Change search
Refine search result
1234567 1 - 50 of 458
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Abrahamsson, Olle
    Linköping University, Department of Electrical Engineering, Communication Systems.
    Hide and Seek in a Social Network2017Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    In this thesis a known heuristic for decreasing a node's centrality scores while maintaining influence, called ROAM, is compared to a modified version specifically designed to decrease eigenvector centrality. The performances of these heuristics are also tested against the Shapley values of a cooperative game played over the considered network, where the game is such that influential nodes receive higher Shapley values. The modified heuristic performed at least as good as the original ROAM, and in some instances even better (especially when the terrorist network behind the World Trade Center attacks was considered). Both heuristics increased the influence score for a given targeted node when applied consecutively on the WTC network, and consequently the Shapley values increased as well. Therefore the Shapley value of the game considered in this thesis seems to be well suited for discovering individuals that are assumed to actively trying to evade social network analysis.

  • 2.
    Ahlqvist, Johan
    Linköping University, Department of Electrical Engineering, Communication Systems.
    Evaluation of the Turbo-decoder Coprocessor on a TMS320C64x Digital Signal Processor2011Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    One technique that is used to reduce the errors brought upon signals, when transmitted over noisy channels, is error control coding. One type of such coding, which has a good performance, is turbo coding. In some of the TMS320C64xTM digital signal processors there is a built in coprocessor that performs turbo decoding.

    This thesis is performed on the account of Communication Developments, within Saab AB and presents an evaluation of this coprocessor. The evaluation deals with both the memory consumption as well as the data rate. The result is also compared to an implementation of turbo coding that does not use the coprocessor.

  • 3.
    Ahmed, Atheeq
    Linköping University, Department of Electrical Engineering, Communication Systems.
    Human Detection Using Ultra Wideband Radar and Continuous Wave Radar2017Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    A radar works by radiating electromagnetic energy and detecting the reflected signal returned from the target. The nature of the reflected signal provides information about the target’s distance or speed. In this thesis, we will be using a UWB radar and a CW radar to help detect the presence and rough location of trapped survivors by detecting their motions. Range is estimated in the UWB radar using clutter removal with SVD and for the dual frequency CW Radar using STFT and median filtering. The effect of the algorithm parameters on their performance was analyzed. The performance of the implemented algorithms with regards to small motion detection, distance estimation and penetration capability was analyzed. Both systems are certainly capable of human detection and tracking.

  • 4.
    Amarasuriya, Gayan
    et al.
    Princeton University, NJ 08544 USA.
    Larsson, Erik G
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, Faculty of Science & Engineering.
    Vincent Poor, H.
    Princeton University, NJ 08544 USA.
    Wireless Information and Power Transfer in Multiway Massive MIMO Relay Networks2016In: IEEE Transactions on Wireless Communications, ISSN 1536-1276, E-ISSN 1558-2248, Vol. 15, no 6, 3837-3855 p.Article in journal (Refereed)
    Abstract [en]

    Simultaneous wireless information and power transfer techniques for multiway massive multiple-input multiple-output (MIMO) relay networks are investigated. By using two practically viable relay receiver designs, namely 1) the power splitting receiver and 2) the time switching receiver, asymptotic signal-to-interference-plus-noise ratio (SINR) expressions are derived for an unlimited number of antennas at the relay. These asymptotic SINRs are then used to derive asymptotic symmetric sum rate expressions in closed form. Notably, these asymptotic SINRs and sum rates become independent of radio frequency-to-direct current (RF-to-DC) conversion efficiency in the limit of infinitely many relay antennas. Moreover, tight average sum rate approximations are derived in closed form for finitely many relay antennas. The fundamental tradeoff between the harvested energy and the sum rate is quantified for both relay receiver structures. Notably, the detrimental impact of imperfect channel state information (CSI) on the MIMO detector/precoder is investigated, and thereby, the performance degradation caused by pilot contamination, which is the residual interference due to nonorthogonal pilot sequence usage in adjacent/cochannel systems, is quantified. The presence of cochannel interference (CCI) can be exploited to be beneficial for energy harvesting at the relay, and consequently, the asymptotic harvested energy is an increasing function of the number of cochannel interferers. Notably, in the genie-aided perfect CSI case, the detrimental impact of CCI for signal decoding can be cancelled completely whenever the number of relay antennas grows without bound. Nevertheless, the pilot contamination severely degrades the sum rate performance even for infinitely many relay antennas.

  • 5.
    Anchora, Luca
    et al.
    IMT of Lucca.
    Badia, Leonardo
    Università degli Studi di Padova.
    Karipidis, Eleftherios
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Zorzi, Mikele
    Università degli Studi di Padova.
    Capacity Gains due to Orthogonal Spectrum Sharing in Multi-Operator LTE Cellular Networks2012In: Proceedings of the Ninth International Symposium on Wireless Communication Systems (ISWCS), 2012, 286-290 p.Conference paper (Refereed)
    Abstract [en]

    Static spectrum allocation leads to resource wastage and inter-operator spectrum sharing is a possible way to improve spectrum efficiency. In this work, we assume that two cellular network operators agree upon sharing part of their spectrum, which can then be dynamically accessed by either of them in a mutually exclusive way. Our goal is to numerically assess the gain, in terms of cell capacity, due to such orthogonal spectrum sharing. Hence, we propose a centralized algorithm that performs coordinated scheduling, in order to numerically evaluate an upper bound on the achievable sum capacity. The algorithm is centralized and exploits complete information on both networks to perform the optimum allocation. The simulation results illustrate the impact of the multiuser diversity and the asymmetry in the traffic load among the networks on the overall achievable gain.

  • 6.
    Anchora, Luca
    et al.
    IMT of Lucca.
    Badia, Leonardo
    Università degli Studi di Padova.
    Zhang, Haibin
    TNO ICT.
    Fahldieck, Torsten
    Bell Labs, Alcatel-Lucent.
    Zhang, Jianshu
    Ilmenau University of Technology.
    Szydelko, Michal
    Wroclaw Research Centre EIT+ .
    Schubert, Martin
    Fraunhofer Institute for Telecommunications HHI.
    Karipidis, Eleftherios
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Haardt, Martin
    Ilmenau University of Technology.
    Resource Allocation and Management in Multi-Operator Cellular Networks with Shared Physical Resources2012In: Proceedings of the Ninth International Symposium on Wireless Communication Systems (ISWCS), IEEE , 2012, 296-300 p.Conference paper (Refereed)
    Abstract [en]

    In this paper, we focus on next-generation cellular networks and discuss physical resources sharing among the operators. This implies cooperative usage of the available radio frequencies and also infrastructure sharing. In particular, we analyze the spectrum sharing gain achievable at different time scales and the main factors impacting on it. Then, we move towards a wider idea of resource sharing and consider a joint spectrum and infrastructure sharing (full sharing). We describe a two-layer resource management architecture that enables operators to reduce costs while still guaranteeing a good service level. The main findings of our investigations are to quantify the effectiveness of resource sharing and open up new perspectives for the operators of next-generation networks.

  • 7.
    Andersson, Rickard
    Linköping University, Department of Electrical Engineering, Communication Systems.
    Algorithm for Handoff in VDL mode 42010Independent thesis Advanced level (professional degree), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    VDL mode 4 is a digital data link operating in the VHF band, its mainly use is for the aviation industry.VDL4 can as an example provide with positioning data, speed information of aircrafts or vehicles equipped with a VDL4 transponder. A connection between the groundsystem and the airborne system is called a point to point connection, which can be used for various applications. This data link needs to be transferred between groundstations during flights in order maintain the connection, which is called handoff.

    The handoff process needs to be quick enough to not drop the link and at the same time a low rate of handoffs is desirable. The data link is regarded as a narrow resource and link management data for handoff is considered as overhead.

    This thesis studies how to make the handoff procedure optimal with respect to involved aspects. Previous research of handoff algorithms and models of the VHF-channel are treated. Standardized parameters and procedures in VDL4 and are explored in order to find an optimal solution for the handoff procedure in VDL4.

    The studied topics are analyzed and it is concluded to suggest an algorithm based on an adaptive hysteresis including signal quality and positioning data provided in VDL4. Standardized parameters which could be useful in the handoff procedure are commented, since the VDL4 standards are under development.

  • 8.
    Aronsson, Peter
    Linköping University, Department of Electrical Engineering, Communication Systems.
    Objektdetektering i SAR- och IR-bilder2008Independent thesis Advanced level (professional degree), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    This report treats detection in IR-pictures taken from airplanes over the ground. The detection is divided in two parts. First there is a detection with filterkernels with the task to point on targets and objects that look like targets. The second part is a discriminator that demands more calculations and has the task to sort out the false alarms from the discriminator. Both the detector and the discriminator contain thresholds thats been trained from trainingsets of data. The results from the detector was better then expected hence it wasn’t possible to test the diskriminator properly.

  • 9.
    Avazkonandeh Gharavol, Ebrahim
    et al.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Larsson, Erik G.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Robust Joint Optimization of MIMO Interfering Relay Channels with Imperfect CSI2011In: 2001 4th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), Piscataway, NJ, USA: IEEE , 2011, , 5 p.209-212 p.Conference paper (Refereed)
    Abstract [en]

    In this paper we deal with the problem of the joint optimization of the precoders, equalizers and relay beamformer of a multiple-input multiple-output interfering relay channel. This network can be regarded az a generalized model for both one-way and two-way relay channels with/without direct interfering links. Unlike the conventional design procedures, we assume that the Channel State Information (CSI) is not known perfectly. The imperfect CSI is described using the norm bounded error framework. We use a system-wide Sum Mean Square Error (SMSE) based problem formulation which is constrained using the transmit power of the terminals and the relay node. The problem at hand, from a worst-case design perspective, is a multilinear, and hence, a nonconvex problem which is also semiinfinite in its constraints. We use a generalized version of the Peterson’s lemma to handle the semi-infiniteness and reduce the original problem to a single Linear Matrix Inequality (LMI). However, this LMI is not convex, and to resolve this issue we propose an iterative algorithm based on the alternating convex search methodology to solve the aforementioned problem. Finally simulation results, i.e., the convergence of the proposed algorithm and the SMSE properties, are included to asses the performance of the proposed algorithm.

  • 10.
    Avazkonandeh Gharavol, Ebrahim
    et al.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Larsson, Erik G.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Robust Joint Optimization of Non-regenerative MIMO Relay Channels with Imperfect CSI2011In: Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), 2011, IEEE Computer Society, 2011, 1589-1593 p.Conference paper (Refereed)
    Abstract [en]

    In this paper, we deal with the problem of joint optimization of the source precoder, the relay beamformer and the destination equalizer in a nonregenerative relay network with only a partial knowledge of the Channel State Information (CSI).

    We model the partial CSI using a deterministic norm bounded error model, and we use a system-wide mean square error performance measure which is constrained based on the transmit power regulations for both source and relay nodes.

    Most conventional designs employ the average performance optimization, however, we solve this problem from a worst-case design perspective.

    The original problem formulation is a semi-infinite trilinear optimization problem which is not convex.

    To solve this problem we extend the existing theories to deal with the constraints which are semi-infinite in different independent complex matrix variables.

    We show that the equivalent approximate problem is a set of linear matrix inequalities, that can be solved iteratively.

    Finally simulation results assess the performance of the proposed scheme.

  • 11.
    Avazkonandeh Gharavol, Ebrahim
    et al.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Larsson, Erik G.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    The Sign-Definiteness Lemma and Its Applications to Robust Transceiver Optimization for Multiuser MIMO Systems2013In: IEEE Transactions on Signal Processing, ISSN 1053-587X, E-ISSN 1941-0476, Vol. 61, no 2, 238-252 p.Article in journal (Refereed)
    Abstract [en]

    We formally generalize the sign-definiteness lemma to the case of complex-valued matrices and multiple norm-bounded uncertainties. This lemma has found many applications in the study of the stability of control systems, and in the design and optimization of robust transceivers in communications. We then present three different novel applications of this lemma in the area of multi-user multiple-input multiple-output (MIMO) robust transceiver optimization. Specifically, the scenarios of interest are: (i) robust linear beamforming in an interfering adhoc network, (ii) robust design of a general relay network, including the two-way relay channel as a special case, and (iii) a half-duplex one-way relay system with multiple relays. For these networks, we formulate the design problems of minimizing the (sum) MSE of the symbol detection subject to different average power budget constraints. We show that these design problems are non-convex (with bilinear or trilinear constraints) and semiinfinite in multiple independent uncertainty matrix-valued variables. We propose a two-stage solution where in the first step the semi-infinite constraints are converted to linear matrix inequalities using the generalized signdefiniteness lemma, and in the second step, we use an iterative algorithm based on alternating convex search (ACS). Via simulations we evaluate the performance of the proposed scheme.

  • 12.
    Axell, Erik
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Spectrum Sensing Algorithms Based on Second-Order Statistics2012Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Cognitive radio is a new concept of reusing spectrum in an opportunistic manner. Cognitive radio is motivated by recent measurements of spectrum utilization, showing unused resources in frequency, time and space. Introducing cognitive radios in a primary network inevitably creates increased interference to the primary users. Secondary users must sense the spectrum and detect primary users' signals at very low SNR, to avoid causing too much interference.This dissertation studies this detection problem, known as spectrum sensing.

    The fundamental problem of spectrum sensing is to discriminate an observation that contains only noise from an observation that contains a very weak signal embedded in noise. In this work, detectors are derived that exploit known properties of the second-order moments of the signal. In particular, known structures of the signal covariance are exploited to circumvent the problem of unknown parameters, such as noise and signal powers or channel coefficients.

    The dissertation is comprised of six papers, all in different ways related to spectrum sensing based on second-order statistics. In the first paper, we considerspectrum sensing of orthogonal frequency-division multiplexed (OFDM) signals in an additive white Gaussian noise channel. For the case of completely known noise and signal powers, we set up a vector-matrix model for an OFDM signal with a cyclic prefix and derive the optimal Neyman-Pearson detector from first principles. For the case of completely unknown noise and signal powers, we derive a generalized likelihood ratio test (GLRT) based on empirical second-order statistics of the received data. The proposed GLRT detector exploits the non-stationary correlation structure of the OFDM signal and does not require any knowledge of the noise or signal powers.

    In the second paper, we create a unified framework for spectrum sensing of signals which have covariance matrices with known eigenvalue multiplicities. We derive the GLRT for this problem, with arbitrary eigenvalue multiplicities under both hypotheses. We also show a number of applications to spectrum sensing for cognitive radio.

    The general result of the second paper is used as a building block, in the third and fourth papers, for spectrum sensing of second-order cyclostationary signals received at multiple antennas and orthogonal space-time block coded (OSTBC) signals respectively. The proposed detector of the third paper exploits both the spatial and the temporal correlation of the received signal, from knowledge of the fundamental period of the cyclostationary signal and the eigenvalue multiplicities of the temporal covariance matrix.

    In the fourth paper, we consider spectrum sensing of signals encoded with an OSTBC. We show how knowledge of the eigenvalue multiplicities of the covariance matrix are inherent owing to the OSTBC, and propose an algorithm that exploits that knowledge for detection. We also derive theoretical bounds on the performance of the proposed detector. In addition, we show that the proposed detector is robust to a carrier frequency offset, and propose another detector that deals with timing synchronization using the detector for the synchronized case as a building block.

    A slightly different approach to covariance matrix estmation is taken in the fifth paper. We consider spectrum sensing of Gaussian signals with structured covariance matrices, and propose to estimate the unknown parameters of the covariance matrices using covariance matching estimation techniques (COMET). We also derive the optimal detector based on a Gaussian approximation of the sample covariance matrix, and show that this is closely connected to COMET.

    The last paper deals with the problem of discriminating samples that containonly noise from samples that contain a signal embedded in noise, when the variance of the noise is unknown. We derive the optimal soft decision detector using a Bayesian approach. The complexity of this optimal detector grows exponentially with the number of observations and as a remedy, we propose a number of approximations to it. The problem under study is a fundamental one andit has applications in signal denoising, anomaly detection, and spectrum sensing for cognitive radio.

  • 13.
    Axell, Erik
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Topics in Spectrum Sensing for Cognitive Radio2009Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Cognitive radio is a new concept of reusing licensed spectrum in an unlicensed manner. Cognitive radio is motivated by recent measurements of spectrum utilization, showing unused resources in frequency, time and space. The spectrum must be sensed to detect primary user signals, in order to allow cognitive radios in a primary system. In this thesis we study some topics in spectrum sensing for cognitive radio.

    The fundamental problem of spectrum sensing is to discriminate samples that contain only noise from samples that contain a very weak signal embedded in noise. We derive detectors that exploit known structures of the signal, for the cases of an OFDM modulated signal and an orthogonal space-time block coded signal. We derive optimal detectors, in the Neyman-Pearson sense, for a few different cases when all parameters are known. Moreover we study detection when the parameters, such as noise variance, are unknown. We propose solutions the problem of unknown parameters.

    We also study system aspects of cognitive radio. More specifically, we investigate spectrum reuse of geographical spectrum holes in a frequency planned primary network. System performance is measured in terms of the achievable rate for the cognitive radio system. Simulation results show that a substantial sum-rate could be achieved if the cognitive radios communicate over small distances. However, the spectrum hole gets saturated quite fast, due to interference caused by the cognitive radios.

  • 14.
    Axell, Erik
    et al.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Larsson, Erik G.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    A Bayesian Approach to Spectrum Sensing, Denoising and Anomaly Detection2009In: Proceedings of the 34th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'09), 2009, 2333-2336 p.Conference paper (Refereed)
    Abstract [en]

    This paper deals with the problem of discriminating samples that contain only noise from samples that contain a signal embedded in noise. The focus is on the case when the variance of the noise is unknown. We derive the optimal soft decision detector using a Bayesian approach. The complexity of this optimal detector grows exponentially with the number of observations and as a remedy, we propose a number of approximations to it. The problem under study is a fundamental one and it has applications in signal denoising, anomaly detection, and spectrum sensing for cognitive radio. We illustrate the results in the context of the latter.

  • 15.
    Axell, Erik
    et al.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Larsson, Erik G.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    A Unified Framework for GLRT-Based Spectrum Sensing of Signals with Covariance Matrices with Known Eigenvalue Multiplicities2011In: Proceedings of the IEEE International Conference on Acoustics, Speech and SignalProcessing (ICASSP), IEEE conference proceedings, 2011, 2956-2959 p.Conference paper (Refereed)
    Abstract [en]

    In this paper, we create a unified framework for spectrum sensing of signals which have covariance matrices with known eigenvalue multiplicities. We derive the generalized likelihood-ratio test (GLRT) for this problem, with arbitrary eigenvalue multiplicities under both hypotheses. We also show a number of applications to spectrum sensing for cognitive radio and show that the GLRT for these applications, of which some are already known, are special cases of the general result.

  • 16.
    Axell, Erik
    et al.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Larsson, Erik G.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Comments on "Multiple Antenna Spectrum Sensing in Cognitive Radios"2011In: IEEE Transactions on Wireless Communications, ISSN 1536-1276, E-ISSN 1558-2248, Vol. 10, no 5, 1678-1680 p.Article in journal (Refereed)
    Abstract [en]

    We point out an error in a derivation in the recent paper [1], and provide a correct and much shorter calculation of the result in question. In passing, we also connect the results in [1] to the literature on array signal processing and on principal component analysis, and show that the main findings of [1] follow as special cases of standard results in these fields.

  • 17.
    Axell, Erik
    et al.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Larsson, Erik G.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Eigenvalue-Based Spectrum Sensing of Orthogonal Space-Time Block Coded Signals2012In: IEEE Transactions on Signal Processing, ISSN 1053-587X, E-ISSN 1941-0476, Vol. 60, no 12, 6724-6728 p.Article in journal (Refereed)
    Abstract [en]

    We consider spectrum sensing of signals encoded with an orthogonal space-time block code (OSTBC). We propose a CFAR detector based on knowledge of the eigenvalue multiplicities of the covariance matrix which are inherent owing to the OSTBC and derive theoretical performance bounds. In addition, we show that the proposed detector is robust to a carrier frequency offset, and propose a detector that deals with timing synchronization using the detector for the synchronized case as a building block. The proposed detectors are shown numerically to perform well.

  • 18.
    Axell, Erik
    et al.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Larsson, Erik G.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Multiantenna Spectrum Sensing of a Second-Order Cyclostationary Signal2011In: Proceedings of the 4th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP'11), 2011, 329-332 p.Conference paper (Refereed)
    Abstract [en]

    We consider spectrum sensing of a second-order cyclostationary signal receivedat multiple antennas. The proposed detector exploits both the spatial andthe temporal correlation of the received signal, from knowledge of thefundamental period of the cyclostationary signal and the eigenvaluemultiplicities of the temporal covariance matrix. All other parameters, suchas the channel gains or the noise power, are assumed to be unknown. The proposeddetector is shown numerically to outperform state-of-the-art detectors forspectrum sensing of anOFDM signal, both when using a single antenna and with multiple antennas.

  • 19.
    Axell, Erik
    et al.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Larsson, Erik G.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Optimal and Near-Optimal Spectrum Sensing of OFDM Signals in AWGN Channels2010In: Proceedings of the International Workshop on Cognitive Information Processing (CIP), 2010Conference paper (Refereed)
    Abstract [en]

    We consider spectrum sensing of OFDM signals in an AWGN channel. For the case of completely unknown noise and signal powers, we  derive a GLRT detector based on empirical second-order statistics of  the received data. The proposed GLRT detector exploits the  non-stationary correlation structure of the OFDM signal and does not  require any knowledge of the noise power or the signal power. The  GLRT detector is compared to state-of-the-art OFDM signal detectors,  and shown to improve the detection performance with 5 dB SNR in  relevant cases.

    For the case of completely known noise power and signal power, we present a brief  derivation of the optimal Neyman-Pearson detector from first  principles. We compare the optimal detector to the energy  detector numerically, and show that the energy detector is  near-optimal (within 0.2 dB SNR) when the noise variance is  known. Thus, when the noise power is known, no substantial gain can  be achieved by using any other detector than the energy detector.

  • 20.
    Axell, Erik
    et al.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Larsson, Erik G.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Optimal and Sub-Optimal Spectrum Sensing of OFDM Signals in Known and Unknown Noise Variance2011In: IEEE Journal on Selected Areas in Communications, ISSN 0733-8716, E-ISSN 1558-0008, Vol. 29, no 2, 290-304 p.Article in journal (Refereed)
    Abstract [en]

    We consider spectrum sensing of OFDM signals in an AWGN channel. For  the case of completely known noise and signal powers, we set up  a vector-matrix model for an OFDM signal with a cyclic prefix and  derive the optimal Neyman-Pearson detector from first  principles. The optimal detector exploits the inherent correlation  of the OFDM signal incurred by the repetition of data in the cyclic  prefix, using knowledge of the length of the cyclic prefix and the  length of the OFDM symbol. We compare the optimal detector to the energy  detector numerically. We show that the energy detector is  near-optimal (within 1 dB SNR) when the noise variance is  known. Thus, when the noise power is known, no substantial gain can  be achieved by using any other detector than the energy detector.

    For the case of completely unknown noise and signal powers, we  derive a generalized likelihood ratio test (GLRT) based onempirical second-order statistics of  the received data. The proposed GLRT detector exploits the  non-stationary correlation structure of the OFDM signal and does not  require any knowledge of the noise power or the signal power. The  GLRT detector is compared to state-of-the-art OFDM signal detectors,  and shown to improve the detection performance with 5 dB SNR in  relevant cases.

  • 21.
    Axell, Erik
    et al.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Larsson, Erik G.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Spectrum Sensing of Orthogonal Space-Time Block Coded Signals with Multiple Receive Antennas2010In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Institute of Electrical and Electronics Engineers (IEEE), 2010, 3110-3113 p.Conference paper (Other academic)
    Abstract [en]

    We consider detection of signals encoded with orthogonal space-time block codes (OSTBC), using multiple receive antennas. Such signals contain redundancy and they have a specific structure, that can be exploited for detection. We derive the optimal detector, in the Neyman-Pearson sense, when all parameters are known. We also consider unknown noise variance, signal variance and channel coefficients. We propose a number of GLRT based detectors for the different cases, that exploit the redundancy structure of the OSTBC signal. We also propose an eigenvalue-based detector for the case when all parameters are unknown. The proposed detectors are compared to the energy detector. We show that when only the noise variance is known, there is no gain in exploiting the structure of the OSTBC. However, when the noise variance is unknown there can be a significant gain.

  • 22.
    Axell, Erik
    et al.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Larsson, Erik G.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Spectrum Sensing of Signals with Structured Covariance Matrices Using Covariance Matching Estimation Techniques2011In: Proceedings of the IEEE Global Communications Conference (GLOBECOM), 2011, 1-5 p.Conference paper (Refereed)
    Abstract [en]

    In this work, we consider spectrum sensing of Gaussian signals with structured covariance matrices. We show that the optimal detector based on the probability distribution of the sample covariance matrix is equivalent to the optimal detector based on the raw data, if the covariance matrices are known. However, the covariance matrices are unknown in general. Therefore, we propose to estimate the unknown parameters using covariance matching estimation techniques (COMET). We also derive the optimal detector based on a Gaussian approximation of the sample covariance matrix, and show that this is closely connected to COMET.

  • 23.
    Axell, Erik
    et al.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Larsson, Erik G.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Danev, Danyo
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Capacity Considerations for Uncoordinated Communication in Geographical Spectrum Holes2009In: Physical Communication, ISSN 1874-4907, Vol. 2, no 1-2, 3-9 p.Article in journal (Refereed)
    Abstract [en]

    Cognitive radio is a new concept of reusing a licensed spectrum in an unlicensed manner. The motivation for cognitive radio is various measurements of spectrum utilization, that generally show unused resources in frequency, time and space. These "spectrum holes" could be exploited by cognitive radios. Some studies suggest that the spectrum is extremely underutilized, and that these spectrum holes could provide ten times the capacity of all existing wireless devices together. The spectrum could be reused either during time periods where the primary system is not active, or in geographical positions where the primary system is not operating. In this paper, we deal primarily with the concept of geographical reuse, in a frequency-planned primary network. We perform an analysis of the potential for communication in a geographical spectrum hole, and in particular the achievable sum-rate for a secondary network, to some order of magnitude. Simulation results show that a substantial sum-rate could be achieved if the secondary users communicate over small distances. For a small number of secondary links, the sum-rate increases linearly with the number of links. However, the spectrum hole gets saturated quite fast, due to interference caused by the secondary users. A spectrum hole may look large, but it disappears as soon as someone starts using it.

  • 24.
    Axell, Erik
    et al.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Larsson, Erik G.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Larsson, Jan-Åke
    Linköping University, Department of Electrical Engineering, Information Coding. Linköping University, The Institute of Technology.
    On the Optimal K-term Approximation of a Sparse Parameter Vector MMSE Estimate2009In: Proceedings of the 2009 IEEE Workshop on Statistical Signal Processing (SSP'09), IEEE , 2009, 245-248 p.Conference paper (Refereed)
    Abstract [en]

    This paper considers approximations of marginalization sums thatarise in Bayesian inference problems. Optimal approximations ofsuch marginalization sums, using a fixed number of terms, are analyzedfor a simple model. The model under study is motivated byrecent studies of linear regression problems with sparse parametervectors, and of the problem of discriminating signal-plus-noise samplesfrom noise-only samples. It is shown that for the model understudy, if only one term is retained in the marginalization sum, thenthis term should be the one with the largest a posteriori probability.By contrast, if more than one (but not all) terms are to be retained,then these should generally not be the ones corresponding tothe components with largest a posteriori probabilities.

  • 25.
    Axell, Erik
    et al.
    Dept. of Robust Telecommunications, Swedish Defence Research Agency, Sweden .
    Larsson, Erik G
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, Faculty of Science & Engineering.
    Persson, Daniel
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, Faculty of Science & Engineering.
    GNSS spoofing detection using multiple mobile COTS receivers2015In: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, Institute of Electrical and Electronics Engineers (IEEE), 2015, 3192-3196 p.Conference paper (Refereed)
    Abstract [en]

    In this paper we deal with spoofing detection in GNSS receivers. We derive the optimal genie detector when the true positions are perfectly known, and the observation errors are Gaussian, as a benchmark for other detectors. The system model considers three dimensional positions, and includes correlated errors. In addition, we propose several detectors that do not need any position knowledge, that outperform recently proposed detectors in many interesting cases.

  • 26.
    Axell, Erik
    et al.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Leus, Geert
    Delft University of Technology.
    Larsson, Erik G.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Overview of Spectrum Sensing for Cognitive Radio2010In: Proceedings of the International Workshop on Cognitive Information Processing (CIP), 2010, 322-327 p.Conference paper (Refereed)
    Abstract [en]

    We present a survey of state-of-the-art algorithms for spectrum  sensing in cognitive radio. The algorithms discussed range from  energy detection to sophisticated feature detectors. The feature  detectors that we present all have in common that they exploit some  known structure of the transmitted signal.  In particular we treat  detectors that exploit cyclostationarity properties of the signal,  and detectors that exploit a known eigenvalue structure of the  signal covariance matrix.  We also consider cooperative  detection. Specifically we present data fusion rules for soft and  hard combining, and discuss the energy efficiency of several  different sensing, sleeping and censoring schemes in detail.

  • 27.
    Axell, Erik
    et al.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Leus, Geert
    Delft University of Technology, Faculty of Electrical Engineering, Mathematics and Computer Science.
    Larsson, Erik G.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Poor, H. Vincent
    Princeton University, Department of Electrical Engineering.
    State-of-the-art and recent advances Spectrum Sensing for Cognitive Radio State-of-the-art and recent advances2012In: IEEE signal processing magazine (Print), ISSN 1053-5888, E-ISSN 1558-0792, Vol. 29, no 3, 101-116 p.Article in journal (Refereed)
    Abstract [en]

    The ever-increasing demand for higher data rates in wireless communications in the face of limited or underutilized spectral resources has motivated the introduction of cognitive radio. Traditionally, licensed spectrum is allocated over relatively long time periods and is intended to be used only by licensees. Various measurements of spectrum utilization have shown substantial unused resources in frequency, time, and space [1], [2]. The concept behind cognitive radio is to exploit these underutilized spectral resources by reusing unused spectrum in an opportunistic manner [3], [4]. The phrase cognitive radio is usually attributed to Mitola [4], but the idea of using learning and sensing machines to probe the radio spectrum was envisioned several decades earlier (cf., [5]).

  • 28. Ayanoglu, Ender
    et al.
    Larsson, Erik G.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Karipidis, Eleftherios
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Computational Complexity of Decoding Orthogonal Space-Time Block Codes2011In: IEEE Transactions on Communications, ISSN 0090-6778, E-ISSN 1558-0857, Vol. 59, no 4, 936-941 p.Article in journal (Refereed)
    Abstract [en]

    The computational complexity of optimum decoding for an orthogonal space-time block code {cal G}_N satisfying {cal G}_N^H{cal G}_N=c(∑_{k=1}^Kos_ko^2)I_N where c is a positive integer is quantified. Four equivalent techniques of optimum decoding which have the same computational complexity are specified. Modifications to the basic formulation in special cases are calculated and illustrated by means of examples. This paper corrects and extends and unifies them with the results from the literature. In addition, a number of results from the literature are extended to the case c>1.

  • 29.
    Ayanoglu, Ender
    et al.
    University of California, Irvine.
    Larsson, Erik G.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Karipidis, Eleftherios
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Computational Complexity of Decoding Orthogonal Space-Time Block Codes2010In: Proceedings of the IEEE International Conference on Communications (ICC), 2010, 1-6 p.Conference paper (Refereed)
    Abstract [en]

    The computational complexity of optimum decoding for an orthogonal space-time block code is quantified. Four equivalent techniques of optimum decoding which have the same computational complexity are specified. Modifications to the basic formulation in special cases are calculated and illustrated by means of examples.

  • 30.
    Azhar, Rizwan
    Linköping University, Department of Electrical Engineering, Communication Systems.
    Upgrading and Performance Analysis of Thin Clients in Server Based Scientific Computing2011Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Server Based Computing (SBC) technology allows applications to be deployed, managed, supported and executed on the server and not on the client; only the screen information is transmitted between the server and client. This architecture solves many fundamental problems with application deployment, technical support, data storage, hardware and software upgrades.

    This thesis is targeted at upgrading and evaluating performance of thin clients in scientific Server Based Computing (SBC). Performance of Linux based SBC was assessed via methods of both quantitative and qualitative research. Quantitative method used benchmarks that measured typical-load performance with SAR and graphics performance with X11perf, Xbench and SPECviewperf. Structured interview, a qualitative research method, was adopted in which the number of open-ended questions in specific order was presented to users in order to estimate user-perceived performance.

    The first performance bottleneck identified was the CPU speed. The second performance bottleneck, with respect to graphics intensive applications, includes the network latency of the X11 protocol and the subsequent performance of old thin clients. An upgrade of both the computational server and thin clients was suggested.

    The evaluation after the upgrade involved performance analysis via quantitative and qualitative methods. The results showed that the new configuration had improved the performance.

  • 31.
    Becirovic, Ema
    Linköping University, Department of Electrical Engineering, Communication Systems.
    On Social Choice in Social Networks2017Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Social choice becomes a part of everyday life when groups of people are faced with decisions to make. We often adjust our personal beliefs with the respect to our friends. We are inherently dependent on the happiness of those near us.

    In this thesis, we investigate an existing empathy model that is used to select a winner in a set of alternatives by using scoring winner selection methods. We show that a slight modification of the model is enough to be able to use superior winner selection methods that are based on pairwise comparisons of alternatives.

    We show that there is essentially no reason to use scoring winner selection methods in the models proposed as a more desirable result is achieved by using superior winner selection methods.

  • 32.
    Berglund, Joel
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Extended LTE Coverage For Indoor Machine Type Communication2013Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    The interest of Machine Type Communication (MTC) is increasing and is expected to play an important role in the future network society. In the process of increasing the number of connected devices, the coverage plays an important role. This thesis work aims to study the possibility of supporting coverage limited MTC-devices within LTE by extending the LTE coverage.

    It shows that coverage increase by means of repetition is a good candidate, which allows for a significant increase without hardware upgrades at a low cost in terms of radio resources. For inter-site distances up to 2500 m, the proposed repetition scheme with an increase of 20 dB allows for almost complete coverage where today’s LTE have significant lack of coverage. It also shows that even though the increased coverage implies higher resource usage, the limitation is not in the number of users supported, but rather the coverage at longer inter-site distances.

  • 33.
    Bergqvist, Göran
    et al.
    Linköping University, Department of Mathematics, Applied Mathematics. Linköping University, The Institute of Technology.
    Larsson, Erik G
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Overview of recent advances in numerical tensor algebra2010In: Proceedings of Asilomar Conference on Signals, Systems and Computers, 2010, 3-7 p.Conference paper (Other academic)
    Abstract [en]

    We present a survey of some recent developments for decompositions of multi-way arrays or tensors, with special emphasis on results relevant for applications and modeling in signal processing. A central problem is how to find lowrank approximations of tensors, and we describe some new results, including numerical methods, algorithms and theory, for the higher order singular value decomposition (HOSVD) and the parallel factors expansion or canonical decomposition (CP expansion).

  • 34.
    Bergqvist, Göran
    et al.
    Linköping University, Department of Mathematics, Applied Mathematics. Linköping University, The Institute of Technology.
    Larsson, Erik G.
    Linköping University, The Institute of Technology. Linköping University, Department of Electrical Engineering, Communication Systems.
    The Higher-Order Singular Value Decomposition Theory and an Application2010In: IEEE signal processing magazine (Print), ISSN 1053-5888, E-ISSN 1558-0792, Vol. 27, no 3, 151-154 p.Article in journal (Other academic)
    Abstract [en]

    Tensor modeling and algorithms for computing various tensor decompositions (the Tucker/HOSVD and CP decompositions, as discussed here, most notably) constitute a very active research area in mathematics. Most of this research has been driven by applications. There is also much software available, including MATLAB toolboxes [4]. The objective of this lecture has been to provide an accessible introduction to state of the art in the field, written for a signal processing audience. We believe that there is good potential to find further applications of tensor modeling techniques in the signal processing field.

  • 35.
    Bertilsson, Erik
    et al.
    Linköping University, Department of Electrical Engineering, Computer Engineering. Linköping University, Faculty of Science & Engineering.
    Gustafsson, Oscar
    Linköping University, Department of Electrical Engineering, Computer Engineering. Linköping University, Faculty of Science & Engineering.
    Larsson, Erik G
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, Faculty of Science & Engineering.
    A Scalable Architecture for Massive MIMO Base Stations Using Distributed Processing2016In: 2016 50TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, Washington: IEEE COMPUTER SOC , 2016, 864-868 p.Conference paper (Refereed)
    Abstract [en]

    Massive MIMO-systems have received considerable attention in recent years as an enabler in future wireless communication systems. As the idea is based on having a large number of antennas at the base station it is important to have both a scalable and distributed realization of such a system to ease deployment. Most work so far have focused on the theoretical aspects although a few demonstrators have been reported. In this work, we propose a base station architecture based on connecting the processing nodes in a K-ary tree, allowing simple scalability. Furthermore, it is shown that most of the processing can be performed locally in each node. Further analysis of the node processing shows that it should be enough that each node contains one or two complex multipliers and a few complex adders/subtracters operating at some hundred MHz. It is also shown that a communication link of some Gbps is required between the nodes, and, hence, it is fully feasible to have one or a few links between the nodes to cope with the communication requirements.

  • 36.
    Björnson, Emil
    et al.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Bengtsson, Mats
    KTH Royal Institute of Technology, Stockholm, Sweden .
    Ottersten, Björn
    KTH Royal Institute of Technology, Stockholm, Sweden; University of Luxembourg.
    Optimal Multiuser Transmit Beamforming: A Difficult Problem with a Simple Solution Structure2014In: IEEE signal processing magazine (Print), ISSN 1053-5888, E-ISSN 1558-0792, Vol. 31, no 4, 142-148 p.Article in journal (Refereed)
    Abstract [en]

    Transmit beamforming is a versatile technique for signal transmission from an array of antennas to one or multiple users [1]. In wireless communications, the goal is to increase the signal power at the intended user and reduce interference to nonintended users. A high signal power is achieved by transmitting the same data signal from all antennas but with different amplitudes and phases, such that the signal components add coherently at the user. Low interference is accomplished by making the signal components add destructively at nonintended users. This corresponds mathematically to designing beamforming vectors (that describe the amplitudes and phases) to have large inner products with the vectors describing the intended channels and small inner products with nonintended user channels.

  • 37.
    Björnson, Emil
    et al.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, Faculty of Science & Engineering.
    de Carvalho, Elisabeth
    Aalborg University, Denmark.
    Larsson, Erik G
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, Faculty of Science & Engineering.
    Popovski, Petar
    Aalborg University, Denmark.
    Random Access Protocol for Massive MIMO: Strongest-User Collision Resolution (SUCR)2016In: 2016 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), IEEE , 2016, 820-825 p.Conference paper (Refereed)
    Abstract [en]

    Wireless networks with many antennas at the base stations and multiplexing of many users, known as Massive MIMO systems, are key to handle the rapid growth of data traffic. As the number of users increases, the random access in contemporary networks will be flooded by user collisions. In this paper, we propose a reengineered random access protocol, coined strongest-user collision resolution (SUCR). It exploits the channel hardening feature of Massive MIMO channels to enable each user to detect collisions, determine how strong the contenders channels are, and only keep transmitting if it has the strongest channel gain. The proposed SUCR protocol can quickly and distributively resolve the vast majority of all pilot collisions.

  • 38.
    Björnson, Emil
    et al.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, Faculty of Science & Engineering.
    de Carvalho, Elisabeth
    Aalborg University, Denmark.
    Sorensen, Jesper H.
    Aalborg University, Denmark.
    Larsson, Erik G
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, Faculty of Science & Engineering.
    Popovski, Petar
    Aalborg University, Denmark.
    A Random Access Protocol for Pilot Allocation in Crowded Massive MIMO Systems2017In: IEEE Transactions on Wireless Communications, ISSN 1536-1276, E-ISSN 1558-2248, Vol. 16, no 4, 2220-2234 p.Article in journal (Refereed)
    Abstract [en]

    The massive multiple-input multiple-output (MIMO) technology has great potential to manage the rapid growth of wireless data traffic. Massive MIMO achieves tremendous spectral efficiency by spatial multiplexing many tens of user equipments (UEs). These gains are only achieved in practice if many more UEs can connect efficiently to the network than today. As the number of UEs increases, while each UE intermittently accesses the network, the random access functionality becomes essential to share the limited number of pilots among the UEs. In this paper, we revisit the random access problem in the Massive MIMO context and develop a reengineered protocol, termed strongest-user collision resolution (SUCRe). An accessing UE asks for a dedicated pilot by sending an uncoordinated random access pilot, with a risk that other UEs send the same pilot. The favorable propagation of massive MIMO channels is utilized to enable distributed collision detection at each UE, thereby determining the strength of the contenders signals and deciding to repeat the pilot if the UE judges that its signal at the receiver is the strongest. The SUCRe protocol resolves the vast majority of all pilot collisions in crowded urban scenarios and continues to admit UEs efficiently in overloaded networks.

  • 39.
    Björnson, Emil
    et al.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, Faculty of Science & Engineering.
    Larsson, Erik G
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, Faculty of Science & Engineering.
    Three Practical Aspects of Massive MIMO: Intermittent User Activity, Pilot Synchronism, and Asymmetric Deployment2015In: 2015 IEEE Globecom Workshops (GC Wkshps), Institute of Electrical and Electronics Engineers (IEEE), 2015, 1-6 p.Conference paper (Refereed)
    Abstract [en]

    This paper considers three aspects of Massive MIMO (multiple- input multiple-output) communication networks that have received little attention in previous works, but are important to understand when designing and implementing this promising wireless technology. First, we analyze how bursty data traffic behaviors affect the system. Using a probabilistic model for intermittent user activity, we show that the spectral efficiency (SE) scales gracefully with reduced user activity. Then, we make an analytic comparison between synchronous and asynchronous pilot signaling, and prove that the choice between these has no impact on the SE. Finally, we provide an analytical and numerical study of the SE achieved with random network deployment.

  • 40.
    Björnson, Emil
    et al.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, Faculty of Science & Engineering.
    Larsson, Erik G
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, Faculty of Science & Engineering.
    Debbah, Merouane
    CentraleSupelec, France; Huawei, France.
    Massive MIMO for Maximal Spectral Efficiency: How Many Users and Pilots Should Be Allocated?2016In: IEEE Transactions on Wireless Communications, ISSN 1536-1276, E-ISSN 1558-2248, Vol. 15, no 2, 1293-1308 p.Article in journal (Refereed)
    Abstract [en]

    Massive MIMO is a promising technique for increasing the spectral efficiency (SE) of cellular networks, by deploying antenna arrays with hundreds or thousands of active elements at the base stations and performing coherent transceiver processing. A common rule-of-thumb is that these systems should have an order of magnitude more antennas M than scheduled users K because the users channels are likely to be near-orthogonal when M/K > 10. However, it has not been proved that this rule-of-thumb actually maximizes the SE. In this paper, we analyze how the optimal number of scheduled users K-star depends on M and other system parameters. To this end, new SE expressions are derived to enable efficient system-level analysis with power control, arbitrary pilot reuse, and random user locations. The value of K-star in the large-M regime is derived in closed form, while simulations are used to show what happens at finite M, in different interference scenarios, with different pilot reuse factors, and for different processing schemes. Up to half the coherence block should be dedicated to pilots and the optimal M/K is less than 10 in many cases of practical relevance. Interestingly, K-star depends strongly on the processing scheme and hence it is unfair to compare different schemes using the same K.

  • 41.
    Björnson, Emil
    et al.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, Faculty of Science & Engineering.
    Larsson, Erik G
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, Faculty of Science & Engineering.
    Debbah, Merouane
    CentraleSupelec, France.
    Optimizing Multi-Cell Massive MIMO for Spectral Efficiency: How Many Users Should Be Scheduled?2014In: 2014 IEEE Global Conference on Signal and Information Processing, GlobalSIP 2014, Institute of Electrical and Electronics Engineers (IEEE), 2014, 612-616 p.Conference paper (Refereed)
    Abstract [en]

    Massive MIMO is a promising technique to increase the spectral efficiency of cellular networks, by deploying antenna arrays with hundreds or thousands of active elements at the base stations and performing coherent beamforming. A common rule-of-thumb is that these systems should have an order of magnitude more antennas, N, than scheduled users, K, because the users' channels are then likely to be quasi-orthogonal. However, it has not been proved that this rule-of-thumb actually maximizes the spectral efficiency. In this paper, we analyze how the optimal number of scheduled users, K*, depends on N and other system parameters. The value of K* in the large-N regime is derived in closed form, while simulations are used to show what happens at finite N, in different interference scenarios, and for different beamforming.

  • 42.
    Björnson, Emil
    et al.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, Faculty of Science & Engineering.
    Larsson, Erik G
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, Faculty of Science & Engineering.
    Marzetta, Thomas L.
    Nokia, France.
    Massive MIMO: Ten Myths and One Critical Question2016In: IEEE Communications Magazine, ISSN 0163-6804, E-ISSN 1558-1896, Vol. 54, no 2, 114-123 p.Article in journal (Refereed)
    Abstract [en]

    Wireless communications is one of the most successful technologies in modern years, given that an exponential growth rate in wireless traffic has been sustained for over a century (known as Coopers law). This trend will certainly continue, driven by new innovative applications; for example, augmented reality and the Internet of Things. Massive MIMO has been identified as a key technology to handle orders of magnitude more data traffic. Despite the attention it is receiving from the communication community, we have personally witnessed that Massive MIMO is subject to several widespread misunderstandings, as epitomized by following (fictional) abstract: "The Massive MIMO technology uses a nearly infinite number of high-quality antennas at the base stations. By having at least an order of magnitude more antennas than active terminals, one can exploit asymptotic behaviors that some special kinds of wireless channels have. This technology looks great at first sight, but unfortunately the signal processing complexity is off the charts and the antenna arrays would be so huge that it can only be implemented in millimeter-wave bands." These statements are, in fact, completely false. In this overview article, we identify 10 myths and explain why they are not true. We also ask a question that is critical for the practical adoption of the technology and which will require intense future research activities to answer properly. We provide references to key technical papers that support our claims, while a further list of related overview and technical papers can be found at the Massive MIMO Info Point: http://massivemimo.eu

  • 43.
    Björnson, Emil
    et al.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, Faculty of Science & Engineering.
    Matthaiou, Michail
    Chalmers, Sweden; Queens University of Belfast, North Ireland.
    Pitarokoilis, Antonios
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, Faculty of Science & Engineering.
    Larsson, Erik G
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, Faculty of Science & Engineering.
    Distributed Massive MIMO in Cellular Networks: Impact of Imperfect Hardware and Number of Oscillators2015In: 23rd European Signal Processing Conference, EUSIPCO 2015, Institute of Electrical and Electronics Engineers (IEEE), 2015, 2436-2440 p.Conference paper (Refereed)
    Abstract [en]

    Distributed massive multiple-input multiple-output (MIMO) combines the array gain of coherent MIMO processing with the proximity gains of distributed antenna setups. In this paper, we analyze how transceiver hardware impairments affect the downlink with maximum ratio transmission. We derive closed-form spectral efficiencies expressions and study their asymptotic behavior as the number of the antennas increases. We prove a scaling law on the hardware quality, which reveals that massive MIMO is resilient to additive distortions, while multiplicative phase noise is a limiting factor. It is also better to have separate oscillators at each antenna than one per BS

  • 44.
    Björnson, Emil
    et al.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, Faculty of Science & Engineering.
    Sanguinetti, Luca
    University of Pisa, Italy; University of Paris Saclay, France.
    Debbah, Merouane
    University of Paris Saclay, France; Huawei Technology, France.
    Massive MIMO with Imperfect Channel Covariance Information2016In: 2016 50TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, IEEE COMPUTER SOC , 2016, 974-978 p.Conference paper (Refereed)
    Abstract [en]

    This work investigates the impact of imperfect statistical information in the uplink of massive MIMO systems. In particular, we first show why covariance information is needed and then propose two schemes for covariance matrix estimation. A lower bound on the spectral efficiency (SE) of any combining scheme is derived, under imperfect covariance knowledge, and a closed-form expression is computed for maximum-ratio combining. We show that having covariance information is not critical, but that it is relatively easy to acquire it and to achieve SE close to the ideal case of having perfect statistical information.

  • 45.
    Björnson, Emil
    et al.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, Faculty of Science & Engineering. KTH Royal Institute Technology, Sweden; Supelec, France.
    Sanguinetti, Luca
    University of Pisa, Italy; CentraleSupelec, France.
    Hoydis, Jakob
    Bell Labs, Germany.
    Debbah, Merouane
    CentraleSupelec, France.
    Optimal Design of Energy-Efficient Multi-User MIMO Systems: Is Massive MIMO the Answer?2015In: IEEE Transactions on Wireless Communications, ISSN 1536-1276, E-ISSN 1558-2248, Vol. 14, no 6, 3059-3075 p.Article in journal (Refereed)
    Abstract [en]

    Assume that a multi-user multiple-input multiple-output (MIMO) system is designed from scratch to uniformly cover a given area with maximal energy efficiency (EE). What are the optimal number of antennas, active users, and transmit power? The aim of this paper is to answer this fundamental question. We consider jointly the uplink and downlink with different processing schemes at the base station and propose a new realistic power consumption model that reveals how the above parameters affect the EE. Closed-form expressions for the EE-optimal value of each parameter, when the other two are fixed, are provided for zero-forcing (ZF) processing in single-cell scenarios. These expressions prove how the parameters interact. For example, in sharp contrast to common belief, the transmit power is found to increase (not to decrease) with the number of antennas. This implies that energy-efficient systems can operate in high signal-to-noise ratio regimes in which interference-suppressing signal processing is mandatory. Numerical and analytical results show that the maximal EE is achieved by a massive MIMO setup wherein hundreds of antennas are deployed to serve a relatively large number of users using ZF processing. The numerical results show the same behavior under imperfect channel state information and in symmetric multi-cell scenarios.

  • 46.
    Björnson, Emil
    et al.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, Faculty of Science & Engineering.
    Sanguinetti, Luca
    University of Pisa, Italy; University of Paris Saclay, France.
    Kountouris, Marios
    Huawei Technology Co Ltd, France.
    Deploying Dense Networks for Maximal Energy Efficiency: Small Cells Meet Massive MIMO2016In: IEEE Journal on Selected Areas in Communications, ISSN 0733-8716, E-ISSN 1558-0008, Vol. 34, no 4, 832-847 p.Article in journal (Refereed)
    Abstract [en]

    What would a cellular network designed for maximal energy efficiency look like? To answer this fundamental question, tools from stochastic geometry are used in this paper to model future cellular networks and obtain a new lower bound on the average uplink spectral efficiency. This enables us to formulate a tractable uplink energy efficiency (EE) maximization problem and solve it analytically with respect to the density of base stations (BSs), the transmit power levels, the number of BS antennas and users per cell, and the pilot reuse factor. The closed-form expressions obtained from this general EE maximization framework provide valuable insights on the interplay between the optimization variables, hardware characteristics, and propagation environment. Small cells are proved to give high EE, but the EE improvement saturates quickly with the BS density. Interestingly, the maximal EE is achieved by also equipping the BSs with multiple antennas and operate in a "massive MIMO" fashion, where the array gain from coherent detection mitigates interference and the multiplexing of many users reduces the energy cost per user.

  • 47.
    Björnson, Emil
    et al.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, Faculty of Science & Engineering.
    Sanguinetti, Luca
    University of Pisa, Italy; CentraleSupelec, France.
    Kountouris, Marios
    CentraleSupelec, France.
    Designing Wireless Broadband Access for Energy Efficiency: Are Small Cells the Only Answer?2015In: 2015 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATION WORKSHOP, Institute of Electrical and Electronics Engineers (IEEE), 2015, 136-141 p.Conference paper (Refereed)
  • 48.
    Björnson, Emil
    et al.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, Faculty of Science & Engineering.
    Sanguinetti, Luca
    University of Pisa, Italy; Central Supelec, France.
    Kountouris, Marios
    Huawei Technology Co Ltd, Peoples R China.
    Energy-Efficient Future Wireless Networks: A Marriage between Massive MIMO and Small Cells2015In: 2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), IEEE , 2015, 211-215 p.Conference paper (Refereed)
    Abstract [en]

    How would a cellular network designed for high energy efficiency look like? To answer this fundamental question, we model cellular networks using stochastic geometry and optimize the energy efficiency with respect to the density of base stations, the number of antennas and users per cell, the transmit power levels, and the pilot reuse. The highest efficiency is neither achieved by a pure small-cell approach, nor by a pure massive MIMO solution. Interestingly, it is the combination of these approaches that provides the highest energy efficiency; small cells contributes by reducing the propagation losses while massive MIMO enables multiplexing of users with controlled interference.

  • 49.
    Blad, Anton
    et al.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Axell, Erik
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Larsson, Erik G.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Spectrum Sensing of OFDM Signals in the Presence of CFO: New Algorithms and Empirical Evaluation Using USRP2012In: Proceedings of the 13th IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), IEEE , 2012, 159-163 p.Conference paper (Refereed)
    Abstract [en]

    In this work, we consider spectrum sensing of OFDM signals. We deal withthe inevitable problem of a carrier frequency offset, and propose modificationsto some state-of-the-art detectors to cope with that. Moreover, the (modified)detectors are implemented using GNU radio and USRP, and evaluated over aphysical radio channel. Measurements show that all of the evaluated detectorsperform quite well, and the preferred choice of detector depends on thedetection requirements and the radio environment.

  • 50.
    Carlsson, Robin
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Investigation and Implementation of Coexistence Tool for Antennas2014Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    With the increase of the number of radios and antennas on today’s systems, the risk of co-site interference is very high. Intermodulation product and antenna coupling are two common sources of interference. The thesis investigates some features of a radio system, like antenna types, receiver parameters, intermodulation products and isolation, and suggests how this knowledge can be used to minimize the risk of co-site interference. The goal is to maximize the isolation between the antennas, by good frequency planning, the use of filters and taking great care in antenna placement. A first version of an analysis software was developed where transmitters and receivers can be paired and evaluated. An intermodulation product calculator was also implemented, to easily find which products are an issue and where they originate. The goal of the software is to be simple to use and easy to adapt to different setups and situations. It should also be easy to upgrade with new features.

1234567 1 - 50 of 458
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf