages in the degradation of polymers- polyethylene as a model substance1988In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 35, p. 1289-1302Article in journal (Refereed)
  • 41.
    Albertsson, Ann-Christine
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Kumari Varma, Indra
    Centre for Polymer Science and Engineering, Indian Institute of Technology, New Dehli, India.
    Srivastava, Rajiv K.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Polyesters from Large Lactones2009In: Handbook of Ring-Opening Polymerization / [ed] Philippe Dubois, Olivier Coulembier, Jean-Marie Raquez, Wiley-VCH Verlagsgesellschaft, 2009, 1, p. 287-306Chapter in book (Other academic)
  • 42.
    Albertsson, Ann-Christine
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Källrot, Martina
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Edlund, Ulrica
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    POLY 585-Covalent surface modification of degradable polymers2007In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 234Article in journal (Other academic)
  • 43. Albertsson, Ann-Christine
    et al.
    Renstad, Rasmus
    Erlandsson, Bengt
    Eldsäter, Carina
    Karlsson, Sigbritt
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Effect of processing additives on (bio)degradability of film-blown poly(ε-caprolactone)1998In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 70, no 1, p. 61-74Article in journal (Refereed)
  • 44.
    Albertsson, Ann-Christine
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Varma, Indra Kumari
    Centre for Polymer Science and Engineering, Indian Institute of Technology, Dehli, India.
    Lochab, Bimlesh
    Centre for Polymer Science and Engineering, Indian Institute of Technology, Dehli, India.
    Finne Wistrand, Anna
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Kumar, Kamlesh
    Centre for Polymer Science and Engineering, Indian Institute of Technology, Dehli, India.
    Design and Syntesis of Different Types of Poly(Lactic acid)2010In: Poly(Lactic Acid): Synthesis, Structures, Properties, Processing and Applications / [ed] Rafael Auras, Loong-Tak Lim, Susan E. M. Selke, Hideto Tsuji, John Wiley & Sons, 2010, p. 43-58Chapter in book (Other academic)
  • 45.
    Alin, Jonas
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Analytical tools for identification and quantification of migrants from food packaging2011Conference paper (Other academic)
    Abstract [en]

    Polymers are frequently used as packaging material for food and therefore it is of concern that migrating substances such as additives or degradation products could contaminate the food. Sometimes also processing or microwave heating of food is performed directly inside the food package, which could lead to increased migration. Chromatographic and mass spectrometric analysis techniques can be used to detect, identify and quantify compounds that are released from polymers during such scenarios and, with suitable extraction and analysis techniques for example solid phase micro extraction coupled to gas chromatography – mass spectrometry (SPME-GC-MS), the migrating substances can be identified and quantified. We have previously detected the emission of low molecular weight substances from polymers using SPME-GC-MS [1,2]. With these analysis techniques we have shown that significant antioxidant degradation takes place during microwave heating of the polypropylene (PP) packages in the fatty food simulants, which further led to increased migration of potentially toxic degradation products into the food [3]. No antioxidant degradation was observed in aqueous food simulants or during conventional heating at the same temperature. Electrospray ionization-mass spectrometry (ESI-MS) was shown to be a valuable tool for studying the less volatile migrants. Antioxidant migration rates from three PP materials to fatty food simulants differed largely with respect to the PP type and increased with decreasing degree of crystallinity in the materials, as determined by high performance liquid chromatography (HPLC) [4]. The extraction efficiency of a headspace - solid phase microextraction (HS-SPME) method could be predicted from the analyte properties using a partial least squares (PLS) regression model [5].

     

    References

    [1] M Gröning, M Hakkarainen, Journal of Chromatography, (2001) 932, 1-11

    [2] M Hakkarainen, Journal of Chromatography, (2003)  1010, 9-16

    [3] J. Alin and M. Hakkarainen, Journal of Agricultural and Food Chemistry, (2011) DOI: 10.1021/jf1048639

    [4] J. Alin and M. Hakkarainen, Journal of Applied Polymer Science, (2010) 118, 1084-1093

    [5] J. Alin and M. Hakkarainen, manuscript

  • 46.
    Alin, Jonas
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Migration from plastic food packaging during microwave heating2012Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Microwave heating of food has increased rapidly as a food processing technique. This increases the concern that chemicals could migrate from food packaging to food. The specific effect of microwave heating in contrast to conventional heating on overall and specific migration from common plastic food storage boxes was studied in this work. The purpose was especially to determine the interaction effects of different plastics in contact with different types of foods during microwave heating. The study focused on polycarbonate (PC), poly(ethylene terephthalate) (PET), polypropylene homo-polymer (PP), co-polymer (PP-C) and random co-polymer (PP-R) packages. The migration determinations were evaluated at controlled times and temperatures, using a MAE device. The migrants were analyzed by GC-MS and HPLC. ESI-MS was evaluated as a new tool for migration determinations. Food/food simulant absorption and changes in degree of crystallinity during heating were also followed.

    Significant degradation of antioxidants Irgafos 168 and Irganox 1010 in PP packages occurred during microwave heating of the packages in food simulants containing ethanol, resulting in the formation of antioxidant degradation products. Degradation of PC by Fries chain rearrangement reaction leading to formation of 9,9-dimethylxanthene, and transesterification of PET leading to formation of diethyl terephthalate, were also observed after microwave heating the packages in ethanol and 90/10 isooctane/ethanol. These reactions were not observed during conventional heating of the packages at the same temperature, or after microwave heating of the packages in liquid food (coconut milk). The microwave heating also significantly increased the migration of cyclic oligomers from PET into ethanol and isooctane at 80 °C. Migration of compounds into coconut milk was slightly lower than calculated amounts using the EU mathematical model to predict migration of additives into foodstuffs. The results thus show that the use of ethanol as a fat food simulant during microwave heating can lead to a significant overestimation of migration as well as degradation of polymer or the incorporated additives.

    Some other detected migrants were dimethylbenzaldehyde, 4-ethoxy-ethyl benzoate, benzophenone, m-tert-butyl phenol and 1-methylnaphthalene. All identified migrants with associated specific migration limit (SML) values migrated in significantly lower amounts than the SML values during 1 h of microwave heating at 80 °C. The antioxidant diffusion coefficients in PP and PP co-polymers showed larger relative differences than the corresponding degrees of crystallinity in the same polymers and PP-R showed by far the fastest migration of antioxidants.

    Download full text (pdf)
    fulltext
  • 47.
    Alin, Jonas
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Quality control of polymeric packaging and recycled materials by chromatographic and mass spectrometric techniques2011Conference paper (Other academic)
    Abstract [en]

    During the lifetime polymers can emit degradation products and additives to the surrounding environment. The development of analytical techniques to identify and quantify migrated compounds is essential to assess the safety of the plastic products. This is especially important when plastic materials are used in demanding or otherwise sensitive applications such as toys, medical products, food packaging or water pipes as well as when new types of polymeric materials such as nanocomposites, degradable materials, functional materials or recycled materials are developed. We have in several studies applied chromatographic and mass spectrometric techniques for analysis of emissions from different polymeric materials. As an example we have shown that microwave heating can lead to accelerated degradation of additives incorporated in the polypropylene (PP)packages, which further led to increased migration of potentially toxic degradation products into the food [1]. Significant antioxidant degradation was shown to take place during microwave heating of the packages in the fatty food simulants, while no degradation of antioxidants was detected during conventional heating of the packages in the fatty food simulants. No antioxidant degradation was observed in aqueous food simulants. Antioxidant migration rates from three PPmaterials to fatty food simulants differed largely with respect to the PP type and increased with decreasing degree of crystallinity in the materials [2]. Stereocomplexation improved the migration resistance of novel polylactide based packaging materials in contact with food simulants [3]. When polymeric materials are recycled one point of concern is the presence of unknown low molecular weight products in the materials. In addition the recycled materials could be more susceptible for further degradation even when further stabilized. We have shown that increasing amounts of degradation products are formed during aging of in-plant recycling of polyamide 6.6[4]. The amount of degradation products could also be correlated to deterioration of material properties such as mechanical properties. The odor coming polypropylene materials containing recycled milled phenol-formaldehyde glass-fiber scrap was shown to be caused by the presence of phenol in the materials [5].

    1. J. Alin and M. Hakkarainen, Journal of Agricultural and Food Chemistry (2011) 59(10), 5418-5427

    2. J. Alin and M. Hakkarainen, Journal of Applied Polymer Science (2010) 118(2), 1084-1093.

    3. Y. Bor, J. Alin and M. Hakkarainen, Packaging Technology and Science, DOI: 10.1002/pts.990.

    4. M. Gröning and M. Hakkarainen, Journal of Applied Polymer Science, (2002) 86, 3396-3407

    5. M. Gröning, H. Eriksson, M. Hakkarainen and A.-C. Albertsson, Polymer Degradation andStability, (2006) 91, 1815-1823

  • 48.
    Alin, Jonas
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Hakkarainen, Minna
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Combined Chromatographic and Mass Spectrometric Toolbox for Fingerprinting Migration from PET Tray during Microwave Heating2013In: Journal of Agricultural and Food Chemistry, ISSN 0021-8561, E-ISSN 1520-5118, Vol. 61, no 6, p. 1405-1415Article in journal (Refereed)
    Abstract [en]

    A combined chromatographic and mass spectrometric toolbox was utilized to determine the interactions between poly(ethylene terephthalate) (PET) food packaging and different food simulants during microwave heating. Overall and specific migration was determined by combining weight loss measurements with gas chromatography-mass spectrometry (GC-MS) and electrospray ionization mass spectrometry (ESI-MS). This allowed mapping of low molecular weight migrants in the molecular range up to 2000 g/mol. Microwave heating caused significantly faster migration of cyclic oligomers into ethanol and isooctane as compared to migration during conventional heating at the same temperature. This effect was more significant at lower temperature at which diffusion rates are generally lower. It was also shown that transesterification took place between PET and ethanol during microwave heating, leading to formation of diethyl terephthalate. The detected migrants included cyclic oligomers from dimer to hexamer, in most cases containing extra ethylene glycol units, and oxidized Irgafos 168. ESI-MS combined with CID MS-MS was an excellent tool for structural interpretation of the nonvolatile compounds migrating to the food simulants. The overall migration was below the overall migration limit of 10 mg/dm(2) set by the European commission after 4 h of microwave heating at 100 degrees C in all studied food simulants.

  • 49.
    Alin, Jonas
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Hakkarainen, Minna
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Microwave heating causes rapid degradation of antioxidants in polypropylene packaging leading to greatly increased specific migration to food simulants as shown by ESI-MS and GC-MS2011In: Journal of Agricultural and Food Chemistry, ISSN 0021-8561, E-ISSN 1520-5118, Vol. 59, no 10, p. 5418-5427Article in journal (Refereed)
    Abstract [en]

    Microwave heating of commercial microwavable polypropylene packaging in contact with fatty food simulants caused significant antioxidant degradation and increased specific migration as shown by electrospray ionization-mass spectrometry (ESI-MS) and gas chromatography-mass spectrometry (GC-MS). Degradation of the antioxidants Irgafos 168 and Irganox 1010 was not detected during conventional heating of polypropylene packaging at the same temperature. The migration into aqueous food simulants was primarily restricted by the water solubility of the migrants. Using isooctane as fatty food simulant caused significant swelling and greatly enhanced overall migration values compared to the other fatty food simulant, 99.9% ethanol, or the aqueous food simulants 10% ethanol, 3% acetic acid, or water. ESI-MS spectra clearly reflected the overall migration values, and the number and amount of compounds detected decreased as the hydrophilicity of the food simulant increased. ESI-MS was shown to be an excellent tool for the analysis of semivolatile migrants and a good complement to GC-MS analysis of volatile migrants.

  • 50.
    Alin, Jonas
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Hakkarainen, Minna
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Migration from polycarbonate packaging to food simulants during microwave heating2012In: Polymer degradation and stability, ISSN 0141-3910, E-ISSN 1873-2321, Vol. 97, no 8, p. 1387-1395Article in journal (Refereed)
    Abstract [en]

    The interactions between polycarbonate (PC) packaging and different food simulants during microwave heating were evaluated by identifying the compounds migrating into aqueous, alcoholic and fatty food simulants. The migration of compounds, such as 9,9-dimethylxanthene and m-tert-butyl-phenol, from the PC package to ethanol and isooctane increased significantly during microwave heating as compared to conventional heating. The increase in migration can be explained by degradation caused by microwave heating and/or stronger food simulant interactions. Depending on the food simulant the migrants were quantified either by multiple headspace–solid-phase micro-extraction (MHS-SPME) or direct injection in combination with gas chromatography-mass spectrometry. A partial least squares (PLS) regression model was developed to predict the extraction efficiency for headspace–solid-phase micro-extraction (HS-SPME) of food package migrants from the analyte properties. The most significant property for prediction of the enrichment factors was the octanol-water partition coefficient (log Kow). Polydimethylsiloxane (PDMS) and polydimethylsiloxane/divinylbenzene (PDMS/DVB) fibers were compared for the extraction of the migrants. High correlation was found between the PDMS and PDMS/DVB enrichment factors (R2=0.98), but the extraction by PDMS/DVB fiber was much more efficient compared to the extraction by PDMS fiber. The detection limits after SPME extraction by PDMS/DVB fiber were 1, 0.1 and 3 ng/L for 4-ethoxy-ethyl-benzoate, 2,4-di-tert-butyl-phenol and benzophenone, respectively.

1234567 1 - 50 of 348
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf