Liquid chromatography-mass spectrometry (LC-MS) is a powerful technique for the analysis of endogenous compounds. The introduction of electrospray ionization (ESI) as an interface between LC and MS has contributed strongly to a trend towards miniaturization of LC, due to the possibility to perform ESI at low flow rates. In this thesis, several aspects regarding the design of miniaturized LC systems and electrospray emitters were investigated. In addition miniaturized LC-ESI-MS have been used for the qualitative and quantitative analysis of endogenous polar compounds, peptides and protein digests.
The performance of miniaturized LC-MS was compared using different electrospray emitter configurations. The results indicated that the efficiency of the LC system is rather independent of the configuration of the emitter.
The lifetime of gold-coated fused silica electrospray emitters based on vapor deposited adhesion layers of titanium were investigated. The long lifetime of the emitter facilitates the use in LC-MS experiments, exemplified LC-MS by analysis of neuropeptides.
The ESI voltage is shown to interfere with liquid chromatographic separations performed in packed porous graphitic carbon capillary column. This interference is ascribed to the presence of an electric field over the conductive column in absence of a ground point between the column and the ESI emitter.
The solid supported enhanced microdialysis for analysis of neuropeptides were compared with conventional microdialysis. The difference between the two methodologies were evaluated by LC-MS analysis of the microdialysates. The solid supported method gave in general higher relative recoveries.
Finally, a method of standard addition was developed to determine total level of tryptophan and two of its metabolites in human plasma by capillary LC-ESI tandem mass spectrometry. The method was applied in a clinical study of multiple scleroses patients treated with cytokines (IFN Beta 1a, 1b). The results show that the intervention effects the tryptophan metabolism.