Please wait ... |

Refine search result

CiteExportLink to result list
http://www.diva-portal.org/smash/resultList.jsf?query=&language=en&searchType=SIMPLE&noOfRows=50&sortOrder=author_sort_asc&sortOrder2=title_sort_asc&onlyFullText=false&sf=all&aq=%5B%5B%7B%22organisationId%22%3A%221108%22%7D%5D%5D&aqe=%5B%5D&aq2=%5B%5B%5D%5D&af=%5B%5D $(function(){PrimeFaces.cw("InputTextarea","widget_formSmash_upper_j_idt488_recordPermLink",{id:"formSmash:upper:j_idt488:recordPermLink",widgetVar:"widget_formSmash_upper_j_idt488_recordPermLink",autoResize:true});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt488_j_idt490",{id:"formSmash:upper:j_idt488:j_idt490",widgetVar:"widget_formSmash_upper_j_idt488_j_idt490",target:"formSmash:upper:j_idt488:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Permanent link

Cite

Citation styleapa ieee modern-language-association-8th-edition vancouver Other style $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_upper_j_idt506",{id:"formSmash:upper:j_idt506",widgetVar:"widget_formSmash_upper_j_idt506",behaviors:{change:function(ext) {PrimeFaces.ab({s:"formSmash:upper:j_idt506",e:"change",f:"formSmash",p:"formSmash:upper:j_idt506",u:"formSmash:upper:otherStyle"},ext);}}});});

- apa
- ieee
- modern-language-association-8th-edition
- vancouver
- Other style

Languagede-DE en-GB en-US fi-FI nn-NO nn-NB sv-SE Other locale $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_upper_j_idt517",{id:"formSmash:upper:j_idt517",widgetVar:"widget_formSmash_upper_j_idt517",behaviors:{change:function(ext) {PrimeFaces.ab({s:"formSmash:upper:j_idt517",e:"change",f:"formSmash",p:"formSmash:upper:j_idt517",u:"formSmash:upper:otherLanguage"},ext);}}});});

- de-DE
- en-GB
- en-US
- fi-FI
- nn-NO
- nn-NB
- sv-SE
- Other locale

Output formathtml text asciidoc rtf $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_upper_j_idt527",{id:"formSmash:upper:j_idt527",widgetVar:"widget_formSmash_upper_j_idt527"});});

- html
- text
- asciidoc
- rtf

Rows per page

- 5
- 10
- 20
- 50
- 100
- 250

Sort

- Standard (Relevance)
- Author A-Ö
- Author Ö-A
- Title A-Ö
- Title Ö-A
- Publication type A-Ö
- Publication type Ö-A
- Issued (Oldest first)
- Issued (Newest first)
- Created (Oldest first)
- Created (Newest first)
- Last updated (Oldest first)
- Last updated (Newest first)
- Disputation date (earliest first)
- Disputation date (latest first)

- Standard (Relevance)
- Author A-Ö
- Author Ö-A
- Title A-Ö
- Title Ö-A
- Publication type A-Ö
- Publication type Ö-A
- Issued (Oldest first)
- Issued (Newest first)
- Created (Oldest first)
- Created (Newest first)
- Last updated (Oldest first)
- Last updated (Newest first)
- Disputation date (earliest first)
- Disputation date (latest first)

Select

The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.

1. Stochastic Numerical Analysis for Impact of Heavy Alcohol Consumption on Transmission Dynamics of Gonorrhoea Epidemic Abodayeh, Kamaleldin PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_0_j_idt591",{id:"formSmash:items:resultList:0:j_idt591",widgetVar:"widget_formSmash_items_resultList_0_j_idt591",onLabel:"Abodayeh, Kamaleldin ",offLabel:"Abodayeh, Kamaleldin ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_0_j_idt594",{id:"formSmash:items:resultList:0:j_idt594",widgetVar:"widget_formSmash_items_resultList_0_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Prince Sultan Univ, Dept Math & Gen Sci, Riyadh, Saudi Arabia.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:0:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Raza, AliAir Univ, Dept Math, Stochat Anal & Optimizat Res Grp, PAF Complex E-9, Islamabad 44000, Pakistan.Arif, Muhammad ShoaibAir Univ, Dept Math, Stochat Anal & Optimizat Res Grp, PAF Complex E-9, Islamabad 44000, Pakistan.Rafiq, MuhammadUniv Cent Punjab, Fac Engn, Lahore, Pakistan.Bibi, MairajComsats Univ, Dept Math, Chak Shahzad Campus Pk Rd, Islamabad, Pakistan.Mohsin, MuhammadUppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:0:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Stochastic Numerical Analysis for Impact of Heavy Alcohol Consumption on Transmission Dynamics of Gonorrhoea Epidemic2020In: CMC-COMPUTERS MATERIALS & CONTINUA, ISSN 1546-2218, Vol. 62, no 3, p. 1125-1142Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_0_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:0:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_0_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); This paper aims to perform a comparison of deterministic and stochastic models. The stochastic modelling is a more realistic way to study the dynamics of gonorrhoea infection as compared to its corresponding deterministic model. Also, the deterministic solution is itself mean of the stochastic solution of the model. For numerical analysis, first, we developed some explicit stochastic methods, but unfortunately, they do not remain consistent in certain situations. Then we proposed an implicitly driven explicit method for stochastic heavy alcohol epidemic model. The proposed method is independent of the choice of parameters and behaves well in all scenarios. So, some theorems and simulations are presented in support of the article.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:0:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Download full text (pdf)fulltext$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_items_resultList_0_j_idt854_0_j_idt857",{id:"formSmash:items:resultList:0:j_idt854:0:j_idt857",widgetVar:"widget_formSmash_items_resultList_0_j_idt854_0_j_idt857",showEffect:"fade",hideEffect:"fade",target:"formSmash:items:resultList:0:j_idt854:0:fullText"});}); 2. Philosophy of mathematics in “La Science et l’Hypothèse”, from Henri Poincaré. Aboud, Mathilde PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_1_j_idt591",{id:"formSmash:items:resultList:1:j_idt591",widgetVar:"widget_formSmash_items_resultList_1_j_idt591",onLabel:"Aboud, Mathilde ",offLabel:"Aboud, Mathilde ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Algebra and Geometry.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:1:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:1:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Philosophy of mathematics in “La Science et l’Hypothèse”, from Henri Poincaré.2017Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesisDownload full text (pdf)fulltext$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_items_resultList_1_j_idt854_0_j_idt857",{id:"formSmash:items:resultList:1:j_idt854:0:j_idt857",widgetVar:"widget_formSmash_items_resultList_1_j_idt854_0_j_idt857",showEffect:"fade",hideEffect:"fade",target:"formSmash:items:resultList:1:j_idt854:0:fullText"});}); 3. On the immersion classes of nearby Lagrangians Abouzaid, Mohammed PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_2_j_idt591",{id:"formSmash:items:resultList:2:j_idt591",widgetVar:"widget_formSmash_items_resultList_2_j_idt591",onLabel:"Abouzaid, Mohammed ",offLabel:"Abouzaid, Mohammed ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_2_j_idt594",{id:"formSmash:items:resultList:2:j_idt594",widgetVar:"widget_formSmash_items_resultList_2_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Columbia Univ, Dept Math, New York, NY 10027 USA.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:2:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Kragh, ThomasUppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Algebra and Geometry.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:2:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); On the immersion classes of nearby Lagrangians2016In: Journal of Topology, ISSN 1753-8416, E-ISSN 1753-8424, Vol. 9, no 1, p. 232-244Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_2_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:2:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_2_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We show that the transfer map on Floer homotopy types associated to an exact Lagrangian embedding is an equivalence. This provides an obstruction to representing isotopy classes of Lagrangian immersions by Lagrangian embeddings, which, unlike previous obstructions, is sensitive to information that cannot be detected by Floer cochains. We show this by providing a concrete computation in the case of spheres.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:2:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 4. Simple homotopy equivalence of nearby Lagrangians Abouzaid, Mohammed PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_3_j_idt591",{id:"formSmash:items:resultList:3:j_idt591",widgetVar:"widget_formSmash_items_resultList_3_j_idt591",onLabel:"Abouzaid, Mohammed ",offLabel:"Abouzaid, Mohammed ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_3_j_idt594",{id:"formSmash:items:resultList:3:j_idt594",widgetVar:"widget_formSmash_items_resultList_3_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Columbia Univ, Dept Math, Room 509,MC 4406 2990 Broadway, New York, NY 10027 USA.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:3:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Kragh, ThomasUppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Algebra and Geometry.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:3:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Simple homotopy equivalence of nearby Lagrangians2018In: Acta Mathematica, ISSN 0001-5962, E-ISSN 1871-2509, Vol. 220, no 2, p. 207-237Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_3_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:3:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_3_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Given a closed exact Lagrangian in the cotangent bundle of a closed smooth manifold, we prove that the projection to the base is a simple homotopy equivalence.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:3:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 5. Statistical models of breast cancer tumour growth for mammography screening data Abrahamsson, Linda PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_4_j_idt591",{id:"formSmash:items:resultList:4:j_idt591",widgetVar:"widget_formSmash_items_resultList_4_j_idt591",onLabel:"Abrahamsson, Linda ",offLabel:"Abrahamsson, Linda ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Mathematical Statistics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:4:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:4:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Statistical models of breast cancer tumour growth for mammography screening data2012Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisDownload full text (pdf)fulltext$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_items_resultList_4_j_idt854_0_j_idt857",{id:"formSmash:items:resultList:4:j_idt854:0:j_idt857",widgetVar:"widget_formSmash_items_resultList_4_j_idt854_0_j_idt857",showEffect:"fade",hideEffect:"fade",target:"formSmash:items:resultList:4:j_idt854:0:fullText"});}); 6. General inequalities via isotonic subadditive functionals Abramovic, A.et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_5_j_idt594",{id:"formSmash:items:resultList:5:j_idt594",widgetVar:"widget_formSmash_items_resultList_5_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:5:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Pecaric, J.Persson, Lars-ErikUppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Applied mathematics.Varosanec, S.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:5:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); General inequalities via isotonic subadditive functionals2007In: Mathematical Inequalities & Applications, ISSN 1331-4343, E-ISSN 1848-9966, Vol. 10, no 1, p. 15-28Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_5_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:5:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_5_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); In this manuscript a number of general inequalities for isotonic subadditive functionals on a set of positive mappings are proved and applied. In particular, it is pointed out that these inequalities both unify and generalize some general forms of the Hö̈lder, Popoviciu, Minkowski, Bellman and Power mean inequalities. Also some refinements of some of these results are proved.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:5:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 7. Dehn surgeries and rational homology Aceto, Paolo PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_6_j_idt591",{id:"formSmash:items:resultList:6:j_idt591",widgetVar:"widget_formSmash_items_resultList_6_j_idt591",onLabel:"Aceto, Paolo ",offLabel:"Aceto, Paolo ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_6_j_idt594",{id:"formSmash:items:resultList:6:j_idt594",widgetVar:"widget_formSmash_items_resultList_6_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Alfred Renyi Inst Math, 13-15 Realtanoda U, H-1053 Budapest, Hungary..PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:6:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Golla, MarcoUppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Algebra and Geometry.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:6:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Dehn surgeries and rational homology2017In: Algebraic and Geometric Topology, ISSN 1472-2747, E-ISSN 1472-2739, Vol. 17, no 1, p. 487-527Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_6_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:6:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_6_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We consider the question of which Dehn surgeries along a given knot bound rational homology balls. We use Ozsvath and Szabo's correction terms in Heegaard Floer homology to obtain general constraints on the surgery coefficients. We then turn our attention to the case of integral surgeries, with particular emphasis on positive torus knots. Finally, combining these results with a lattice-theoretic obstruction based on Donaldson's theorem, we classify which integral surgeries along torus knots of the form Tkq 1; q bound rational homology balls.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:6:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 8. Embedding 3-manifolds in spin 4-manifolds Aceto, Paolo PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_7_j_idt591",{id:"formSmash:items:resultList:7:j_idt591",widgetVar:"widget_formSmash_items_resultList_7_j_idt591",onLabel:"Aceto, Paolo ",offLabel:"Aceto, Paolo ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_7_j_idt594",{id:"formSmash:items:resultList:7:j_idt594",widgetVar:"widget_formSmash_items_resultList_7_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Alfred Renyi Inst Math, Realtanoda Ut 13-15, H-1053 Budapest, Hungary..PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:7:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Golla, MarcoUppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics.Larson, KyleMichigan State Univ, Dept Math, 619 Red Cedar Rd, E Lansing, MI 48824 USA..PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:7:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Embedding 3-manifolds in spin 4-manifolds2017In: Journal of Topology, ISSN 1753-8416, E-ISSN 1753-8424, Vol. 10, no 2, p. 301-323Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_7_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:7:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_7_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); An invariant of orientable 3-manifolds is defined by taking the minimum n such that a given 3-manifold embeds in the connected sum of n copies of S-2 x S-2, and we call this n the embedding number of the 3-manifold. We give some general properties of this invariant, and make calculations for families of lens spaces and Brieskorn spheres. We show how to construct rational and integral homology spheres whose embedding numbers grow arbitrarily large, and which can be calculated exactly if we assume the 11/8-Conjecture. In a different direction we show that any simply connected 4-manifold can be split along a rational homology sphere into a positive definite piece and a negative definite piece.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:7:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 9. Binary refinement implies discrete exponentiation Aczel, Peteret al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_8_j_idt594",{id:"formSmash:items:resultList:8:j_idt594",widgetVar:"widget_formSmash_items_resultList_8_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:8:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Crosilla, LauraIshihara, HajimePalmgren, ErikUppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.Schuster, PeterPrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:8:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Binary refinement implies discrete exponentiation2006In: Studia Logica, Vol. 84, p. 361-368Article in journal (Refereed)10. Sub-Gaussian tail bounds for the width and height of conditioned Galton–Watson trees Addario-Berry, Louigiet al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_9_j_idt594",{id:"formSmash:items:resultList:9:j_idt594",widgetVar:"widget_formSmash_items_resultList_9_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:9:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Devroye, LucJanson, SvanteUppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:9:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Sub-Gaussian tail bounds for the width and height of conditioned Galton–Watson trees2013In: Annals of Probability, ISSN 0091-1798, E-ISSN 2168-894X, Vol. 41, no 2, p. 1072-1087Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_9_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:9:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_9_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We study the height and width of a Galton-Watson tree with offspring distribution xi satisfying E xi = 1, 0 < Var xi < infinity, conditioned on having exactly n nodes. Under this conditioning, we derive sub-Gaussian tail bounds for both the width (largest number of nodes in any level) and height (greatest level containing a node); the bounds are optimal up to constant factors in the exponent. Under the same conditioning, we also derive essentially optimal upper tail bounds for the number of nodes at level k, for 1 <= k <= n.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:9:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 11. On the Spread of Random Graphs Addario-Berry, Louigiet al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_10_j_idt594",{id:"formSmash:items:resultList:10:j_idt594",widgetVar:"widget_formSmash_items_resultList_10_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:10:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Janson, SvanteUppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics.McDiarmid, ColinPrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:10:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); On the Spread of Random Graphs2014In: Combinatorics, probability & computing, ISSN 0963-5483, E-ISSN 1469-2163, Vol. 23, no 4, p. 477-504Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_10_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:10:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_10_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); The spread of a connected graph G was introduced by Alon, Boppana and Spencer [1], and measures how tightly connected the graph is. It is defined as the maximum over all Lipschitz functions f on V(G) of the variance of f(X) when X is uniformly distributed on V(G). We investigate the spread for certain models of sparse random graph, in particular for random regular graphs G(n,d), for Erdos-Renyi random graphs G(n,p) in the supercritical range p > 1/n, and for a `small world' model. For supercritical G(n,p), we show that if p = c/n with c > 1 fixed, then with high probability the spread of the giant component is bounded, and we prove corresponding statements for other models of random graphs, including a model with random edge lengths. We also give lower bounds on the spread for the barely supercritical case when p = (1 + o(1))/n. Further, we show that for d large, with high probability the spread of G(n, d) becomes arbitrarily close to that of the complete graph K-n.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:10:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 12. Cocompactness and minimizers for inequalities of Hardy-Sobolev type involving N-Laplacian Adimurthi,et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_11_j_idt594",{id:"formSmash:items:resultList:11:j_idt594",widgetVar:"widget_formSmash_items_resultList_11_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:11:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Marcos do O, JoaoTintarev, KyrilUppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Applied Mathematics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:11:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Cocompactness and minimizers for inequalities of Hardy-Sobolev type involving N-Laplacian2010In: NoDEA. Nonlinear differential equations and applications (Printed ed.), ISSN 1021-9722, E-ISSN 1420-9004, Vol. 17, no 4, p. 467-477Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_11_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:11:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_11_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); The paper studies quasilinear elliptic problems in the Sobolev spaces W-1,W-p(Omega), Omega subset of R-N, with p = N, that is, the case of Pohozhaev-Trudinger-Moser inequality. Similarly to the case p < N where the loss of compactness in W-1,W-p(R-N) occurs due to dilation operators u bar right arrow t((N-p)/p)u(tx), t > 0, and can be accounted for in decompositions of the type of Struwe's "global compactness" and its later refinements, this paper presents a previously unknown group of isometric operators that leads to loss of compactness in W-0(1,N) over a ball in R-N. We give a one-parameter scale of Hardy-Sobolev functionals, a "p = N"-counterpart of the Holder interpolation scale, for p > N, between the Hardy functional integral vertical bar u vertical bar(p)/vertical bar x vertical bar(p) dx and the Sobolev functional integral vertical bar u vertical bar(pN/(N-mp)) dx. Like in the case p < N, these functionals are invariant with respect to the dilation operators above, and the respective concentration-compactness argument yields existence of minimizers for W-1,W-N-norms under Hardy-Sobolev constraints.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:11:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 13. Defect of compactness in spaces of bounded variation Adimurthi, PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_12_j_idt591",{id:"formSmash:items:resultList:12:j_idt591",widgetVar:"widget_formSmash_items_resultList_12_j_idt591",onLabel:"Adimurthi, ",offLabel:"Adimurthi, ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_12_j_idt594",{id:"formSmash:items:resultList:12:j_idt594",widgetVar:"widget_formSmash_items_resultList_12_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); TIFR CAM, PB 6503, Bangalore 560065, Karnataka, India.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:12:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Tintarev, KyrilUppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Probability Theory.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:12:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Defect of compactness in spaces of bounded variation2016In: Journal of Functional Analysis, ISSN 0022-1236, E-ISSN 1096-0783, Vol. 271, no 1, p. 37-48Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_12_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:12:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_12_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Defect of compactness for non-compact imbeddings of Banach spaces can be expressed in the form of a profile decomposition. Let X be a Banach space continuously imbedded into a Banach space Y, and let D be a group of linear isometric operators on X. A profile decomposition in X, relative to D and Y, for a bounded sequence (x(k))(k is an element of N) subset of X is a sequence (S-k)(k is an element of N), such that (x(k) - S-k)(k is an element of N) is a convergent sequence in Y, and, furthermore, S-k has the particular form S-k = Sigma(n is an element of N)g(k)((n))W((n)) with g(k)((n)) is an element of D and w((n)) is an element of X. This paper extends the profile decomposition proved by Solimini [10] for Sobolev spaces (H) over dot(1,P)(R-N) with 1 < p < N to the non-reflexive case p = 1. Since existence of "concentration profiles" w((n)) relies on weak-star compactness, and the space (H) over dot(1,1) is not a conjugate of a Banach space, we prove a corresponding result for a larger space of functions of bounded variation. The result extends also to spaces of bounded variation on Lie groups.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:12:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 14. Hardy inequalities for weighted Dirac operator Adimurthi,et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_13_j_idt594",{id:"formSmash:items:resultList:13:j_idt594",widgetVar:"widget_formSmash_items_resultList_13_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:13:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Tintarev, KyrilUppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Applied Mathematics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:13:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Hardy inequalities for weighted Dirac operator2010In: Annali di Matematica Pura ed Applicata, ISSN 0373-3114, E-ISSN 1618-1891, Vol. 189, no 2, p. 241-251Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_13_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:13:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_13_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); An inequality of Hardy type is established for quadratic forms involving Dirac operator and a weight r(-b) for functions in R-n. The exact Hardy constant c(b) = c(b) (n) is found and generalized minimizers are given. The constant cb vanishes on a countable set of b, which extends the known case n = 2, b = 0 which corresponds to the trivial Hardy inequality in R-2. Analogous inequalities are proved in the case c(b) = 0 under constraints and, with error terms, for a bounded domain.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:13:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 15. On a version of Trudinger-Moser inequality with Möbius shift invariance Adimurthi,et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_14_j_idt594",{id:"formSmash:items:resultList:14:j_idt594",widgetVar:"widget_formSmash_items_resultList_14_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:14:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Tintarev, KyrilUppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Applied Mathematics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:14:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); On a version of Trudinger-Moser inequality with Möbius shift invariance2010In: Calculus of Variations and Partial Differential Equations, ISSN 0944-2669, E-ISSN 1432-0835, Vol. 39, no 1-2, p. 203-212Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_14_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:14:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_14_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); The paper raises a question about the optimal critical nonlinearity for the Sobolev space in two dimensions, connected to loss of compactness, and discusses the pertinent concentration compactness framework. We study properties of the improved version of the Trudinger-Moser inequality on the open unit disk B subset of R-2, recently proved by Mancini and Sandeep [g], (Arxiv 0910.0971). Unlike the original Trudinger-Moser inequality, this inequality is invariant with respect to the Mobius automorphisms of the unit disk, and as such is a closer analogy of the critical nonlinearity integral |u|(2)* in the higher dimension than the original Trudinger-Moser nonlinearity.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:14:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 16. On compactness in the Trudinger-Moser inequality Adimurthi, no first nameet al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_15_j_idt594",{id:"formSmash:items:resultList:15:j_idt594",widgetVar:"widget_formSmash_items_resultList_15_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:15:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Tintarev, CyrilUppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Probability Theory.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:15:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); On compactness in the Trudinger-Moser inequality2014In: Annali della Scuola Normale Superiore di Pisa (Classe Scienze), Serie V, ISSN 0391-173X, E-ISSN 2036-2145, Vol. 13, no 2, p. 399-416Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_15_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:15:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_15_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We show that the Moser functional J(u) = integral Omega(e(4 pi u2) - 1) dx on the set B = {u is an element of H-0(1)(Omega) : parallel to del u parallel to(2) <= 1}, where Omega subset of R-2 is a bounded domain, fails to be weakly continuous only in the following exceptional case. Define g(s)w(r) = s(-1/2)w(r(s)) for s > 0. If u(k) -> u in B while lim inf J(u(k)) > J(u), then, with some s(k) -> 0, u(k) = g(sk) [(2 pi)(-1/2) min {1, log1/vertical bar x vertical bar}], up to translations and up to a remainder vanishing in the Sobolev norm. In other words, the weak continuity fails only on translations of concentrating Moser functions. The proof is based on a profile decomposition similar to that of Solimini [16], but with different concentration operators, pertinent to the two-dimensional case.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:15:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 17. Framtagning av metod för analys av livslängdsdata Adle, Tobias PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_16_j_idt591",{id:"formSmash:items:resultList:16:j_idt591",widgetVar:"widget_formSmash_items_resultList_16_j_idt591",onLabel:"Adle, Tobias ",offLabel:"Adle, Tobias ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:16:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:16:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Framtagning av metod för analys av livslängdsdata2017Independent thesis Basic level (professional degree), 10 credits / 15 HE creditsStudent thesisAbstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_16_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:16:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_16_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Husqvarna AB has as of today an extensive research and development department.This department serves to control the active product as well as the upcoming ones.The way that is done is through two different sets of tests. The first one being a longterm endurance test with aimed to unveil the durability of a product. Second and finalsort of test is a more one dimensional one. The aim is to determine different specificunits of interest like for example Newton (N).

Today the R&D department has a great knowledge within normal distributed data andsomewhat less when it comes to the opposite, so called none normal distributed data.When endurance is of interest the likelihood of that to be of the latter sort is morecommon than not. For now no complete method has been appointed to make iteasier to process a situation of this kind. Studying ever unique case individually, bylooking at the data, has been the way to go. This causes an inconsistency in theanalysis and makes it purely based on which individual that has done it. Lastly it mayalso, unintentionally, ignore the large picture of how a product has progressed.

To solve these problems this thesis work was put together to propose and conduct amethod. To form this method was an ongoing process throughout the whole thesisperiod. Ideas and thoughts were put forward to be reviewed and discussed. After aseries of tweaks to steer it towards the overall goal the method was finalized. Themethod that was put forward was firmly tested. Also a wide laboration in what themethod actually meant was done.

The result was a method to be applied on none normal distributed data. This methodhas three parts. The first being the report where everything is embraced. The secondpart is a short manual for an operator to use. Last part is an example where themethod is put to use.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:16:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Download full text (pdf)fulltext$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_items_resultList_16_j_idt854_0_j_idt857",{id:"formSmash:items:resultList:16:j_idt854:0:j_idt857",widgetVar:"widget_formSmash_items_resultList_16_j_idt854_0_j_idt857",showEffect:"fade",hideEffect:"fade",target:"formSmash:items:resultList:16:j_idt854:0:fullText"});}); 18. On selfadjoint functors satisfying polynomial relations Agerholm, Troelset al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_17_j_idt594",{id:"formSmash:items:resultList:17:j_idt594",widgetVar:"widget_formSmash_items_resultList_17_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:17:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Mazorchuk, VolodymyrUppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Algebra, Geometry and Logic.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:17:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); On selfadjoint functors satisfying polynomial relations2011In: Journal of Algebra, ISSN 0021-8693, E-ISSN 1090-266X, Vol. 330, no 1, p. 448-467Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_17_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:17:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_17_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We study selfadjoint functors acting on categories of finite dimensional modules over finite dimensional algebras with an emphasis on functors satisfying some polynomial relations. Selfadjoint functors satisfying several easy relations, in particular, idempotents and square roots of a sum of identity functors. are classified. We also describe various natural constructions for new actions using external direct sums, external tensor products. Serre subcategories, quotients and centralizer subalgebras.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:17:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 19. Competing first passage percolation on random graphs with finite variance degrees Ahlberg, Daniel PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_18_j_idt591",{id:"formSmash:items:resultList:18:j_idt591",widgetVar:"widget_formSmash_items_resultList_18_j_idt591",onLabel:"Ahlberg, Daniel ",offLabel:"Ahlberg, Daniel ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_18_j_idt594",{id:"formSmash:items:resultList:18:j_idt594",widgetVar:"widget_formSmash_items_resultList_18_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Stockholm Univ, Dept Math, S-10691 Stockholm, Sweden.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:18:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Deijfen, MariaStockholm Univ, Dept Math, S-10691 Stockholm, Sweden.Janson, SvanteUppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Probability Theory.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:18:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Competing first passage percolation on random graphs with finite variance degrees2019In: Random structures & algorithms (Print), ISSN 1042-9832, E-ISSN 1098-2418, Vol. 55, no 3, p. 545-559Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_18_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:18:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_18_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We study the growth of two competing infection types on graphs generated by the configuration model with a given degree sequence. Starting from two vertices chosen uniformly at random, the infection types spread via the edges in the graph in that an uninfected vertex becomes type 1 (2) infected at rate lambda(1) (lambda(2)) times the number of nearest neighbors of type 1 (2). Assuming (essentially) that the degree of a randomly chosen vertex has finite second moment, we show that if lambda(1) = lambda(2), then the fraction of vertices that are ultimately infected by type 1 converges to a continuous random variable V is an element of (0,1), as the number of vertices tends to infinity. Both infection types hence occupy a positive (random) fraction of the vertices. If lambda(1) not equal lambda(2), on the other hand, then the type with the larger intensity occupies all but a vanishing fraction of the vertices. Our results apply also to a uniformly chosen simple graph with the given degree sequence.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:18:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 20. Competition in growth and urns Ahlberg, Daniel PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_19_j_idt591",{id:"formSmash:items:resultList:19:j_idt591",widgetVar:"widget_formSmash_items_resultList_19_j_idt591",onLabel:"Ahlberg, Daniel ",offLabel:"Ahlberg, Daniel ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_19_j_idt594",{id:"formSmash:items:resultList:19:j_idt594",widgetVar:"widget_formSmash_items_resultList_19_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Stockholm Univ, Dept Math, SE-10691 Stockholm, Sweden.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:19:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Griffiths, SimonPUC Rio, Dept Matemat, BR-22451900 Gavea, RJ, Brazil.Janson, SvanteUppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Probability Theory.Morris, RobertInst Nacl Matemat Pura & Aplicada, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, Brazil.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:19:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Competition in growth and urns2019In: Random structures & algorithms (Print), ISSN 1042-9832, E-ISSN 1098-2418, Vol. 54, no 2, p. 211-227Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_19_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:19:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_19_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We study survival among two competing types in two settings: a planar growth model related to two-neighbor bootstrap percolation, and a system of urns with graph-based interactions. In the planar growth model, uncolored sites are given a color at rate 0, 1 or infinity, depending on whether they have zero, one, or at least two neighbors of that color. In the urn scheme, each vertex of a graph G has an associated urn containing some number of either blue or red balls ( but not both). At each time step, a ball is chosen uniformly at random from all those currently present in the system, a ball of the same color is added to each neighboring urn, and balls in the same urn but of different colors annihilate on a one-for-one basis. We show that, for every connected graph G and every initial configuration, only one color survives almost surely. As a corollary, we deduce that in the two-type growth model on Z(2), one of the colors only infects a finite number of sites with probability one. We also discuss generalizations to higher dimensions and multi-type processes, and list a number of open problems and conjectures.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:19:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 21. Quenched Voronoi percolation Ahlberg, Daniel PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_20_j_idt591",{id:"formSmash:items:resultList:20:j_idt591",widgetVar:"widget_formSmash_items_resultList_20_j_idt591",onLabel:"Ahlberg, Daniel ",offLabel:"Ahlberg, Daniel ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_20_j_idt594",{id:"formSmash:items:resultList:20:j_idt594",widgetVar:"widget_formSmash_items_resultList_20_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Probability Theory. Uppsala Univ, Dept Math, SE-75106 Uppsala, Sweden..PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:20:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Griffiths, SimonUniv Oxford, Dept Stat, Oxford OX1 3TG, England..Morris, RobertIMPA, Rio De Janeiro, RJ, Brazil..Tassion, VincentUniv Geneva, Dept Math, Geneva, Switzerland..PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:20:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Quenched Voronoi percolation2016In: Advances in Mathematics, ISSN 0001-8708, E-ISSN 1090-2082, Vol. 286, p. 889-911Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_20_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:20:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_20_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We prove that the probability of crossing a large square in quenched Voronoi percolation converges to 1/2 at criticality, confirming a conjecture of Benjamini, Kalai and Schramm from 1999. The main new tools are a quenched version of the box-crossing property for Voronoi percolation at criticality, and an Efron Stein type bound on the variance of the probability of the crossing event in terms of the sum of the squares of the influences. As a corollary of the proof, we moreover obtain that the quenched crossing event at criticality is almost surely noise sensitive.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:20:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Download full text (pdf)fulltext$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_items_resultList_20_j_idt854_0_j_idt857",{id:"formSmash:items:resultList:20:j_idt854:0:j_idt857",widgetVar:"widget_formSmash_items_resultList_20_j_idt854_0_j_idt857",showEffect:"fade",hideEffect:"fade",target:"formSmash:items:resultList:20:j_idt854:0:fullText"});}); 22. Scaling limits for the threshold window Ahlberg, Daniel PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_21_j_idt591",{id:"formSmash:items:resultList:21:j_idt591",widgetVar:"widget_formSmash_items_resultList_21_j_idt591",onLabel:"Ahlberg, Daniel ",offLabel:"Ahlberg, Daniel ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_21_j_idt594",{id:"formSmash:items:resultList:21:j_idt594",widgetVar:"widget_formSmash_items_resultList_21_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Probability Theory. Inst Nacl Matemat Pura & Aplicada, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, Brazil.;Uppsala Univ, Dept Math, SE-75106 Uppsala, Sweden..PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:21:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Steif, Jeffrey E.Univ Gothenburg, Chalmers Univ Technol, Math Sci, SE-41296 Gothenburg, Sweden..Pete, GaborHungarian Acad Sci, Renyi Inst, 13-15 Realtanoda U, H-1053 Budapest, Hungary.;Budapest Univ Technol & Econ, Inst Math, 1 Egry Jozsef U, H-1111 Budapest, Hungary..PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:21:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Scaling limits for the threshold window: When does a monotone Boolean function flip its outcome?2017In: Annales de l'I.H.P. Probabilites et statistiques, ISSN 0246-0203, E-ISSN 1778-7017, Vol. 53, no 4, p. 2135-2161Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_21_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:21:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_21_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Consider a monotone Boolean function f : {0, 1}(n) -> {0, 1} and the canonical monotone coupling {eta(p) : p is an element of [0, 1]} of an element in {0, 1}(n) chosen according to product measure with intensity p is an element of [0, 1]. The random point p is an element of [0, 1] where f (eta(p)) flips from 0 to 1 is often concentrated near a particular point, thus exhibiting a threshold phenomenon. For a sequence of such Boolean functions, we peer closely into this threshold window and consider, for large n, the limiting distribution (properly normalized to be nondegenerate) of this random point where the Boolean function switches from being 0 to 1. We determine this distribution for a number of the Boolean functions which are typically studied and pay particular attention to the functions corresponding to iterated majority and percolation crossings. It turns out that these limiting distributions have quite varying behavior. In fact, we show that any nondegenerate probability measure on R arises in this way for some sequence of Boolean functions.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:21:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 23. Sharpness of the phase transition for continuum percolation in R<sup>2</sup> Ahlberg, Daniel PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_22_j_idt591",{id:"formSmash:items:resultList:22:j_idt591",widgetVar:"widget_formSmash_items_resultList_22_j_idt591",onLabel:"Ahlberg, Daniel ",offLabel:"Ahlberg, Daniel ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_22_j_idt594",{id:"formSmash:items:resultList:22:j_idt594",widgetVar:"widget_formSmash_items_resultList_22_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Probability Theory. Inst Matematica Pura & Aplicada, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, Brazil.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:22:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Tassion, VincentUniv Geneva, 2-4 Rue Lievre, CH-1211 Geneva, Switzerland.Teixeira, AugustoInst Matematica Pura & Aplicada, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, Brazil.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:22:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Sharpness of the phase transition for continuum percolation in R^{2}2018In: Probability theory and related fields, ISSN 0178-8051, E-ISSN 1432-2064, Vol. 172, no 1-2, p. 525-581Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_22_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:22:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_22_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We study the phase transition of random radii Poisson Boolean percolation: Around each point of a planar Poisson point process, we draw a disc of random radius, independently for each point. The behavior of this process is well understood when the radii are uniformly bounded from above. In this article, we investigate this process for unbounded (and possibly heavy tailed) radii distributions. Under mild assumptions on the radius distribution, we show that both the vacant and occupied sets undergo a phase transition at the same critical parameter.c. Moreover, For. <.c, the vacant set has a unique unbounded connected component and we give precise bounds on the one-arm probability for the occupied set, depending on the radius distribution. At criticality, we establish the box-crossing property, implying that no unbounded component can be found, neither in the occupied nor the vacant sets. We provide a polynomial decay for the probability of the one-arm events, under sharp conditions on the distribution of the radius. For. >.c, the occupied set has a unique unbounded component and we prove that the one-arm probability for the vacant decays exponentially fast. The techniques we develop in this article can be applied to other models such as the Poisson Voronoi and confetti percolation.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:22:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 24. Gilbert´s disc model with geostatical marking Ahlberg, Daniel PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_23_j_idt591",{id:"formSmash:items:resultList:23:j_idt591",widgetVar:"widget_formSmash_items_resultList_23_j_idt591",onLabel:"Ahlberg, Daniel ",offLabel:"Ahlberg, Daniel ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_23_j_idt594",{id:"formSmash:items:resultList:23:j_idt594",widgetVar:"widget_formSmash_items_resultList_23_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Probability Theory. Inst Nacl Matemat Pura & Aplicada, Rio De Janeiro, RJ, Brazil;Stockholm Univ, Dept Math, SE-10691 Stockholm, Sweden;Stockholm Univ, Dept Math, SE-10691 Stockholm, Sweden.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:23:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Tykesson, JohanChalmers Univ Technol, Dept Math, SE-41296 Gothenburg, Sweden;Univ Gothenburg, Gothenburg, Sweden.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:23:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Gilbert´s disc model with geostatical marking2018In: Advances in Applied Probability, ISSN 0001-8678, E-ISSN 1475-6064, Vol. 50, no 4, p. 1075-1094Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_23_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:23:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_23_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We study a variant of Gilbert's disc model, in which discs are positioned at the points of a Poisson process in R-2 with radii determined by an underlying stationary and ergodic random field phi: R-2 -> [0, infinity), independent of the Poisson process. This setting, in which the random field is independent of the point process, is often referred to as geostatistical marking. We examine how typical properties of interest in stochastic geometry and percolation theory, such as coverage probabilities and the existence of long-range connections, differ between Gilbert's model with radii given by some random field and Gilbert's model with radii assigned independently, but with the same marginal distribution. Among our main observations we find that complete coverage of R(2 )does not necessarily happen simultaneously, and that the spatial dependence induced by the random field may both increase as well as decrease the critical threshold for percolation.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:23:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 25. Studier av mätdataregistrering för JAS 39 Gripen Ahlberg, Peter PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_24_j_idt591",{id:"formSmash:items:resultList:24:j_idt591",widgetVar:"widget_formSmash_items_resultList_24_j_idt591",onLabel:"Ahlberg, Peter ",offLabel:"Ahlberg, Peter ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:24:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:24:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Studier av mätdataregistrering för JAS 39 Gripen2002Independent thesis Advanced level (degree of Master (One Year)), 20 credits / 30 HE creditsStudent thesis26. A zero-one law for <em>l</em>-colourable structures with a vectorspace pregeometry Ahlman, Ove PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_25_j_idt591",{id:"formSmash:items:resultList:25:j_idt591",widgetVar:"widget_formSmash_items_resultList_25_j_idt591",onLabel:"Ahlman, Ove ",offLabel:"Ahlman, Ove ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Algebra and Geometry.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:25:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:25:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); A zero-one law for*l*-colourable structures with a vectorspace pregeometry2012Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisDownload full text (pdf)fulltext$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_items_resultList_25_j_idt854_0_j_idt857",{id:"formSmash:items:resultList:25:j_idt854:0:j_idt857",widgetVar:"widget_formSmash_items_resultList_25_j_idt854_0_j_idt857",showEffect:"fade",hideEffect:"fade",target:"formSmash:items:resultList:25:j_idt854:0:fullText"});}); 27. Combinatorial geometries in model theory Ahlman, Ove PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_26_j_idt591",{id:"formSmash:items:resultList:26:j_idt591",widgetVar:"widget_formSmash_items_resultList_26_j_idt591",onLabel:"Ahlman, Ove ",offLabel:"Ahlman, Ove ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:26:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:26:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Combinatorial geometries in model theory2009Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesisAbstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_26_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:26:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_26_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Model theory and combinatorial pregeometries are closely related throughthe so called algebraic closure operator on strongly minimal sets. Thestudy of projective and ane pregeometries are especially interestingsince they have a close relation to vectorspaces. In this thesis we willsee how the relationship occur and how model theory can concludea very strong classi cation theorem which divides pregeometries withcertain properties into projective, ane and degenerate (trivial) cases.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:26:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Download full text (pdf)FULLTEXT01$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_items_resultList_26_j_idt854_0_j_idt857",{id:"formSmash:items:resultList:26:j_idt854:0:j_idt857",widgetVar:"widget_formSmash_items_resultList_26_j_idt854_0_j_idt857",showEffect:"fade",hideEffect:"fade",target:"formSmash:items:resultList:26:j_idt854:0:fullText"});}); 28. Homogenizable structures and model completeness Ahlman, Ove PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_27_j_idt591",{id:"formSmash:items:resultList:27:j_idt591",widgetVar:"widget_formSmash_items_resultList_27_j_idt591",onLabel:"Ahlman, Ove ",offLabel:"Ahlman, Ove ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Algebra and Geometry.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:27:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:27:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Homogenizable structures and model completeness2016In: Archive for mathematical logic, ISSN 0933-5846, E-ISSN 1432-0665, Vol. 55, no 7-8, p. 977-995Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_27_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:27:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_27_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); A homogenizable structure M is a structure where we may add a finite amount of new relational symbols to represent some 0-definable relations in order to make the structure homogeneous. In this article we will divide the homogenizable structures into different classes which categorize many known examples and show what makes each class important. We will show that model completeness is vital for the relation between a structure and the amalgamation bases of its age and give a necessary and sufficient condition for an countably categorical model-complete structure to be homogenizable.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:27:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Download full text (pdf)fulltext$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_items_resultList_27_j_idt854_0_j_idt857",{id:"formSmash:items:resultList:27:j_idt854:0:j_idt857",widgetVar:"widget_formSmash_items_resultList_27_j_idt854_0_j_idt857",showEffect:"fade",hideEffect:"fade",target:"formSmash:items:resultList:27:j_idt854:0:fullText"});}); 29. >k-homogeneous infinite graphs Ahlman, Ove PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_28_j_idt591",{id:"formSmash:items:resultList:28:j_idt591",widgetVar:"widget_formSmash_items_resultList_28_j_idt591",onLabel:"Ahlman, Ove ",offLabel:"Ahlman, Ove ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:28:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:28:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); >k-homogeneous infinite graphs2018In: Journal of combinatorial theory. Series B (Print), ISSN 0095-8956, E-ISSN 1096-0902, Vol. 128, p. 160-174Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_28_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:28:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_28_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); In this article we give an explicit classification for the countably infinite graphs G which are, for some

*k*, ≥*k*-homogeneous. It turns out that a ≥*k*-homogeneous graph M is non-homogeneous if and only if it is either not 1-homogeneous or not 2-homogeneous, both cases which may be classified using ramsey theory.PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:28:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Download full text (pdf)fulltext$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_items_resultList_28_j_idt854_0_j_idt857",{id:"formSmash:items:resultList:28:j_idt854:0:j_idt857",widgetVar:"widget_formSmash_items_resultList_28_j_idt854_0_j_idt857",showEffect:"fade",hideEffect:"fade",target:"formSmash:items:resultList:28:j_idt854:0:fullText"});}); 30. Limit Laws, Homogenizable Structures and Their Connections Ahlman, Ove PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_29_j_idt591",{id:"formSmash:items:resultList:29:j_idt591",widgetVar:"widget_formSmash_items_resultList_29_j_idt591",onLabel:"Ahlman, Ove ",offLabel:"Ahlman, Ove ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:29:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:29:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Limit Laws, Homogenizable Structures and Their Connections2018Doctoral thesis, comprehensive summary (Other academic)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_29_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:29:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_29_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); This thesis is in the field of mathematical logic and especially model theory. The thesis contain six papers where the common theme is the Rado graph R. Some of the interesting abstract properties of R are that it is simple, homogeneous (and thus countably categorical), has SU-rank 1 and trivial dependence. The Rado graph is possible to generate in a probabilistic way. If we let K be the set of all finite graphs then we obtain R as the structure which satisfy all properties which hold with assymptotic probability 1 in K. On the other hand, since the Rado graph is homogeneous, it is also possible to generate it as a Fraïssé-limit of its age.

Paper I studies the binary structures which are simple, countably categorical, with SU-rank 1 and trivial algebraic closure. The main theorem shows that these structures are all possible to generate using a similar probabilistic method which is used to generate the Rado graph. Paper II looks at the simple homogeneous structures in general and give certain technical results on the subsets of SU-rank 1.

Paper III considers the set K consisting of all colourable structures with a definable pregeometry and shows that there is a 0-1 law and almost surely a unique definable colouring. When generating the Rado graph we almost surely have only rigid structures in K. Paper IV studies what happens if the structures in K are only the non-rigid finite structures. We deduce that the limit structures essentially try to stay as rigid as possible, given the restriction, and that we in general get a limit law but not a 0-1 law.

Paper V looks at the Rado graph's close cousin the random t-partite graph and notices that this structure is not homogeneous but almost homogeneous. Rather we may just add a definable binary predicate, which hold for any two elemenets which are in the same part, in order to make it homogeneous. This property is called being homogenizable and in Paper V we do a general study of homogenizable structures. Paper VI conducts a special case study of the homogenizable graphs which are the closest to being homogeneous, providing an explicit classification of these graphs.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:29:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Download full text (pdf)fulltext$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_items_resultList_29_j_idt854_0_j_idt857",{id:"formSmash:items:resultList:29:j_idt854:0:j_idt857",widgetVar:"widget_formSmash_items_resultList_29_j_idt854_0_j_idt857",showEffect:"fade",hideEffect:"fade",target:"formSmash:items:resultList:29:j_idt854:0:fullText"});}); Download (jpg)presentationsbild$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_items_resultList_29_j_idt858_0_j_idt861",{id:"formSmash:items:resultList:29:j_idt858:0:j_idt861",widgetVar:"widget_formSmash_items_resultList_29_j_idt858_0_j_idt861",showEffect:"fade",hideEffect:"fade",target:"formSmash:items:resultList:29:j_idt858:0:otherAttachment"});}); Download (pdf)errata$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_items_resultList_29_j_idt858_1_j_idt861",{id:"formSmash:items:resultList:29:j_idt858:1:j_idt861",widgetVar:"widget_formSmash_items_resultList_29_j_idt858_1_j_idt861",showEffect:"fade",hideEffect:"fade",target:"formSmash:items:resultList:29:j_idt858:1:otherAttachment"});}); 31. Simple structures axiomatized by almost sure theories Ahlman, Ove PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_30_j_idt591",{id:"formSmash:items:resultList:30:j_idt591",widgetVar:"widget_formSmash_items_resultList_30_j_idt591",onLabel:"Ahlman, Ove ",offLabel:"Ahlman, Ove ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:30:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:30:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Simple structures axiomatized by almost sure theories2016In: Annals of Pure and Applied Logic, ISSN 0168-0072, E-ISSN 1873-2461, Vol. 167, no 5, p. 435-456Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_30_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:30:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_30_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); In this article we give a classification of the binary, simple,

*ω*-categorical structures with*SU*-rank 1 and trivial algebraic closure. This is done both by showing that they satisfy certain extension properties, but also by noting that they may be approximated by the almost sure theory of some sets of finite structures equipped with a probability measure. This study give results about general almost sure theories, but also considers certain attributes which, if they are almost surely true, generate almost sure theories with very specific properties such as*ω*-stability or strong minimality.PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:30:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Download full text (pdf)fulltext$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_items_resultList_30_j_idt854_0_j_idt857",{id:"formSmash:items:resultList:30:j_idt854:0:j_idt857",widgetVar:"widget_formSmash_items_resultList_30_j_idt854_0_j_idt857",showEffect:"fade",hideEffect:"fade",target:"formSmash:items:resultList:30:j_idt854:0:fullText"});}); 32. To infinity and back Ahlman, Ove PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_31_j_idt591",{id:"formSmash:items:resultList:31:j_idt591",widgetVar:"widget_formSmash_items_resultList_31_j_idt591",onLabel:"Ahlman, Ove ",offLabel:"Ahlman, Ove ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:31:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:31:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); To infinity and back: Logical limit laws and almost sure theories2014Licentiate thesis, comprehensive summary (Other academic)Download full text (pdf)fulltext$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_items_resultList_31_j_idt854_0_j_idt857",{id:"formSmash:items:resultList:31:j_idt854:0:j_idt857",widgetVar:"widget_formSmash_items_resultList_31_j_idt854_0_j_idt857",showEffect:"fade",hideEffect:"fade",target:"formSmash:items:resultList:31:j_idt854:0:fullText"});}); 33. Limit laws and automorphism groups of random nonrigid structures Ahlman, Ove PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_32_j_idt591",{id:"formSmash:items:resultList:32:j_idt591",widgetVar:"widget_formSmash_items_resultList_32_j_idt591",onLabel:"Ahlman, Ove ",offLabel:"Ahlman, Ove ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_32_j_idt594",{id:"formSmash:items:resultList:32:j_idt594",widgetVar:"widget_formSmash_items_resultList_32_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:32:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Koponen, VeraUppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Algebra and Geometry.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:32:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Limit laws and automorphism groups of random nonrigid structures2015In: Journal of Logic and Analysis, ISSN 1759-9008, E-ISSN 1759-9008, Vol. 7, no 2, p. 1-53, article id 1Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_32_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:32:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_32_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); A systematic study is made, for an arbitrary finite relational language with at least one symbol of arity at least 2, of classes of nonrigid finite structures. The well known results that almost all finite structures are rigid and that the class of finite structures has a zero-one law are, in the present context, the first layer in a hierarchy of classes of finite structures with increasingly more complex automorphism groups. Such a hierarchy can be defined in more than one way. For example, the kth level of the hierarchy can consist of all structures having at least k elements which are moved by some automorphism. Or we can consider, for any finite group G, all finite structures M such that G is a subgroup of the group of automorphisms of M; in this case the "hierarchy" is a partial order. In both cases, as well as variants of them, each "level" satisfies a logical limit law, but not a zero-one law (unless k = 0 or G is trivial). Moreover, the number of (labelled or unlabelled) n-element structures in one place of the hierarchy divided by the number of n-element structures in another place always converges to a rational number or to infinity as n -> infinity. All instances of the respective result are proved by an essentially uniform argument.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:32:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Download full text (pdf)fulltext$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_items_resultList_32_j_idt854_0_j_idt857",{id:"formSmash:items:resultList:32:j_idt854:0:j_idt857",widgetVar:"widget_formSmash_items_resultList_32_j_idt854_0_j_idt857",showEffect:"fade",hideEffect:"fade",target:"formSmash:items:resultList:32:j_idt854:0:fullText"});}); 34. On sets with rank one in simple homogeneous structures Ahlman, Ove PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_33_j_idt591",{id:"formSmash:items:resultList:33:j_idt591",widgetVar:"widget_formSmash_items_resultList_33_j_idt591",onLabel:"Ahlman, Ove ",offLabel:"Ahlman, Ove ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_33_j_idt594",{id:"formSmash:items:resultList:33:j_idt594",widgetVar:"widget_formSmash_items_resultList_33_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:33:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Koponen, VeraUppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Algebra and Geometry.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:33:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); On sets with rank one in simple homogeneous structures2015In: Fundamenta Mathematicae, ISSN 0016-2736, E-ISSN 1730-6329, Vol. 228, p. 223-250Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_33_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:33:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_33_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We study definable sets D of SU-rank 1 in Meq, where M is a countable homogeneous and simple structure in a language with finite relational vocabulary. Each such D can be seen as a 'canonically embedded structure', which inherits all relations on D which are definable in Meq, and has no other definable relations. Our results imply that if no relation symbol of the language of M has arity higher than 2, then there is a close relationship between triviality of dependence and D being a reduct of a binary random structure. Somewhat more precisely: (a) if for every n≥2, every n-type p(x1,...,xn) which is realized in D is determined by its sub-2-types q(xi,xj)⊆p, then the algebraic closure restricted to D is trivial; (b) if M has trivial dependence, then D is a reduct of a binary random structure.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:33:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Download full text (pdf)fulltext$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_items_resultList_33_j_idt854_0_j_idt857",{id:"formSmash:items:resultList:33:j_idt854:0:j_idt857",widgetVar:"widget_formSmash_items_resultList_33_j_idt854_0_j_idt857",showEffect:"fade",hideEffect:"fade",target:"formSmash:items:resultList:33:j_idt854:0:fullText"});}); 35. Random l-colourable structures with a pregeometry Ahlman, Ove PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_34_j_idt591",{id:"formSmash:items:resultList:34:j_idt591",widgetVar:"widget_formSmash_items_resultList_34_j_idt591",onLabel:"Ahlman, Ove ",offLabel:"Ahlman, Ove ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_34_j_idt594",{id:"formSmash:items:resultList:34:j_idt594",widgetVar:"widget_formSmash_items_resultList_34_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:34:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Koponen, VeraUppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:34:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Random l-colourable structures with a pregeometry2017In: Mathematical logic quarterly, ISSN 0942-5616, E-ISSN 1521-3870, Vol. 63, no 1-2, p. 32-58Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_34_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:34:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_34_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We study finite -colourable structures with an underlying pregeometry. The probability measure that is usedcorresponds to a process of generating such structures by which colours are first randomly assigned to all1-dimensional subspaces and then relationships are assigned in such a way that the colouring conditions aresatisfied but apart from this in a random way. We can then ask what the probability is that the resulting structure,where we now forget the specific colouring of the generating process, has a given property. With this measurewe get the following results: (1) A zero-one law. (2) The set of sentences with asymptotic probability 1 has anexplicit axiomatisation which is presented. (3) There is a formula ξ (x, y) (not directly speaking about colours)such that, with asymptotic probability 1, the relation “there is an -colouring which assigns the same colourto x and y” is defined by ξ (x, y). (4) With asymptotic probability 1, an -colourable structure has a unique-colouring (up to permutation of the colours).

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:34:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 36. Classifying Categories Ahlsén, Daniel PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_35_j_idt591",{id:"formSmash:items:resultList:35:j_idt591",widgetVar:"widget_formSmash_items_resultList_35_j_idt591",onLabel:"Ahlsén, Daniel ",offLabel:"Ahlsén, Daniel ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:35:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:35:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Classifying Categories: The Jordan-Hölder and Krull-Schmidt-Remak Theorems for Abelian Categories2018Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisDownload full text (pdf)fulltext$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_items_resultList_35_j_idt854_0_j_idt857",{id:"formSmash:items:resultList:35:j_idt854:0:j_idt857",widgetVar:"widget_formSmash_items_resultList_35_j_idt854_0_j_idt857",showEffect:"fade",hideEffect:"fade",target:"formSmash:items:resultList:35:j_idt854:0:fullText"});}); 37. Limitless Analysis Ahlsén, Daniel PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_36_j_idt591",{id:"formSmash:items:resultList:36:j_idt591",widgetVar:"widget_formSmash_items_resultList_36_j_idt591",onLabel:"Ahlsén, Daniel ",offLabel:"Ahlsén, Daniel ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:36:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:36:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Limitless Analysis2014Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesisDownload full text (pdf)fulltext$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_items_resultList_36_j_idt854_0_j_idt857",{id:"formSmash:items:resultList:36:j_idt854:0:j_idt857",widgetVar:"widget_formSmash_items_resultList_36_j_idt854_0_j_idt857",showEffect:"fade",hideEffect:"fade",target:"formSmash:items:resultList:36:j_idt854:0:fullText"});}); 38. Brownian Motions and Scaling Limits of Random Trees Ahmady Phoulady, Hady PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_37_j_idt591",{id:"formSmash:items:resultList:37:j_idt591",widgetVar:"widget_formSmash_items_resultList_37_j_idt591",onLabel:"Ahmady Phoulady, Hady ",offLabel:"Ahmady Phoulady, Hady ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Mathematical Statistics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:37:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:37:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Brownian Motions and Scaling Limits of Random Trees2011Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisDownload full text (pdf)fulltext$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_items_resultList_37_j_idt854_0_j_idt857",{id:"formSmash:items:resultList:37:j_idt854:0:j_idt857",widgetVar:"widget_formSmash_items_resultList_37_j_idt854_0_j_idt857",showEffect:"fade",hideEffect:"fade",target:"formSmash:items:resultList:37:j_idt854:0:fullText"});}); 39. Monte Carlo Methods in American Put Option Pricing Ahmady Phoulady, Hady PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_38_j_idt591",{id:"formSmash:items:resultList:38:j_idt591",widgetVar:"widget_formSmash_items_resultList_38_j_idt591",onLabel:"Ahmady Phoulady, Hady ",offLabel:"Ahmady Phoulady, Hady ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Applied Mathematics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:38:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:38:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Monte Carlo Methods in American Put Option Pricing2011Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisDownload full text (pdf)FULLTEXT03$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_items_resultList_38_j_idt854_0_j_idt857",{id:"formSmash:items:resultList:38:j_idt854:0:j_idt857",widgetVar:"widget_formSmash_items_resultList_38_j_idt854_0_j_idt857",showEffect:"fade",hideEffect:"fade",target:"formSmash:items:resultList:38:j_idt854:0:fullText"});}); 40. Equation Solving in Indian Mathematics Al Homsi, Rania PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_39_j_idt591",{id:"formSmash:items:resultList:39:j_idt591",widgetVar:"widget_formSmash_items_resultList_39_j_idt591",onLabel:"Al Homsi, Rania ",offLabel:"Al Homsi, Rania ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:39:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:39:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Equation Solving in Indian Mathematics2018Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesisDownload full text (pdf)fulltext$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_items_resultList_39_j_idt854_0_j_idt857",{id:"formSmash:items:resultList:39:j_idt854:0:j_idt857",widgetVar:"widget_formSmash_items_resultList_39_j_idt854_0_j_idt857",showEffect:"fade",hideEffect:"fade",target:"formSmash:items:resultList:39:j_idt854:0:fullText"});}); 41. Analytical and Numerical Study of the Poincaré Map with Applications on the Computation of Periodic Orbits Albahaca, Juan Carlos PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_40_j_idt591",{id:"formSmash:items:resultList:40:j_idt591",widgetVar:"widget_formSmash_items_resultList_40_j_idt591",onLabel:"Albahaca, Juan Carlos ",offLabel:"Albahaca, Juan Carlos ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Applied Mathematics and Statistics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:40:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:40:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Analytical and Numerical Study of the Poincaré Map with Applications on the Computation of Periodic Orbits2015Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesisDownload full text (pdf)fulltext$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_items_resultList_40_j_idt854_0_j_idt857",{id:"formSmash:items:resultList:40:j_idt854:0:j_idt857",widgetVar:"widget_formSmash_items_resultList_40_j_idt854_0_j_idt857",showEffect:"fade",hideEffect:"fade",target:"formSmash:items:resultList:40:j_idt854:0:fullText"});}); 42. Embedding Small Digraphs and Permutations in Binary Trees and Split Trees Albert, Michael PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_41_j_idt591",{id:"formSmash:items:resultList:41:j_idt591",widgetVar:"widget_formSmash_items_resultList_41_j_idt591",onLabel:"Albert, Michael ",offLabel:"Albert, Michael ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_41_j_idt594",{id:"formSmash:items:resultList:41:j_idt594",widgetVar:"widget_formSmash_items_resultList_41_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Univ Otago, Dept Comp Sci, Dunedin, New Zealand.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:41:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Holmgren, CeciliaUppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Probability Theory.Johansson, TonyStockholm Univ, Dept Math, Stockholm, Sweden.Skerman, FionaMasaryk Univ, Fac Informat, Brno, Czech Republic.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:41:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Embedding Small Digraphs and Permutations in Binary Trees and Split Trees2020In: Algorithmica, ISSN 0178-4617, E-ISSN 1432-0541, Vol. 82, no 3, p. 589-615Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_41_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:41:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_41_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We investigate the number of permutations that occur in random labellings of trees. This is a generalisation of the number of subpermutations occurring in a random permutation. It also generalises some recent results on the number of inversions in randomly labelled trees (Cai et al. in Combin Probab Comput 28(3):335-364, 2019). We consider complete binary trees as well as random split trees a large class of random trees of logarithmic height introduced by Devroye (SIAM J Comput 28(2):409-432, 1998. 10.1137/s0097539795283954). Split trees consist of nodes (bags) which can contain balls and are generated by a random trickle down process of balls through the nodes. For complete binary trees we show that asymptotically the cumulants of the number of occurrences of a fixed permutation in the random node labelling have explicit formulas. Our other main theorem is to show that for a random split tree, with probability tending to one as the number of balls increases, the cumulants of the number of occurrences are asymptotically an explicit parameter of the split tree. For the proof of the second theorem we show some results on the number of embeddings of digraphs into split trees which may be of independent interest.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:41:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Download full text (pdf)FULLTEXT01$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_items_resultList_41_j_idt854_0_j_idt857",{id:"formSmash:items:resultList:41:j_idt854:0:j_idt857",widgetVar:"widget_formSmash_items_resultList_41_j_idt854_0_j_idt857",showEffect:"fade",hideEffect:"fade",target:"formSmash:items:resultList:41:j_idt854:0:fullText"});}); 43. Bond Pricing in Stochastic Volatility Models Aldberg, Henrik PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_42_j_idt591",{id:"formSmash:items:resultList:42:j_idt591",widgetVar:"widget_formSmash_items_resultList_42_j_idt591",onLabel:"Aldberg, Henrik ",offLabel:"Aldberg, Henrik ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:42:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:42:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Bond Pricing in Stochastic Volatility Models2008Independent thesis Advanced level (degree of Master (One Year)), 20 credits / 30 HE creditsStudent thesisDownload full text (pdf)FULLTEXT01$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_items_resultList_42_j_idt854_0_j_idt857",{id:"formSmash:items:resultList:42:j_idt854:0:j_idt857",widgetVar:"widget_formSmash_items_resultList_42_j_idt854_0_j_idt857",showEffect:"fade",hideEffect:"fade",target:"formSmash:items:resultList:42:j_idt854:0:fullText"});}); 44. An interesting class of operators with unusual Schatten-von Neumann behavior Aleksandrov, Alexei B. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_43_j_idt591",{id:"formSmash:items:resultList:43:j_idt591",widgetVar:"widget_formSmash_items_resultList_43_j_idt591",onLabel:"Aleksandrov, Alexei B. ",offLabel:"Aleksandrov, Alexei B. ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_43_j_idt594",{id:"formSmash:items:resultList:43:j_idt594",widgetVar:"widget_formSmash_items_resultList_43_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:43:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Janson, SvantePeller, Vladimir V.Rochberg, RichardPrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:43:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); An interesting class of operators with unusual Schatten-von Neumann behavior2002In: Function Spaces, Interpolation Theory and Related Topics (Proceedings of the International Conference in honour of Jaak Peetre on his 65th birthday, Lund 2000), p. 61-150Article in journal (Refereed)45. An interesting class of operators with unusual Schatten-von Neumann behavior Alexandrov A.B., Janson PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_44_j_idt591",{id:"formSmash:items:resultList:44:j_idt591",widgetVar:"widget_formSmash_items_resultList_44_j_idt591",onLabel:"Alexandrov A.B., Janson ",offLabel:"Alexandrov A.B., Janson ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_44_j_idt594",{id:"formSmash:items:resultList:44:j_idt594",widgetVar:"widget_formSmash_items_resultList_44_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:44:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); S., Peller V.V.Rochberg R.,PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:44:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); An interesting class of operators with unusual Schatten-von Neumann behavior2001Report (Other scientific)46. Approximation of pluricomplex Green functions Alghamdi, Azza PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_45_j_idt591",{id:"formSmash:items:resultList:45:j_idt591",widgetVar:"widget_formSmash_items_resultList_45_j_idt591",onLabel:"Alghamdi, Azza ",offLabel:"Alghamdi, Azza ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:45:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:45:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Approximation of pluricomplex Green functions: A probabilistic approach2018Doctoral thesis, comprehensive summary (Other academic)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_45_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:45:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_45_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); This PhD thesis focuses on probabilistic methods of approximation of pluricomplex Green functions and is based on four papers.

The thesis begins with a general introduction to the use of pluricomplex Green functions in multidimensional complex analysis and a review of their main properties. This is followed by short description of the main results obtained in the enclosed papers.

In Paper I, we study properties of the metric space of pluriregular sets, that is zero sets of continuous pluricomplex Green functions. The best understood non-trivial examples of such sets are composite Julia sets, obtained by iteration of finite families of polynomial mappings in several complex variables. We prove that the so-called chaos game is applicable in the case of such sets. We also visualize some composite Julia sets using escape time functions and Monte Carlo simulation.

In Paper II, we extend results in Paper I to the case of infinite compact families of proper polynomials mappings. With composition as the semigroup operation, we generate families of infinite iterated function systems with compact attractors. We show that such attractors can be approximated probabilistically in a manner of the classic chaos game.

In Paper III, we study numerical approximation and visualisation of pluricomplex Green functions based on the Monte-Carlo integration. Unlike alternative methods that rely on locating a sequence of carefully chosen finite sets of points satisfying some optimal conditions for approximation purposes, our approach is simpler and more direct by relying on generation of pseudorandom points. We examine numerically the errors of approximation for some simple geometric shapes for which the pluricomplex Green functions are known. If the pluricomplex Green functions are not known, the errors in Monte Carlo integration can be expressed with the aid of statistics in terms of confidence intervals.

Finally, in Paper IV, we study how perturbations of an orthonomalization procedure influence the resulting approximate Bergman functions. To this end we consider the concept of near orthonormality of a finite set of vectors in an inner product space, understood as closeness of the Gram matrix of those vectors to the identity matrix. We provide estimates for the errors resulting from using nearly orthogonal bases instead of orthogonal ones. The motivation for this work comes from Paper III: when Gram matrices are calculated via Monte Carlo integration, the outcomes of standard orthogonalisation algorithms are nearly orthonormal bases.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:45:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Download full text (pdf)fulltext$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_items_resultList_45_j_idt854_0_j_idt857",{id:"formSmash:items:resultList:45:j_idt854:0:j_idt857",widgetVar:"widget_formSmash_items_resultList_45_j_idt854_0_j_idt857",showEffect:"fade",hideEffect:"fade",target:"formSmash:items:resultList:45:j_idt854:0:fullText"});}); Download (jpg)presentationsbild$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_items_resultList_45_j_idt858_0_j_idt861",{id:"formSmash:items:resultList:45:j_idt858:0:j_idt861",widgetVar:"widget_formSmash_items_resultList_45_j_idt858_0_j_idt861",showEffect:"fade",hideEffect:"fade",target:"formSmash:items:resultList:45:j_idt858:0:otherAttachment"});}); 47. Approximation of pluricomplex Green functions based on Monte Carlo integration Alghamdi, Azza PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_46_j_idt591",{id:"formSmash:items:resultList:46:j_idt591",widgetVar:"widget_formSmash_items_resultList_46_j_idt591",onLabel:"Alghamdi, Azza ",offLabel:"Alghamdi, Azza ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_46_j_idt594",{id:"formSmash:items:resultList:46:j_idt594",widgetVar:"widget_formSmash_items_resultList_46_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:46:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Klimek, MaciejUppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:46:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Approximation of pluricomplex Green functions based on Monte Carlo integrationManuscript (preprint) (Other academic)48. Probabilistic approximation of partly filled-in composite Julia sets Alghamdi, Azza PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_47_j_idt591",{id:"formSmash:items:resultList:47:j_idt591",widgetVar:"widget_formSmash_items_resultList_47_j_idt591",onLabel:"Alghamdi, Azza ",offLabel:"Alghamdi, Azza ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_47_j_idt594",{id:"formSmash:items:resultList:47:j_idt594",widgetVar:"widget_formSmash_items_resultList_47_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics. Albaha University, Faculty of Science, Department of Mathematics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:47:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Klimek, MaciejUppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:47:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Probabilistic approximation of partly filled-in composite Julia sets2017In: Annales Polonici Mathematici, ISSN 0066-2216, E-ISSN 1730-6272, Vol. 119, no 3, p. 203-220Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_47_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:47:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_47_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We study properties of the metric space of pluriregular sets and of contractions on that space induced by finite families of proper polynomial mappings of several complex variables. In particular, we show that closed balls in the space of pluriregular sets do not have to be compact and we give a simple proof of applicability of the so-called chaos game in the case of composite Julia sets. Part of the construction of those sets also leads to a computationally viable approximation by simpler sets based on Monte-Carlo simulation.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:47:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 49. Attractors of compactly generated semigroups of regular polynomial mappings. Alghamdi, Azza PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_48_j_idt591",{id:"formSmash:items:resultList:48:j_idt591",widgetVar:"widget_formSmash_items_resultList_48_j_idt591",onLabel:"Alghamdi, Azza ",offLabel:"Alghamdi, Azza ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_48_j_idt594",{id:"formSmash:items:resultList:48:j_idt594",widgetVar:"widget_formSmash_items_resultList_48_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics. Department of Mathematics, Faculty of Science, Albaha University, Al Baha, Saudi Arabia.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:48:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Klimek, MaciejUppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics.Kosek, MartaJagiellonian University, Faculty of Mathematics and Computer ScienceInstitute of Mathematics, Institute of Mathematics..PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:48:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Attractors of compactly generated semigroups of regular polynomial mappings.2018In: Complexity, ISSN 1076-2787, E-ISSN 1099-0526, article id 5698021Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_48_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:48:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_48_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We investigate the metric space of pluriregular sets as well as the contractions on that space induced by infinite compact families of proper polynomial mappings of several complex variables. The topological semigroups generated by such families, with composition as the semigroup operation, lead to the constructions of a variety of Julia-type pluriregular sets. The generating families can also be viewed as infinite iterated function systems with compact attractors. We show that such attractors can be approximated both deterministically and probabilistically in a manner of the classic chaos game.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:48:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Download full text (pdf)fulltext$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_items_resultList_48_j_idt854_0_j_idt857",{id:"formSmash:items:resultList:48:j_idt854:0:j_idt857",widgetVar:"widget_formSmash_items_resultList_48_j_idt854_0_j_idt857",showEffect:"fade",hideEffect:"fade",target:"formSmash:items:resultList:48:j_idt854:0:fullText"});}); 50. Bergman Functions and Nearly Orthonormal Polynomials Alghamdi, Azza PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_49_j_idt591",{id:"formSmash:items:resultList:49:j_idt591",widgetVar:"widget_formSmash_items_resultList_49_j_idt591",onLabel:"Alghamdi, Azza ",offLabel:"Alghamdi, Azza ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_49_j_idt594",{id:"formSmash:items:resultList:49:j_idt594",widgetVar:"widget_formSmash_items_resultList_49_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:49:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Klimek, MaciejUppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics.Kosek, MartaJagiellonian University, Faculty of Mathematics and Computer Science, Institute of Mathematics..PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:49:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Bergman Functions and Nearly Orthonormal PolynomialsManuscript (preprint) (Other academic)

CiteExportLink to result list
http://www.diva-portal.org/smash/resultList.jsf?query=&language=en&searchType=SIMPLE&noOfRows=50&sortOrder=author_sort_asc&sortOrder2=title_sort_asc&onlyFullText=false&sf=all&aq=%5B%5B%7B%22organisationId%22%3A%221108%22%7D%5D%5D&aqe=%5B%5D&aq2=%5B%5B%5D%5D&af=%5B%5D $(function(){PrimeFaces.cw("InputTextarea","widget_formSmash_lower_j_idt911_recordPermLink",{id:"formSmash:lower:j_idt911:recordPermLink",widgetVar:"widget_formSmash_lower_j_idt911_recordPermLink",autoResize:true});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt911_j_idt913",{id:"formSmash:lower:j_idt911:j_idt913",widgetVar:"widget_formSmash_lower_j_idt911_j_idt913",target:"formSmash:lower:j_idt911:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Permanent link

Cite

Citation styleapa ieee modern-language-association-8th-edition vancouver Other style $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_lower_j_idt929",{id:"formSmash:lower:j_idt929",widgetVar:"widget_formSmash_lower_j_idt929",behaviors:{change:function(ext) {PrimeFaces.ab({s:"formSmash:lower:j_idt929",e:"change",f:"formSmash",p:"formSmash:lower:j_idt929",u:"formSmash:lower:otherStyle"},ext);}}});});

- apa
- ieee
- modern-language-association-8th-edition
- vancouver
- Other style

Languagede-DE en-GB en-US fi-FI nn-NO nn-NB sv-SE Other locale $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_lower_j_idt940",{id:"formSmash:lower:j_idt940",widgetVar:"widget_formSmash_lower_j_idt940",behaviors:{change:function(ext) {PrimeFaces.ab({s:"formSmash:lower:j_idt940",e:"change",f:"formSmash",p:"formSmash:lower:j_idt940",u:"formSmash:lower:otherLanguage"},ext);}}});});

- de-DE
- en-GB
- en-US
- fi-FI
- nn-NO
- nn-NB
- sv-SE
- Other locale

Output formathtml text asciidoc rtf $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_lower_j_idt950",{id:"formSmash:lower:j_idt950",widgetVar:"widget_formSmash_lower_j_idt950"});});

- html
- text
- asciidoc
- rtf