Change search
Refine search result
12 1 - 50 of 94
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Adjan, V. V.
    et al.
    Department of Anatomy and Neurobiology, University of Kentucky, Lexington, USA.
    Hauser, K. F.
    Department of Anatomy and Neurobiology, University of Kentucky, Lexington, USA and Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, USA.
    Bakalkin, Georgy
    Experimental Alcohol and Drug Addiction Research Section, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.
    Yakovleva, T.
    Experimental Alcohol and Drug Addiction Research Section, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.
    Gharibyan, A.
    Experimental Alcohol and Drug Addiction Research Section, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.
    Scheff, S. W.
    Department of Anatomy and Neurobiology, 800 Rose Street, MS209, University of Kentucky, Lexington, KY 40536-0298, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536-0298, USA and Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536-0298, USA.
    Knapp, P. E.
    Department of Anatomy and Neurobiology, 800 Rose Street, MS209, University of Kentucky, Lexington, KY 40536-0298, USA and Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536-0298, USA.
    Caspase-3 activity is reduced after spinal cord injury in mice lacking dynorphin: differential effects on glia and neurons2007In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 148, no 3, p. 724-36Article in journal (Refereed)
    Abstract [en]

    Dynorphins are endogenous opioid peptide products of the prodynorphin gene. An extensive literature suggests that dynorphins have deleterious effects on CNS injury outcome. We thus examined whether a deficiency of dynorphin would protect against tissue damage after spinal cord injury (SCI), and if individual cell types would be specifically affected. Wild-type and prodynorphin(-/-) mice received a moderate contusion injury at 10th thoracic vertebrae (T10). Caspase-3 activity at the injury site was significantly decreased in tissue homogenates from prodynorphin(-/-) mice after 4 h. We examined frozen sections at 4 h post-injury by immunostaining for active caspase-3. At 3-4 mm rostral or caudal to the injury, >90% of all neurons, astrocytes and oligodendrocytes expressed active caspase-3 in both wild-type and knockout mice. At 6-7 mm, there were fewer caspase-3(+) oligodendrocytes and astrocytes than at 3-4 mm. Importantly, caspase-3 activation was significantly lower in prodynorphin(-/-) oligodendrocytes and astrocytes, as compared with wild-type mice. In contrast, while caspase-3 expression in neurons also declined with further distance from the injury, there was no effect of genotype. Radioimmunoassay showed that dynorphin A(1-17) was regionally increased in wild-type injured versus sham-injured tissues, although levels of the prodynorphin processing product Arg(6)-Leu-enkephalin were unchanged. Our results indicate that dynorphin peptides affect the extent of post-injury caspase-3 activation, and that glia are especially sensitive to these effects. By promoting caspase-3 activation, dynorphin peptides likely increase the probability of glial apoptosis after SCI. While normally beneficial, our findings suggest that prodynorphin or its peptide products become maladaptive following SCI and contribute to secondary injury.

  • 2.
    Agosti, F.
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology. Univ La Plata, CONICET, Multidisciplinary Inst Cell Biol IMBICE, Electrophysiol Lab, La Plata, Buenos Aires, Argentina.;CIC, Comis Invest Prov Buenos Aires, La Plata, Buenos Aires, Argentina..
    Cordisco Gonzalez, S.
    Univ La Plata, CONICET, Multidisciplinary Inst Cell Biol IMBICE, Electrophysiol Lab, La Plata, Buenos Aires, Argentina.;CIC, Comis Invest Prov Buenos Aires, La Plata, Buenos Aires, Argentina..
    Martinez Damonte, V.
    Univ La Plata, CONICET, Multidisciplinary Inst Cell Biol IMBICE, Electrophysiol Lab, La Plata, Buenos Aires, Argentina.;CIC, Comis Invest Prov Buenos Aires, La Plata, Buenos Aires, Argentina..
    Tolosa, M. J.
    Univ La Plata, CONICET, Multidisciplinary Inst Cell Biol IMBICE, Electrophysiol Lab, La Plata, Buenos Aires, Argentina.;CIC, Comis Invest Prov Buenos Aires, La Plata, Buenos Aires, Argentina..
    Di Siervi, N.
    Univ Buenos Aires, CONICET, ININFA, Inst Invest Farmacol, Buenos Aires, DF, Argentina..
    Schiöth, Helgi B.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Davio, C.
    Univ Buenos Aires, CONICET, ININFA, Inst Invest Farmacol, Buenos Aires, DF, Argentina..
    Perello, M.
    CIC, Comis Invest Prov Buenos Aires, La Plata, Buenos Aires, Argentina.;Univ La Plata, CONICET, Multidisciplinary Inst Cell Biol, IMBICE,Neurophysiol Lab, La Plata, Buenos Aires, Argentina..
    Raingo, J.
    Univ La Plata, CONICET, Multidisciplinary Inst Cell Biol IMBICE, Electrophysiol Lab, La Plata, Buenos Aires, Argentina.;CIC, Comis Invest Prov Buenos Aires, La Plata, Buenos Aires, Argentina..
    Melanocortin 4 Receptor Constitutive Activity Inhibits L-Type Voltage-Gated Calcium Channels In Neurons2017In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 346, p. 102-112Article in journal (Refereed)
    Abstract [en]

    The melanocortin 4 receptor (MC4R) is a G protein-coupled receptor (GPCR) that is expressed in several brain nuclei playing a crucial role in the regulation of energy balance controlling the homeostasis of the organism. It displays both agonist-evoked and constitutive activity, and moreover, it can couple to different G proteins. Most of the research on MC4R has been focused on agonist-induced activity, while the molecular and cellular basis of MC4R constitutive activity remains scarcely studied. We have previously shown that neuronal N-type voltage-gated calcium channels (Ca(V)2.2) are inhibited by MC4R agonist-dependent activation, while the Ca-V subtypes that carry L- and P/Q-type current are not. Here, we tested the hypothesis that MC4R constitutive activity can affect Ca-V, with focus on the channel subtypes that can control transcriptional activity coupled to depolarization (L-type, Ca(V)1.2/1.3) and neurotransmitter release (N- and P/Q-type, Ca(V)2.2 and Ca(V)2.1). We found that MC4R constitutive activity inhibits specifically Ca(V)1.2/1.3 and Ca(V)2.1 subtypes of Ca-V. We also explored the signaling pathways mediating this inhibition, and thus propose that agonist-dependent and basal MC4R activation modes signal differentially through G(s) and G(i/o) pathways to impact on different Ca-V subtypes. In addition, we found that chronic incubation with MC4R endogenous inverse agonist, agouti and agouti-related peptide (AgRP), occludes Ca-V inhibition in a cell line and in amygdaloid complex cultured neurons as well. Thus, we define new mechanisms of control of the main mediators of depolarization-induced calcium entry into neurons by a GPCR that displays constitutive activity.

  • 3.
    Alsiö, Johan
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Olszewski, Pawel K.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Norbäck, A. H.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Gunnarsson, Z. E. A.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Levine, A. S.
    Pickering, Chris
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Schiöth, Helgi Birgir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Dopamine D1 receptor gene expression decreases in the nucleus accumbens upon long-term exposure to palatable food and differs depending on diet-induced obesity phenotype in rats2010In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 171, no 3, p. 779-787Article in journal (Refereed)
    Abstract [en]

    The nucleus accumbens (NAcc) mediates feeding reward; its activity reflects tastants' hedonic value. NAcc dopamine guides immediate responses to reward, however, its involvement in establishing long-term responses after a period of exposure to palatable foods has not been defined. Furthermore, reward-driven overeating propels weight increase, but the scale of weight gain depends on animals' obesity-prone (OP) or -resistant (OR) phenotype. It is unclear whether the NAcc dopamine response to palatable food depends on obesity susceptibility. We investigated the effect of unrestricted extended access to high-fat high-sugar (HFHS) diet on expression of genes encoding dopamine receptors in the NAcc of OP and OR rats. We examined persistence of HFHS diet-induced changes in D(1) and D(2) gene expression in OP and OR rats subjected to HFHS withdrawal (bland chow for 18 days). Effects of restricted access to HFHS by pair-feeding were also studied. Using reverse transcriptase PCR (RT-PCR), we found that NAcc D(1) mRNA was downregulated after long-term HFHS access in OP vs. OR animals. The effect was also observed after 18 days of HFHS withdrawal. Furthermore, restricted HFHS led to downregulation of D(1) as well as of D(2) mRNA levels compared to chow-fed controls. A difference in the expression of mu opioid receptor in the NAcc was also detected between the OP and OR rats during access to palatable food but not after withdrawal. We conclude that exposure to HFHS diets has lasting consequences for the NAcc dopamine system, perhaps modifying the motivation to search for food reward. The fact that the NAcc D(1) expression changes in OP animals after long-term exposure to palatable food and that this effect extends well into the reward discontinuation phase, implicates the D(1) receptor in the propensity to overeat and, in effect, gain weight in obesity prone individuals.

  • 4. Alvarez, S.
    et al.
    Calin, A.
    Sixtensdotter Graffmo, Karin
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Moldovan, M.
    Krarup, C.
    PERIPHERAL MOTOR AXONS OF SOD1(G127X) MUTANT MICE ARE SUSCEPTIBLE TO ACTIVITY-DEPENDENT DEGENERATION2013In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 241, p. 239-249Article in journal (Refereed)
    Abstract [en]

    Motor neuron disorders may be associated with mitochondrial dysfunction, and repetitive electrical impulse conduction during energy restriction has been found to cause neuronal degeneration. The aim of this study was to investigate the vulnerability of motor axons of a presymptomatic late-onset, fast-progression SOD1(G127x) mouse model of amyotrophic lateral sclerosis to long-lasting, high-frequency repetitive activity. Tibial nerves were stimulated at ankle in 7 to 8-month-old SOD1(G127X) mice when they were clinically indistinguishable from wild-type (WT) mice. The evoked compound muscle action potentials and ascending compound nerve action potentials were recorded from plantar muscles and from the sciatic nerve, respectively. Repetitive stimulation (RS) was carried out in interrupted trains of 200-Hz for 3 h. During the stimulation-sequence there was progressive conduction failure in WT and, to a lesser extent, in the SOD1(G127x). By contrast, 3 days after RS the electrophysiological responses remained reduced in the SOD1(G127x) but recovered completely in WT. Additionally, morphological studies showed Wallerian degeneration in the disease model. Nerve excitability testing by "threshold-tracking" showed that axons recovering from RS had changes in excitability suggestive of membrane hyperpolarization, which was smaller in the SOD1(G127x) than in WT. Our data provide proof-of-principle that SOD1(G127x) axons are less resistant to activity-induced changes in ion-concentrations. It is possible that in SOD1(G127x) there is inadequate energy-dependent Na+/K+ pumping, which may lead to a lethal Na+ overload. (C) 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  • 5.
    Berg, L K
    et al.
    Department of Anatomy, Institute of Basic Medical Sciences, Centre for Molecular, Biology and Neuroscience (CMBN), University of Oslo, Norway.
    Larsson, M
    Department of Anatomy, Institute of Basic Medical Sciences, Centre for Molecular, Biology and Neuroscience (CMBN), University of Oslo, Norway; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
    Morland, C
    Department of Anatomy, Institute of Basic Medical Sciences, Centre for Molecular, Biology and Neuroscience (CMBN), University of Oslo, Norway.
    Gundersen, V
    Department of Anatomy, Institute of Basic Medical Sciences, Centre for Molecular, Biology and Neuroscience (CMBN), University of Oslo, Norway; Department of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.
    Pre- and postsynaptic localization of NMDA receptor subunits at hippocampal mossy fibre synapses.2013In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 230, p. 139-150Article in journal (Refereed)
    Abstract [en]

    The N-methyl-D-aspartate (NMDA) type of glutamate receptors is involved in synaptic plasticity in hippocampal mossy fibre-CA3 pyramidal neuron synapses. The ultrastructural localization of NMDA receptor subunits at this synapse type is not known. By postembedding electron microscopic immunogold cytochemistry we show that the NMDA receptor subunits GluN1, GluN2A, GluN2B, GluN2C and GluN2D are located in postsynaptic membranes of mossy fibre as well as CA3 recurrent associational commissural synapses. In the mossy fibres the GluN1, GluN2B and GluN2D labelling patterns suggested that these subunits were located also presynaptically in nerve terminal membranes and in mossy fibre axons. GluN3B was predominantly present in mossy fibre synapses as compared to recurrent associational commissural synapses, showing a presynaptic labelling pattern. In conclusion, while the postsynaptic localization of GluN1, GluN2A, GluN2B, and GluN2D is in good agreement with the recent finding of NMDA receptor-dependent long term potentiation (LTP) at CA3 mossy fibre synapses, we propose that presynaptic GluN1, GluN2B, GluN2D and GluN3B subunits could be involved in plastic phenomena such as certain types of LTP and recurrent mossy fibre growth.

  • 6.
    Berntzon, Lotta
    et al.
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
    Ronnevi, L. O.
    Bergman, Birgitta
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
    Eriksson, Johan
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
    DETECTION OF BMAA IN THE HUMAN CENTRAL NERVOUS SYSTEM2015In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 292, p. 137-147Article in journal (Refereed)
    Abstract [en]

    Amyotrophic lateral sclerosis (ALS) is an extremely devastating neurodegenerative disease with an obscure etiology. The amino acid beta-N-methyl-L-alanine (BMAA) produced by globally widespread phytoplankton has been implicated in the etiology of human motor neuron diseases. BMAA was recently proven to be present in Baltic Sea food webs, ranging from plankton to larger Baltic Sea organisms, some serving as important food items (fish) for humans. To test whether exposure to BMAA in a Baltic Sea setting is reflected in humans, blood and cerebrospinal fluid (CSF) from individuals suffering from ALS were analyzed, together with sex- and age-matched individuals not inflicted with ALS. Ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and multiple reaction monitoring (MRM), in conjunction with diagnostic transitions revealed BMAA in three (12%) of the totally 25 Swedish individuals tested, with no preference for those suffering from ALS. The three BMAA-positive samples were all retrieved from the CSF, while BMAA was not detected in the blood. The data show that BMAA, potentially originating from Baltic Sea phytoplankton, may reach the human central nervous system, but does not lend support to the notion that BMAA is resident specifically in ALS-patients. However, while dietary exposure to BMAA may be intermittent and, if so, difficult to detect, our data provide the first demonstration of BMAA in the central nervous system of human individuals ante mortem quantified with UHPLC-MS/MS, and therefore calls for extended research efforts.

  • 7.
    Brocki, Karin
    et al.
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Clerkin, S. M.
    Guise, K. G.
    Fan, Jin
    Fossella, J. A.
    Assessing the molecular genetics of the development of executive attention in children: focus on genetic pathways related to the anterior cingulate cortex and dopamine2009In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 164, no 1, p. 241-246Article, review/survey (Refereed)
    Abstract [en]

    It is well known that children show gradual and protracted improvement in an array of behaviors involved in the conscious control of thought and emotion. Non-invasive neuroimaging in developing populations has revealed many neural correlates of behavior, particularly in the developing cingulate cortex and frontostriatal circuits. These brain regions, themselves, undergo protracted molecular and cellular change in the first two decades of human development and, as such, are ideal regions of interest for cognitive- and imaging-genetic studies that seek to link processes at the biochemical and synaptic levels to brain activity and behavior. We review our research to date that employs both adult and child-friendly versions of the attention network task (ANT) in an effort to begin to describe the role of specific genes in the assembly of a functional attention system. Presently, we constrain our predictions for genetic association studies by focusing on the role of the anterior cingulate cortex (ACC) and of dopamine in the development of executive attention.

  • 8.
    Bäckström, Torbjörn
    et al.
    Umeå University, Faculty of Medicine, Department of Clinical Sciences, Obstetrics and Gynaecology.
    Haage, D.
    Umeå University, Faculty of Medicine, Department of Clinical Sciences, Obstetrics and Gynaecology.
    Löfgren, Mats
    Umeå University, Faculty of Medicine, Department of Clinical Sciences, Obstetrics and Gynaecology.
    Johansson, I. M.
    Umeå University, Faculty of Medicine, Department of Clinical Sciences, Obstetrics and Gynaecology.
    Strömberg, J.
    Umeå University, Faculty of Medicine, Department of Clinical Sciences, Obstetrics and Gynaecology.
    Nyberg, S.
    Umeå University, Faculty of Medicine, Department of Clinical Sciences, Obstetrics and Gynaecology.
    Andreen, Lotta
    Umeå University, Faculty of Medicine, Department of Clinical Sciences, Obstetrics and Gynaecology.
    Ossewaarde, L.
    van Wingen, G. A.
    Turkmen, Sahruh
    Umeå University, Faculty of Medicine, Department of Clinical Sciences, Obstetrics and Gynaecology.
    Bengtsson, S. K.
    Umeå University, Faculty of Medicine, Department of Clinical Sciences, Obstetrics and Gynaecology.
    Paradoxical effects of GABA-A modulators may explain sex steroid induced negative mood symptoms in some persons2011In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 191, no Special issue, p. 46-54Article, review/survey (Refereed)
    Abstract [en]

    Some women have negative mood symptoms, caused by progestagens in hormonal contraceptives or sequential hormone therapy or by progesterone in the luteal phase of the menstrual cycle, which may be attributed to metabolites acting on the GABA-A receptor. The GABA system is the major inhibitory system in the adult CNS and most positive modulators of the GABA-A receptor (benzodiazepines, barbiturates, alcohol, GABA steroids), induce inhibitory (e.g. anesthetic, sedative, anticonvulsant, anxiolytic) effects. However, some individuals have adverse effects (seizures, increased pain, anxiety, irritability, aggression) upon exposure. Positive GABA-A receptor modulators induce strong paradoxical effects including negative mood in 3%-8% of those exposed, while up to 25% have moderate symptoms. The effect is biphasic: low concentrations induce an adverse anxiogenic effect while higher concentrations decrease this effect and show inhibitory, calming properties. The prevalence of premenstrual dysphoric disorder (PMDD) is also 3%-8% among women in fertile ages, and up to 25% have more moderate symptoms of premenstrual syndrome (PMS). Patients with PMDD have severe luteal phase-related symptoms and show changes in GABA-A receptor sensitivity and GABA concentrations. Findings suggest that negative mood symptoms in women with PMDD are caused by the paradoxical effect of allopregnanolone mediated via the GABA-A receptor, which may be explained by one or more of three hypotheses regarding the paradoxical effect of GABA steroids on behavior: (1) under certain conditions, such as puberty, the relative fraction of certain GABA-A receptor subtypes may be altered, and at those subtypes the GABA steroids may act as negative modulators in contrast to their usual role as positive modulators; (2) in certain brain areas of vulnerable women the transmembrane C1(-) gradient may be altered by factors such as estrogens that favor excitability; (3) inhibition of inhibitory neurons may promote disinhibition, and hence excitability. This article is part of a Special Issue entitled: Neuroactive Steroids: Focus on Human Brain. (C) 2011 Published by Elsevier Ltd on behalf of IBRO.

  • 9.
    Carlini, V. P.
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Ghersi, M.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Gabach, L.
    Schioth, Helgi B.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Perez, M. F.
    Ramirez, O. A.
    Fiol de Cuneo, M.
    de Barioglio, S. R.
    Hippocampal effects of neuronostatin on memory, anxiety-like behavior and food intake in rats2011In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 197, p. 145-152Article in journal (Refereed)
    Abstract [en]

    A 13-amino acid peptide named neuronostatin (NST) encoded in the somatostatin pro-hormone has been recently reported. It is produced throughout the body, particularly in brain areas that have significant actions over the metabolic and autonomic regulation. The present study was performed in order to elucidate the functional role of NST on memory, anxiety-like behavior and food intake and the hippocampal participation in these effects. When the peptide was intra-hippocampally administered at 3.0 nmol/mu l, it impaired memory retention in both, object recognition and step-down test. Also, this dose blocked the hippocampal long-term potentiation (LTP) generation. When NST was intra-hippocampally administered at 0.3 nmol/mu l and 3.0 nmol/mu l, anxiolytic effects were observed. Also, the administration in the third ventricle at the higher dose (3.0 nmol/mu l) induced similar effects, and both doses reduced food intake. The main result of the present study is the relevance of the hippocampal formation in the behavioral effects induced by NST, and these effects could be associated to a reduced hippocampal synaptic plasticity.

  • 10.
    Carlini, V P
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Martini, A C
    Schiöth, H B
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Ruiz, R D
    Fiol de Cuneo, M
    de Barioglio, S R
    Decreased memory for novel object recognition in chronically food-restricted mice is reversed by acute ghrelin administration2008In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 153, no 4, p. 929-34Article in journal (Refereed)
    Abstract [en]

    It has been demonstrated, in normal and aged rats and mice, that acute i.c.v. ghrelin (Ghr) administration increases memory retention. In order to evaluate if this treatment, restores memory retention in animals exhibiting impaired memory, in the present work we selected a chronic food restriction mouse model (since undernutrition prejudices higher nervous functions). We employed adult female mice with 28 days of 50% food restriction and evaluated: a) behavioral performance using novel object recognition test for memory, and plus maze for anxiety-like behavior, b) some morphometric parameters as body and hepatic weights and c) plasma Ghr levels. The animals with 50% food restriction showed an increase in plasma Ghr levels and a decrease in morphometric parameters and in the percentage of novel object recognition time. When the peptide was i.c.v. injected in food-restricted animals (0.03, 0.3 or 3.0 nmol/microl), memory increases in relation to food-restricted mice injected with vehicle, reaching a performance similar to controls.

  • 11.
    Cavazzana, Annachiara
    et al.
    Stockholm University, Faculty of Social Sciences, Department of Psychology. TU Dresden, Germany.
    Poletti, Sophia C.
    Guducu, Cagdas
    Larsson, Maria
    Stockholm University, Faculty of Social Sciences, Department of Psychology, Perception and psychophysics.
    Hummel, Thomas
    Electro-olfactogram Responses Before and After Aversive Olfactory Conditioning in Humans2018In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 373, p. 199-206Article in journal (Refereed)
    Abstract [en]

    The aim of the present study was to investigate whether repetitive aversive odor conditioning induced changes at the level of the peripheral olfactory system in humans. A total of 51 volunteers participated. A pair of indistinguishable odor enantiomers [(+)-rose oxide and (-)-rose oxide] were used as stimuli. During the pre-conditioning, participants' ability to discriminate between the two odors was assessed using a three-alternative, forced-choice discrimination test. In addition, electro-olfactograms ( EOG) from the olfactory epithelium were recorded. Participants underwent three conditioning sessions on consecutive days. The experimental group received an electrical stimulus to the forearm only following (+)-rose oxide presentation, whereas its enantiomer sibling was never paired with the aversive stimulus; the control group did not receive any electrical stimulation. During the post-conditioning session, their ability to discriminate the two enantiomers was assessed again using the discrimination test and EOG recordings were obtained similarly to the pre-conditioning session. Results showed significant differences in the peripheral electrophysiological responses between the conditioned and the unconditioned stimulus, demonstrating contextually induced changes at the level of the first neuron in the olfactory system.

  • 12. Cenci, M A
    et al.
    Tranberg, A
    Andersson, M
    Hilbertson, A
    Changes in the regional and compartmental distribution of FosB- and JunB-like immunoreactivity induced in the dopamine-denervated rat striatum by acute or chronic L-dopa treatment.1999In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 94, no 2, p. 515-27Article in journal (Refereed)
    Abstract [en]

    This study was carried out in order to examine the effects of acute or chronic L-DOPA treatment on striatally expressed FosB- and JunB-like proteins in a rat model of Parkinson's disease. Rats with a unilateral, near-total 6-hydroxydopamine lesion of the ascending mesostriatal projection received either an acute challenge or a one-week treatment with 10 mg/kg/day methyl L-DOPA (combined with 15 mg/mg benserazide), and were killed at either 3 h or two days post-injection. Both acute and chronic L-DOPA treatment caused a pronounced, persistent increase in the number of FosB-like immunoreactive cells in the dopamine-denervated striata (five- and seven-fold increase, respectively, above the levels found in lesioned but non-drug-treated controls), but the two treatment groups differed markedly with respect to both the average amount of staining per cell, which was two-fold larger in the chronic L-DOPA cases, and the anatomical distribution of the labeled cells. After an acute injection of L-DOPA, FosB-positive cells were distributed rather uniformly across all striatal subregions, whereas chronic L-DOPA treatment induced discrete clusters of strongly FosB-like immunoreactive cells within medial and central striatal subregions, as well as in a large, yet sharply defined portion of the lateral caudate-putamen. Strongly labeled cell clusters that appeared in the medial and central caudate-putamen were preferentially located within calbindin-poor, mu-opioid receptor-rich striosomes, whereas the lateral area displaying FosB activation encompassed both striosomal and matrix domains. In both the medial and the lateral striatum a near-total overlap was found between strongly FosB-like immunoreactive cell groups and areas showing pronounced dynorphin expression. NADPH-diaphorase-positive striatal interneurons did not express FosB-like immunoreactivity after a 6-hydroxydopamine lesion alone, a negligible proportion of them did after an acute L-DOPA challenge, but about 8% of these interneurons were FosB positive following chronic L-DOPA treatment. Like FosB, JunB was induced in the DA-denervated striatum by both acute and chronic L-DOPA treatment, and exhibited similar distribution patterns. However, JunB did not exhibit prolonged expression kinetics, and was somewhat down-regulated in the chronically compared with the acutely L-DOPA-treated rats. The present results show that L-DOPA administration produces a long-lasting increase in the levels of FosB-, but not JunB-like immunoreactivity in the dopamine-denervated striatum. More importantly, these data show that striatal induction of FosB- and JunB-like proteins by chronic L-DOPA treatment exhibits both regional and compartmental specificity.

  • 13.
    Chermenina, Maria
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Histology and Cell Biology.
    Schouten, P
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Histology and Cell Biology.
    Nevalainen, Nina
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology.
    Johansson, F
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Histology and Cell Biology.
    Orädd, Greger
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Strömberg, Ingrid
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Histology and Cell Biology.
    GDNF is important for striatal organization and maintenance of dopamine neurons grown in the presence of the striatum2014In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 270, p. 1-11Article in journal (Refereed)
    Abstract [en]

    Glial cell-derived neurotrophic factor (GDNF) exerts neuroprotective and neurorestorative effects on neurons and GDNF plays a significant role in maintenance of the dopamine neurons utilizing grafting to create a nigrostriatal microcircuit of Gdnf knockout (Gdnf(-/-)) tissue. To further evaluate the role of GDNF on organization of the nigrostriatal system, single or double grafts of ventral mesencephalon (VM) and lateral ganglionic eminence (LGE) with mismatches in Gdnf genotypes were performed. The survival of single grafts was monitored utilizing magnetic resonance imaging (MRI) and cell survival and graft organization were evaluated with immunohistochemistry. The results revealed that the size of VM single grafts did not change over time independent of genotype, while the size of the LGE transplants was significantly reduced already at 2weeks postgrafting when lacking GDNF. Lack of GDNF did not significantly affect the survival of tyrosine hydroxylase (TH)-positive neurons in single VM grafts. However, the survival of TH-positive neurons was significantly reduced in VM derived from Gdnf(+/+) when co-grafted with LGE from the Gdnf(-/-) tissue. In contrast, lack of GDNF in the VM portion of co-grafts had no effect on the survival of TH-positive neurons when co-grafted with LGE from Gdnf(+/+) mice. The TH-positive innervation of co-grafts was sparse when the striatal co-grafts were derived from the Gdnf(-/-) tissue while dense and patchy when innervating LGE producing GDNF. The TH-positive innervation overlapped with the organization of dopamine and cyclic AMP-regulated phosphoprotein-relative molecular mass 32,000 (DARPP-32)-positive neurons, that was disorganized in LGE lacking GDNF production. In conclusion, GDNF is important for a proper striatal organization and for survival of TH-positive neurons in the presence of the striatal tissue.

  • 14.
    Cocco, Arianna
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Physiology.
    Rönnberg, A. M. Carolina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Jin, Zhe
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Physiology.
    André, Goncalo Igreja
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience. Univ Western Australia, Ctr Evolutionary Biol, 35 Stirling Hwy, Crawley, WA 6009, Australia..
    Vossen, Laura E.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Physiology.
    Bhandage, Amol K.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Physiology.
    Thörnqvist, Per-Ove
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Physiology.
    Birnir, Bryndis
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Physiology.
    Winberg, Svante
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Physiology.
    Characterization of the gamma-aminobutyric acid signaling system in the zebrafish (danio rerio hamilton) central nervous system by reverse transcription-quantitative polymerase chain reaction2017In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 343, p. 300-321Article in journal (Refereed)
    Abstract [en]

    In the vertebrate brain, inhibition is largely mediated by raminobutyric acid (GABA). This neurotransmitter comprises a signaling machinery of GABA(A), GABA(B) receptors, transporters, glutamate decarboxylases (gads) and 4-aminobutyrate aminotransferase (abat), and associated proteins. Chloride is intimately related to GABAA receptor conductance, GABA uptake, and GADs activity. The response of target neurons to GABA stimuli is shaped by chloride-cation co-transporters (CCCs), which strictly control Cl- gradient across plasma membranes. This research profiled the expression of forty genes involved in GABA signaling in the zebrafish (Danio rerio) brain, grouped brain regions and retinas. Primer pairs were developed for reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The mRNA levels of the zebrafish GABA system share similarities with that of mammals, and confirm previous studies in non-mammalian species. Proposed GABAA receptors are alpha(1)beta(2)gamma(2), alpha(1)beta(2)delta, alpha(2b)beta(3), alpha(2b)beta(3)delta, alpha(4)beta(2)gamma(2), alpha(4)beta(2)gamma, alpha(6b)beta(2)gamma(2) and alpha(6b)beta(2)delta. Regional brain differences were documented. Retinal hetero- or homomeric rho-composed GABAA receptors could exist, accompanying alpha(1)beta(y)gamma(2), alpha(1)beta(y)delta, alpha(6a)beta(y)gamma(2,) alpha(6a)beta(y)delta. Expression patterns of alpha(6a) and alpha(6b) were opposite, with the former being more abundant in retinas, the latter in brains. Given the stoichiometry alpha(6w)beta(y)gamma(z), alpha(6a-) or alpha(6b)-containing receptors likely have different regulatory mechanisms. Different gene isoforms could originate after the rounds of genome duplication during teleost evolution. This research depicts that one isoform is generally more abundantly expressed than the other. Such observations also apply to GABAB receptors, GABA transporters, GABA-related enzymes, CCCs and GABAA receptor associated proteins, whose presence further strengthens the proof of a GABA system in zebrafish.

  • 15.
    Dahlqvist, Per
    et al.
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Medicine.
    Zhao, L
    Johansson, I M
    Mattsson, B
    Johansson, B B
    Seckl, J R
    Olsson, Tommy
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Medicine.
    Environmental enrichment alters nerve growth factor-induced gene A and glucocorticoid receptor messenger RNA expression after middle cerebral artery occlusion in rats.1999In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 93, no 2, p. 527-35Article in journal (Refereed)
    Abstract [en]

    Housing rats in an enriched environment after focal brain ischemia improves functional outcome without changes in infarct volume, suggesting neuroplastic changes outside the lesion. In this study, permanent occlusion of the middle cerebral artery was followed by housing in an enriched or a standard environment. Nerve growth factor-induced gene A and glucocorticoid receptor messenger RNA expression were determined by in situ hybridization two to 30 days after middle cerebral artery occlusion. Stroke induced a decrease in nerve growth factor-induced gene A messenger RNA expression in cortical areas outside the ischemic lesion and in the CA1 subregion of the hippocampus two to three days after ischemia. This decrease was more prolonged with environmental enrichment, lasting until 20 days. However, 30 days after focal cerebral ischemia, environmental enrichment increased nerve growth factor-induced gene A expression compared to standard housing. A reduction of hippocampal glucocorticoid receptor (type II) messenger RNA two to 12 days after stroke in standard housed rats was restored by environmental enrichment. These data suggest that improved functional outcome induced by environmental enrichment after middle cerebral artery occlusion is associated with dynamically altered expression of nerve growth factor-induced gene A messenger RNA in brain regions outside the ischemic lesion, and sustained levels of hippocampal glucocorticoid receptor messenger RNA expression.

  • 16. Danielsen, A
    et al.
    Otnæss, M K
    Jensen, Jimmy
    Kristianstad University, School of Education and Environment, Avdelningen för Humanvetenskap.
    Williams, S C R
    Østberg, B C
    Investigating repetition and change in musical rhythm by functional MRI2014In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 275, p. 469-476Article in journal (Refereed)
    Abstract [en]

    Groove-based rhythm is a basic and much appreciated feature of Western popular music. It is commonly associated with dance, movement and pleasure and is characterized by the repetition of a basic rhythmic pattern. At various points in the musical course, drum breaks occur, representing a change compared to the repeated pattern of the groove. In the present experiment, we investigated the brain response to such drum breaks in a repetitive groove. Participants were scanned with functional magnetic resonance imaging (fMRI) while listening to a previously unheard naturalistic groove with drum breaks at uneven intervals. The rhythmic pattern and the timing of its different parts as performed were the only aspects that changed from the repetitive sections to the breaks. Differences in blood oxygen level-dependent activation were analyzed. In contrast to the repetitive parts, the drum breaks activated the left cerebellum, the right inferior frontal gyrus (RIFG), and the superior temporal gyri (STG) bilaterally. A tapping test using the same stimulus showed an increase in the standard deviation of inter-tap-intervals in the breaks versus the repetitive parts, indicating extra challenges for auditory-motor integration in the drum breaks. Both the RIFG and STG have been associated with structural irregularity and increase in musical-syntactical complexity in several earlier studies, whereas the left cerebellum is known to play a part in timing. Together these areas may be recruited in the breaks due to a prediction error process whereby the internal model is being updated. This concurs with previous research suggesting a network for predictive feed-forward control that comprises the cerebellum and the cortical areas that were activated in the breaks.

  • 17.
    di Summa, Pietro G
    et al.
    University Hospital of Lausanne, University of Manchester.
    Kalbermatten, Daniel F
    University Hospital of Lausanne, University Hospital of Basel.
    Pralong, E
    University Hospital of Lausanne.
    Raffoul, W
    University Hospital of Lausanne.
    Kingham, Paul J
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Terenghi, Giorgio
    University of Manchester.
    Long-term in vivo regeneration of peripheral nerves through bioengineered nerve grafts2011In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 181, no 5, p. 278-291Article in journal (Refereed)
    Abstract [en]

    Although autologous nerve graft is still the first choice strategy in nerve reconstruction, it has the severe disadvantage of the sacrifice of a functional nerve. Cell transplantation in a bioartificial conduit is an alternative strategy to improve nerve regeneration. Nerve fibrin conduits were seeded with various cell types: primary Schwann cells (SC), SC-like differentiated bone marrow-derived mesenchymal stem cells (dMSC), SC-like differentiated adipose-derived stem cells (dASC). Two further control groups were fibrin conduits without cells and autografts. Conduits were used to bridge a 1 cm rat sciatic nerve gap in a long term experiment (16 weeks). Functional and morphological properties of regenerated nerves were investigated. A reduction in muscle atrophy was observed in the autograft and in all cell-seeded groups, when compared with the empty fibrin conduits. SC showed significant improvement in axon myelination and average fiber diameter of the regenerated nerves. dASC were the most effective cell population in terms of improvement of axonal and fiber diameter, evoked potentials at the level of the gastrocnemius muscle and regeneration of motoneurons, similar to the autografts. Given these results and other advantages of adipose derived stem cells such as ease of harvest and relative abundance, dASC could be a clinically translatable route towards new methods to enhance peripheral nerve repair.

  • 18. East, Brett S.
    et al.
    Fleming, Gloria
    Peng, Kathy
    Olofsson, Jonas K.
    Stockholm University, Faculty of Social Sciences, Department of Psychology, Perception and psychophysics. Nathan S. Kline Institute, USA; New York University School of Medicine, USA.
    Levy, Efrat
    Mathews, Paul M.
    Wilson, Donald A.
    Human Apolipoprotein E Genotype Differentially Affects Olfactory Behavior and Sensory Physiology in Mice2018In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 380, p. 103-110Article in journal (Refereed)
    Abstract [en]

    Apolipoprotein E (ApoE) is an important lipid carrier in both the periphery and the brain. The ApoE epsilon 4 allele (ApoE4) is the single most important genetic risk-factor for Alzheimer's disease (AD) while the epsilon 2 allele (ApoE2) is associated with a lower risk of AD-related neurodegeneration compared to the most common variant, epsilon 3 (ApoE3). ApoE genotype affects a variety of neural circuits; however, the olfactory system appears to provide early biomarkers of ApoE genotype effects. Here, we directly compared olfactory behavior and olfactory system physiology across all three ApoE genotypes in 6-month- and 12-month-old mice with targeted replacement for the human ApoE2, ApoE3, or ApoE4 genes. Odor investigation and habituation were assessed, along with, olfactory bulb and piriform cortical local field potential activity. The results demonstrate that while initial odor investigation was unaffected by ApoE genotype, odor habituation was impaired in E4 relative to E2 mice, with E3 mice intermediate in function. There was also significant deterioration of odor habituation from 6 to 12 months of age regardless of the ApoE genotype. Olfactory system excitability and odor responsiveness were similarly determined by ApoE genotype, with an ApoE4 > ApoE3 > ApoE2 excitability ranking. Although motivated behavior is influenced by many processes, hyper-excitability of ApoE4 mice may contribute to impaired odor habituation, while hypo-excitability of ApoE2 mice may contribute to its protective effects. Given that these ApoE mice do not have AD pathology, our results demonstrate how ApoE affects the olfactory system at early stages, prior to the development of AD.

  • 19.
    Engblom, David
    et al.
    Linköping University, Department of Biomedicine and Surgery, Cell biology. Linköping University, Faculty of Health Sciences.
    Ek, Monica
    Department of Medicine, Unit of Rheumatology, The Karolinska Institute, Stockholm, Sweden.
    Ericsson-Dahlstrand, Anders
    AstraZeneca R and D–Södertälje, RA CNS and Pain Control, Department of Molecular Sciences, Novum, Huddinge, Sweden.
    Blomqvist, Anders
    Linköping University, Department of Biomedicine and Surgery, Cell biology. Linköping University, Faculty of Health Sciences.
    EP3 and EP4 receptor mRNA expression in peptidergic cell groups of the rat parabrachial nucleus2004In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 126, no 4, p. 989-999Article in journal (Refereed)
    Abstract [en]

    This study examines the distribution of prostaglandin E2 receptors of subtype EP3 and EP4 among brain stem parabrachial neurons that were characterized with respect to their neuropeptide expression. By using a dual-labeling in situ hybridization method, we show that preprodynorphin mRNA expressing neurons in the dorsal and central lateral subnuclei express EP3 receptor mRNA. Such receptors are also expressed in preproenkephalin, calcitonin gene related peptide and preprotachykinin mRNA positive neurons in the external lateral subnucleus, whereas preprodynorphin mRNA expressing neurons in this subnucleus are EP receptor negative. In addition, EP3 receptor expression is seen among some enkephalinergic neurons in the Kölliker-Fuse nucleus. Neurons in the central part of the cholecystokininergic population in the regions of the superior lateral subnucleus express EP4 receptor mRNA, whereas those located more peripherally express EP3 receptors. Taken together with previous findings showing that discrete peptidergic cell groups mediate nociceptive and/or visceral afferent information to distinct brain stem and forebrain regions, the present results suggest that the processing of this information in the parabrachial nucleus is influenced by prostaglandin E2. Recent work has shown that prostaglandin E2 is released into the brain following peripheral immune challenge; hence, the parabrachial nucleus may be a region where humoral signaling of peripheral inflammatory events may interact with neuronal signaling elicited by the same peripheral processes.

  • 20. Flohr, E. L. R.
    et al.
    Arshamian, Artin
    Stockholm University, Faculty of Social Sciences, Department of Psychology, Perception and psychophysics.
    Wieser, M. J.
    Hummel, C.
    Larsson, Maria
    Stockholm University, Faculty of Social Sciences, Department of Psychology, Perception and psychophysics.
    Muehlberger, A.
    Hummel, T.
    THE FATE OF THE INNER NOSE: ODOR IMAGERY IN PATIENTS WITH OLFACTORY LOSS2014In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 268, p. 118-127Article in journal (Refereed)
    Abstract [en]

    Cerebral activations during olfactory mental imagery are fairly well investigated in healthy participants but little attention has been given to olfactory imagery in patients with olfactory loss. To explore whether olfactory loss leads to deficits in olfactory imagery, neural responses using functional magnetic resonance imaging (fMRI) and self-report measures were investigated in 16 participants with acquired olfactory loss and 19 control participants. Participants imagined both pleasant and unpleasant odors and their visual representations. Patients reported less vivid olfactory but not visual images than controls. Results from neuroimaging revealed that activation patterns differed between patients and controls. While the control group showed stronger activation in olfactory brain regions for unpleasant compared to pleasant odors, the patient group did not. Also, activation in critical areas for olfactory imagery was correlated with the duration of olfactory dysfunction, indicating that the longer the duration of dysfunction, the more the attentional resources were employed. This indicates that participants with olfactory loss have difficulties to perform olfactory imagery in the conventional way. Regular exposure to olfactory information may be necessary to maintain an olfactory imagery capacity.

  • 21. Foo, K. S.
    et al.
    Brismar, Hjalmar
    KTH, School of Engineering Sciences (SCI), Applied Physics, Cell Physics.
    Broberger, C.
    DISTRIBUTION AND NEUROPEPTIDE COEXISTENCE OF NUCLEOBINDIN-2 mRNA/NESFATIN-LIKE IMMUNOREACTIVITY IN THE RAT CNS2008In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 156, no 3, p. 563-579Article in journal (Refereed)
    Abstract [en]

    The protein fragment nesfatin-1 was recently implicated in the control of food intake. Central administration of this fragment results in anorexia and reduced body weight gain, whereas antisense or immunological nesfatin-1 antagonism causes increased food intake and overweight. Nesfatin-1 is derived from the precursor nucleobindin-2 (NUCB2). To identify the neurocircuitry underpinning the catabolic effects of NUCB2/nesfatin-1, we have used in situ hybridization and immunohistochemistry to map the distribution of this protein and its mRNA in the rat CNS and performed double-labeling experiments to localize its expression to functionally defined neuronal populations. These experiments confirm previous observations but also present several novel NUCB2 cell populations. Both NUCB2 mRNA and nesfatin-like immunoreactivity was most concentrated in the hypothalamus, in the supraoptic, paraventricular, periventricular and arcuate nuclei and the lateral hypothalamic area/perifornical region. Additionally, outside of the hypothalamus, labeling was observed in the thalamic parafascicular nucleus, the Edinger-Westphal nucleus, locus coeruleus, ventral raphe system, nucleus of solitary tract and in the preganglionic sympathetic intermediolateral cell column of the spinal cord, and the pituitary anterior and intermediate lobes. In neurons, immunoreactivity was almost exclusively confined to perikarya and primary dendrites with virtually no labeling of axonal terminals. Double-labeling immunohistochemistry revealed colocalization of nesfatin with vasopressin and oxytocin in magnocellular neuroendocrine neurons, thyrotropin-releasing hormone, corticotropin-releasing hormone, somatostatin, neurotensin, and growth-hormone-releasing hormone in parvocellular neuroendocrine neurons, pro-opiomelanocortin (but not neuropeptide Y) in the arcuate nucleus and melanin-concentrating hormone (but not hypocretin) in the lateral hypothalamus. Furthermore, nesfatin was extensively colocalized with cocaine- and amphetamine-regulated transcript in almost all NUCB2-expressing brain regions. These data reveal a wider distribution of NUCB2/nesfatin-1 than previously known, suggesting that the metabolic actions of this protein may involve not only feeding behavior but also endocrine and autonomic effects on energy expenditure. In addition, the subcellular distribution of nesfatin-like immunoreactivity indicates that this protein may not be processed like a conventional secreted neuromodulator.

  • 22.
    Genove, G.
    et al.
    Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
    Mollick, Tanzina
    Örebro University, School of Health and Medical Sciences, Örebro University, Sweden.
    Johansson, Kjell
    Örebro University, School of Health and Medical Sciences, Örebro University, Sweden.
    Photoreceptor degeneration, structural remodeling and glial activation: a morphological study on a genetic mouse model for pericyte deficiency2014In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 279, p. 269-284Article in journal (Refereed)
    Abstract [en]

    Interaction between pericytes and endothelial cells via platelet-derived growth factor B (PDGF-B) signaling is critical for the development of the retinal microvasculature. The PDGF-B retention motif controls the spatial distribution range of the growth factor in the vicinity of its producing endothelial cells allowing its recognition by PDGF receptor beta-(PDGFR-beta)-carrying pericytes; this promotes recruitment of pericytes to the vascular basement membrane. Impairment of the PDGF-B signaling mechanism causes development of vascular abnormalities, and in the retina this consequently leads to defects in the neurological circuitry. The vascular pathology in the pdgf-b(ret/ret) (PDGF-B retention motif knockout) mouse retina has been previously reported; our study investigates the progressive neuronal defects and changes in the retinal morphology of this pericyte-deficient mouse model. Immunohistochemical analysis revealed retinal injuries to occur as early as postnatal day (P) 10 with substantial damage progressing from P15 and onward. Vascular abnormalities were apparent from P10, however, prominent neuronal defects were mostly observed from P15, beginning with the compromised integrity of the laminated retinal structure characterized by the presence of rosettes and focally distorted regions. Photoreceptor degeneration was observed by loss of both rod and cone cells, including the disassembly and altered structure of their synaptic terminals. Significant shortening of cone outer segments was observed from P10 and later stages; however, decrease in cone density was only observed at P28. Disorganization and dendrite remodeling of rod bipolar cells also added to the diminished neural and synaptic integrity. Moreover, in response to retinal injuries, Muller and microglial cells were observed to be in the reactive phenotype from P15 and onward. Such a sequence of events indicates that the pdgf-b(ret/ret) mouse model displays a short time frame between P10 and P15, during which the retina shifts to a retinopathic phase by the development of prominently altered morphological features.

  • 23.
    Glavaski-Joksimovic, A.
    et al.
    Karolinska University Hospital, Stockholm, Sweden.
    Thonabulsombat, C.
    Karolinska University Hospital, Stockholm, Sweden.
    Wendt, M.
    Karolinska University Hospital, Stockholm, Sweden.
    Eriksson, M.
    Karolinska University Hospital, Stockholm, Sweden.
    Ma, H.
    Karolinska University Hospital, Stockholm, Sweden.
    Olivius, Petri
    Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden.
    Morphological differentiation of tau–green fluorescent protein embryonic stem cells into neurons after co-culture with auditory brain stem slices2009In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 162, no 2, p. 472-481Article in journal (Refereed)
    Abstract [en]

    Most types of congenital and acquired hearing loss are caused by loss of sensory hair cells in the inner ear and their respective afferent neurons. Replacement of spiral ganglion neurons (SGN) would therefore be one prioritized step in an attempt to restore sensory neuronal hearing loss. To initiate an SGN repair paradigm we previously transplanted embryonic neuronal tissue and stem cells (SC) into the inner ear in vivo. The results illustrated good survival of the implant. One such repair, however, would not have any clinical significance unless central connections from the implanted SIGN could be established. For the purpose of evaluating the effects of cell transplantation on cochlear nucleus (CN) neurons we have established organotypic brain stem (BS) cultures containing the CN. At present we have used in vitro techniques to study the survival and differentiation of tau-green fluorescent protein (GFP) mouse embryonic stem cells (MESC) as a mono- or co-culture with BS slices. For the co-culture, 300 mu m thick auditory BS slices encompassing the CN were prepared from postnatal Sprague-Dawley rats. The slices were propagated using the membrane interface method and the CN neurons labeled with Dil. After 5 +/- 2 days in culture a tau-GFP MESC suspension was deposited next to CN in the BS slice. Following deposition the MESC migrated towards the CN. One and two weeks after transplantation the co-cultures were fixed and immunostained with antibodies raised against neuroprogenitor, neuronal, glial and synaptic vesicle protein markers. Our experiments with the tau-GFP MESC and auditory BS co-cultures show a significant MESC survival but also differentiation into neuronal cells. The findings illustrate the significance of SC and auditory BS co-cultures regarding survival, migration, neuronal differentiation and connections.

  • 24. Gunnarson, E.
    et al.
    Axehult, G.
    Baturina, G.
    Zelenin, S.
    Zelenina, Marina
    KTH, School of Engineering Sciences (SCI), Applied Physics, Cell Physics.
    Aperia, A.
    Lead induces increased water permeability in astrocytes expressing aquaporin 42005In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 136, no 1, p. 105-114Article in journal (Refereed)
    Abstract [en]

    The water channel aquaporin 4 (AQP4) is abundantly expressed in astrocytes. There is now compelling evidence that AQP4 may contribute to an unfavorable course in brain edema. Acute lead intoxication is a condition that causes brain damage preceded by brain edema. Here we report that lead increases AQP4 water permeability (P-f) in astrocytes. A rat astrocyte cell line that does not express aquaporin 4 was transiently transfected with aquaporin 4 tagged with green fluorescent protein (GFP). Using confocal laser scanning microscopy we measured water permeability in these cells and in AQP4-negative cells located on the same plate. AQP4-expressing astrocytes had a three-fold higher water permeability than astrocytes not expressing AQP4. Lead exposure induced a significant, 40%, increase in water permeability in astrocytes expressing AQP4, but had no effect on Pf in astrocytes not expressing AQP4. The increase in water permeability persisted after lead washout, while treatment with a lead chelator, meso-2,3-dimercaptosuccinic acid, abolished the lead-induced increase in Pf. The effect of lead was attenuated in the presence of a calcium (Ca2+)/ calmodulin-dependent protein kinase 11 (CaMKII) inhibitor, but not in the presence of a protein kinase C inhibitor. In cells expressing AQP4 where the consensus site for CaMKII phosphorylation was mutated, lead failed to increase water permeability. Lead exposure also increased Pf in rat astroglial cells in primary culture, which express endogenous AQP4. Lead had no effect on Pf in astrocytes transfected with aquaporin 3. In situ hybridization studies on rat brain after oral lead intake for three days showed no change in distribution of AQP4 mRNA. It is suggested that lead-triggered stimulation of water transport in AQP4-expressing astrocytes may contribute to the pathology of acute lead intoxication.

  • 25.
    Gunnarson, E
    et al.
    Department of Woman and Child Health, Karolinska Institutet, Stockholm, Sweden.
    Zelenina, Marina
    Department of Woman and Child Health, Karolinska Institutet, Stockholm, Sweden.
    Aperia, Anita
    Department of Woman and Child Health, Karolinska Institutet, Stockholm, Sweden.
    Regulation of brain aquaporins2004In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 129, no 4, p. 947-955Article in journal (Refereed)
    Abstract [en]

    Emerging evidence suggests that brain aquaporins (AQP) play important roles for the dynamic regulation of brain water homeostasis and for the regulation of cerebrospinal fluid production. This review deals with the short- and long-term regulation of AQP4 and AQP9, both expressed in astrocytes, and of AQP1, expressed in the choroid plexus. AQP1 and 4 have in other cell types been shown to be regulated by phosphorylation. Phosphorylation affects the gating of AQP4 and the trafficking and insertion into membrane of AQP1. Mercury inhibits the water permeability of AQP1 and AQP9, but not AQP4. The permeability of AQP4 is increased by lead. AQP4 is also regulated by protein-protein interaction. The assembly between AQP4 and syntrophin is required for the proper localization of AQP4 in the astrocyte plasma membrane that faces capillaries. There is evidence from studies on peripheral tissues that steroid hormones regulate the expression of AQP1, AQP4 and AQP9. There is also evidence that the expression of AQP1 can be regulated by ubiquitination, and that osmolality can regulate the expression of AQP1, AQP4 and AQP9. Further insight into the mechanisms by which brain AQPs are regulated will be of utmost clinical importance, since perturbed water flow via brain AQPs has been implicated in many neurological diseases and since, in brain edema, water flow via AQP4 may have a harmful effect.

  • 26.
    Gustafsson, Lisa
    et al.
    Uppsala universitet.
    Zhou, Q
    Nylander, I
    Ethanol-induced effects on opioid peptides in adult male Wistar rats are dependent on early environmental factors.2007In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 146, no 3, p. 1137-49Article in journal (Refereed)
    Abstract [en]

    The vulnerability to develop alcoholism is dependent on both genetic and environmental factors. The neurobiological mechanisms underlying these factors are not fully understood but individual divergence in the endogenous opioid peptide system may contribute. We have previously reported that early-life experiences can affect endogenous opioids and also adult voluntary ethanol intake. In the present study, this line of research was continued and the effects of long-term voluntary ethanol drinking on the opioid system are described in animals reared in different environmental settings. Rat pups were subjected to 15 min (MS15) or 360 min (MS360) of daily maternal separation during postnatal days 1-21. At 10 weeks of age, male rats were exposed to voluntary ethanol drinking in a four-bottle paradigm with 5%, 10% and 20% ethanol solution in addition to water for 2 months. Age-matched controls received water during the same period. Immunoreactive (ir) Met-enkephalin-Arg6Phe7 (MEAP) and dynorphin B (DYNB) peptide levels were thereafter measured in the pituitary gland and several brain areas. In water-drinking animals, lower ir MEAP levels were observed in the MS360 rats in the hypothalamus, medial prefrontal cortex, striatum and the periaqueductal gray, whereas no differences were seen in ir DYNB levels. Long-term ethanol drinking induced lower ir MEAP levels in MS15 rats in the medial prefrontal cortex and the periaqueductal gray, whereas higher levels were detected in MS360 rats in the hypothalamus, striatum and the substantia nigra. Chronic voluntary drinking affected ir DYNB levels in the pituitary gland, hypothalamus and the substantia nigra, with minor differences between MS15 and MS360. In conclusion, manipulation of the early environment caused changes in the opioid system and a subsequent altered response to ethanol. The altered sensitivity of the opioid peptides to ethanol may contribute to the previously reported differences in ethanol intake between MS15 and MS360 rats.

  • 27.
    Gustafsson, Lisa
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Zhou, Qin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Nylander, Ingrid
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Ethanol-induced effects on opioid peptides in adult male Wistar rats are dependent on early environmental factors2007In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 146, no 3, p. 1137-1149Article in journal (Refereed)
    Abstract [en]

    The vulnerability to develop alcoholism is dependent on both genetic and environmental factors. The neurobiological mechanisms underlying these factors are not fully understood but individual divergence in the endogenous opioid peptide system may contribute. We have previously reported that early-life experiences can affect endogenous opioids and also adult voluntary ethanol intake. In the present study, this line of research was continued and the effects of long-term voluntary ethanol drinking on the opioid system are described in animals reared in different environmental settings. Rat pups were subjected to 15 min (MS15) or 360 min (MS360) of daily maternal separation during postnatal days 1–21. At 10 weeks of age, male rats were exposed to voluntary ethanol drinking in a four-bottle paradigm with 5%, 10% and 20% ethanol solution in addition to water for 2 months. Age-matched controls received water during the same period. Immunoreactive (ir) Met-enkephalin-Arg6Phe7 (MEAP) and dynorphin B (DYNB) peptide levels were thereafter measured in the pituitary gland and several brain areas. In water-drinking animals, lower ir MEAP levels were observed in the MS360 rats in the hypothalamus, medial prefrontal cortex, striatum and the periaqueductal gray, whereas no differences were seen in ir DYNB levels. Long-term ethanol drinking induced lower ir MEAP levels in MS15 rats in the medial prefrontal cortex and the periaqueductal gray, whereas higher levels were detected in MS360 rats in the hypothalamus, striatum and the substantia nigra. Chronic voluntary drinking affected ir DYNB levels in the pituitary gland, hypothalamus and the substantia nigra, with minor differences between MS15 and MS360. In conclusion, manipulation of the early environment caused changes in the opioid system and a subsequent altered response to ethanol. The altered sensitivity of the opioid peptides to ethanol may contribute to the previously reported differences in ethanol intake between MS15 and MS360 rats.

  • 28.
    Gómez-Climent, M. Á
    et al.
    Neurobiology Unit and Program in Basic and Applied Neurosciences, Cell Biology Department, Universitat de València, Spain.
    Hernández-González, S.
    Neurobiology Unit and Program in Basic and Applied Neurosciences, Cell Biology Department, Universitat de València, Spain.
    Shionoya, Kiseko
    CSGA, UMR CNRS 6265, INRA 1354, Université de Bourgogne, 15 rue Picardet, 21000 Dijon, France.
    Belles, M.
    Neurobiology Unit and Program in Basic and Applied Neurosciences, Cell Biology Department, Universitat de València, Spain.
    Alonso-Llosa, G.
    Neurobiology Unit and Program in Basic and Applied Neurosciences, Cell Biology Department, Universitat de València, Spain.
    Datiche, F.
    CSGA, UMR CNRS 6265, INRA 1354, Université de Bourgogne, 15 rue Picardet, 21000 Dijon, France.
    Nacher, J.
    Neurobiology Unit and Program in Basic and Applied Neurosciences, Cell Biology Department, Universitat de València, Spain.
    Olfactory bulbectomy, but not odor conditioned aversion, induces the differentiation of immature neurons in the adult rat piriform cortex2011In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 181, no 5, p. 18-27Article in journal (Refereed)
    Abstract [en]

    The piriform cortex layer II of young-adult rats presents a population of prenatally generated cells, which express immature neuronal markers, such as the polysialylated form of the neural cell adhesion molecule (PSA-NCAM) or doublecortin (DCX), and display structural characteristics of immature neurons. The number of PSA-NCAM/DCX expressing cells in this region decreases markedly as age progresses, suggesting that these cells differentiate or die. Since the piriform cortex receives a major input from the olfactory bulb and participates in olfactory information processing, it is possible that the immature neurons in layer II are affected by manipulations of the olfactory bulb or olfactory learning. It is not known whether these cells can be induced to differentiate and, if so, what would be their fate. In order to address these questions, we have performed unilateral olfactory bulbectomy (OBX) and an olfactory learning paradigm (taste-potentiated odor aversion, TPOA), in young-adult rats and have studied the expression of different mature and immature neuronal markers, as well as the presence of cell death. We have found that 14 h after OBX there was a dramatic decrease in the number of both PSA-NCAM and DCX expressing cells in piriform cortex layer II, whereas that of cells expressing NeuN, a mature neuronal marker, increased. By contrast, the number of cells expressing glutamate decarboxylase, isoform 67 (GAD67), a marker for interneurons, decreased slightly. Additionally, we have not found evidence of numbers of dying cells high enough to justify the disappearance of immature neurons. Analysis of animals subjected to TPOA revealed that this paradigm does not affect PSA-NCAM expressing cells. Our results strongly suggest that OBX can induce the maturation of immature neurons in the piriform cortex layer II and that these cells do not become interneurons. By contrast, these cells do not seem to play a crucial role in olfactory memory.

  • 29.
    Hansson, C
    et al.
    Sahlgrenska Academy at the University of Gothenburg.
    Haage, D
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Physiology. Sahlgrenska Academy at the University of Gothenburg.
    Taube, M
    Sahlgrenska Academy at the University of Gothenburg.
    Egecioglu, E
    Sahlgrenska Academy at the University of Gothenburg.
    Salomé, N
    Sahlgrenska Academy at the University of Gothenburg.
    Dickson, S L
    Sahlgrenska Academy at the University of Gothenburg.
    Central administration of ghrelin alters emotional responses in rats: behavioural, electrophysiological and molecular evidence2011In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 180, p. 201-211Article in journal (Refereed)
    Abstract [en]

    The orexigenic and pro-obesity hormone ghrelin targets key hypothalamic and mesolimbic circuits involved in energy balance, appetite and reward. Given that such circuits are closely integrated with those regulating mood and cognition, we sought to determine whether chronic (>2 weeks) CNS exposure to ghrelin alters anxiety- and depression-like behaviour in rats as well as some physiological correlates. Rats bearing chronically implanted i.c.v. catheters were treated with ghrelin (10 μg/d) or vehicle for 4 weeks. Tests used to assess anxiety- and depression-like behaviour were undertaken during weeks 3-4 of the infusion. These revealed an increase in anxiety- and depression-like behaviour in the ghrelin-treated rats relative to controls. At the end of the 4-week infusion, brains were removed and the amygdala dissected for subsequent qPCR analysis that revealed changes in expression of a number of genes representing key systems implicated in these behavioural changes. Finally, given the key role of the dorsal raphe serotonin system in emotional reactivity, we examined the electrophysiological response of dorsal raphe neurons after a ghrelin challenge, and found mainly inhibitory responses in this region. We demonstrate that the central ghrelin signalling system is involved in emotional reactivity in rats, eliciting pro-anxiety and pro-depression effects and have begun to explore novel target systems for ghrelin that may be of importance for these effects.

  • 30.
    Hart, Andrew McKay
    et al.
    Umeå University, Faculty of Medicine, Surgical and Perioperative Sciences, Hand Surgery.
    Terenghi, Giorgio
    Kellerth, Jan-Olof
    Umeå University, Faculty of Medicine, Integrative Medical Biology, Anatomy.
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Integrative Medical Biology, Anatomy. Umeå University, Faculty of Medicine, Surgical and Perioperative Sciences, Hand Surgery.
    Sensory neuroprotection, mitochondrial preservation, and therapeutic potential of N-acetyl-cysteine after nerve injury.2004In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 125, no 1, p. 91-101Article in journal (Refereed)
    Abstract [en]

    Neuronal death is a major factor in many neuropathologies, particularly traumatic, and yet no neuroprotective therapies are currently available clinically, although antioxidants and mitochondrial protection appear to be fruitful avenues of research. The simplest system involving neuronal death is that of the dorsal root ganglion after peripheral nerve trauma, where the loss of approximately 40% of primary sensory neurons is a major factor in the overwhelmingly poor clinical outcome of the several million nerve injuries that occur each year worldwide. N-acetyl-cysteine (NAC) is a glutathione substrate which is neuroprotective in a variety of in vitro models of neuronal death, and which may enhance mitochondrial protection. Using TdT uptake nick-end labelling (TUNEL), optical disection, and morphological studies, the effect of systemic NAC treatment upon L4 and 5 primary sensory neuronal death after sciatic nerve transection was investigated. NAC (150 mg/kg/day) almost totally eliminated the extensive neuronal loss found in controls both 2 weeks (no treatment 21% loss, NAC 3%, P=0.03) and 2 months after axotomy (no treatment 35% loss, NAC 3%, P=0.002). Glial cell death was reduced (mean number TUNEL positive cells 2 months after axotomy: no treatment 51/ganglion pair, NAC 16/ganglion pair), and mitochondrial architecture was preserved. The effects were less profound when a lower dose was examined (30 mg/kg/day), although significant neuroprotection still occurred. This provides evidence of the importance of mitochondrial dysregulation in axotomy-induced neuronal death in the peripheral nervous system, and suggests that NAC merits investigation in CNS trauma. NAC is already in widespread clinical use for applications outside the nervous system; it therefore has immediate clinical potential in the prevention of primary sensory neuronal death, and has therapeutic potential in other neuropathological systems.

  • 31. Hirt, B.
    et al.
    Penkova, Z. H.
    Eckhard, A.
    Liu, Wei
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Otolaryngology and Head and Neck Surgery.
    Rask-Andersen, Helge
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Otolaryngology and Head and Neck Surgery.
    Müller, M.
    Löwenheim, H.
    The subcellular distribution of aquaporin 5 in the cochlea reveals a water shunt at the perilymph-endolymph barrier2010In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 168, no 4, p. 957-970Article in journal (Refereed)
    Abstract [en]

    Aquaporins are membrane water channel proteins that have also been identified in the cochlea. Auditory function critically depends on the homeostasis of the cochlear fluids perilymph and endolymph. In particular, the ion and water regulation of the endolymph is essential for sensory transduction. Within the cochlear duct the lateral wall epithelium has been proposed to secrete endolymph by an aquaporin-mediated flow of water across its epithelial tight junction barrier. This study identifies interspecies differences in the cellular distribution of aquaporin 5 (AQP5) in the cochlear lateral wall of mice, rats, gerbils and guinea pigs. In addition the cellular expression pattern of AQP5 is described in the human cochlea. Developmental changes in rats demonstrate longitudinal and radial gradients along the cochlear duct. During early postnatal development a pancochlear expression is detected. However a regression to the apical quadrant and limitation to outer sulcus cells (OSCs) is observed in the adult. This developmental loss of AQP5 expression in the basal cochlear segments coincides with a morphological loss of contact between OSCs and the endolymph. At the subcellular level, AQP5 exhibits polarized expression in the apical plasma membrane of the OSCs. Complementary, the basolateral membrane in the root processes of the OSCs exhibits AQP4 expression. This differential localization of AQP5 and AQP4 in the apical and basolateral membranes of the same epithelial cell type suggests a direct aquaporin-mediated transcellular water shunt between the perilymph and endolymph in the OSCs of the cochlear lateral wall. In the human cochlea these findings may have pathophysiological implications attributed to a dysfunctional water regulation by AQP5 such as endolymphatic hydrops (i.e. in Meniere's disease) or sensorineural hearing loss (i.e. in Sjögren's syndrome).

  • 32. Holmberg, K
    et al.
    Kuteeva, E
    Brumovsky, P
    Kahl, U
    Karlström, H
    Lucas, G A
    Rodriquez, J
    Westerblad, H
    Hilke, Susanne
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Biomedicine and Surgery, Division of clinical chemistry.
    Theodorsson, Elvar
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Biomedicine and Surgery, Division of clinical chemistry. Östergötlands Läns Landsting, Centre for Laboratory Medicine, Department of Clinical Chemistry.
    Berge, O-G
    Lendahl, U
    Bartfai, T
    Hökfelt, T
    Generation and phenotypic characterization of a galanin overexpressing mouse2005In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 133, no 1, p. 59-77Article in journal (Refereed)
    Abstract [en]

    In most parts of the peripheral nervous system galanin is expressed at very low levels. To further understand the functional role of galanin, a mouse overexpressing galanin under the platelet-derived growth factor-B was generated, and high levels of galanin expression were observed in several peripheral tissues and spinal cord. Thus, a large proportion of neurons in autonomic and sensory ganglia were galanin-positive, as were most spinal motor neurons. Strong galanin-like immunoreactivity was also seen in nerve terminals in the corresponding target tissues, including skin, blood vessels, sweat and salivary glands, motor end-plates and the gray matter of the spinal cord. In transgenic superior cervical ganglia around half of all neuron profiles expressed galanin mRNA but axotomy did not cause a further increase, even if mRNA levels were increased in individual neurons. In transgenic dorsal root ganglia galanin mRNA was detected in around two thirds of all neuron profiles, including large ones, and after axotomy the percentage of galanin neuron profiles was similar in overexpressing and wild type mice. Axotomy reduced the total number of DRG neurons less in overexpressing than in wild type mice, indicating a modest rescue effect. Aging by itself increased galanin expression in the superior cervical ganglion in wild type and transgenic mice, and in the latter also in preganglionic cholinergic neurons projecting to the superior cervical ganglion. Galanin overexpressing mice showed an attenuated plasma extravasation, an increased pain response in the formalin test, and changes in muscle physiology, but did not differ from wild type mice in sudomotor function. These findings suggest that overexpressed galanin in some tissues of these mice can be released and via a receptor-mediated action influence pathophysiological processes. © 2005 Published by Elsevier Ltd on behalf of IBRO.

  • 33. Hughes, A S
    et al.
    Averill, S
    King, V R
    Molander, Carl
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Rehabilitation Medicine.
    Shortland, P J
    Neurochemical characterization of neuronal populations expressing protein kinase C gamma isoform in the spinal cord and gracile nucleus of the rat2008In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 153, no 2, p. 507-517Article in journal (Refereed)
    Abstract [en]

    Protein kinase C gamma (PKCgamma) is widely distributed throughout the CNS and is thought to play a role in long term hyper-excitability in nociceptive neurones. Here, we provide the first report of PKCgamma cells in the dorsal column nuclei of the adult rat. Retrograde labeling of PKCgamma cells from the thalamus with choleragenoid revealed that 25% of the PKCgamma positive gracile cells projected to the thalamus. Further, we have characterized the distribution of PKCgamma within gracile nucleus in terms of colocalization with various neurotransmitter receptors or enzymes and calcium binding proteins, and compared this with PKCgamma colocalization in cells of laminae I-III of the spinal cord. We show that approximately 90% of the PKCgamma cells in the gracile nucleus and 60% in the dorsal horn were immuno-positive for the AMPA receptor subunit glutamate 2/3 (GluR2/3). Little coexpression was seen with neurokinin 1 receptor, nitric oxide synthase (NOS) and the AMPA receptor subunit GluR1, markers of distinct neuronal subpopulations. In the spinal cord, a quarter of PKCgamma cells expressed calbindin, but very few cells did so in the gracile nucleus. Electrical stimulation at c-fiber strength of the normal or injured sciatic nerve was used to induce c-fos as a marker of postsynaptic activation in the spinal cord and gracile nucleus. Quantitative analysis of the number of PKCgamma positive gracile cells that expressed also c-fos increased from none to 24% after injury, indicating an alteration in the sensory activation pattern in these neurones after injury. C-fos was not induced in inner lamina II following c-fiber electrical stimulation of the intact or axotomized sciatic nerve, indicating no such plasticity at the spinal cord level. As dorsal column nuclei cells may contribute to allodynia after peripheral nerve injury, pharmacological modulation of PKCgamma activity may therefore be a possible way to ameliorate neuropathic pain after peripheral nerve injury.

  • 34. Illarionova, N. B.
    et al.
    Gunnarson, E.
    Li, Y.
    Brismar, Hjalmar
    KTH, School of Engineering Sciences (SCI), Applied Physics, Cell Physics.
    Bondar, A.
    Zelenin, S.
    Aperia, A.
    FUNCTIONAL AND MOLECULAR INTERACTIONS BETWEEN AQUAPORINS AND Na,K-ATPase2010In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 168, no 4, p. 915-925Article in journal (Refereed)
    Abstract [en]

    The water channel aquaporin 4 (AQP4) is abundantly expressed in astrocytes and provides a mechanism by which water permeability of the plasma membrane can be regulated. Astrocytes play a key role in the clearance of both potassium (K+) and glutamate released during neuronal activity. Emerging evidence suggests that AQP4 facilitates K+ clearance by astrocytes and contributes to recovery of neuronal excitability. Here we report that AQP4 can assemble with its regulator metabotropic glutamate receptor 5 (mGluR5) and with Na,K-ATPase; the enzyme responsible for active K+ transport and for establishing the electrochemical gradient across the cell plasma membrane. We have, by use of pull down assays in rat brain tissue, identified the segment in the AQP4 NH2-terminus containing the amino acid residues 23-32 as the site for interaction with Na,K-ATPase catalytic subunit and with mGluR5. Mutagenesis studies revealed that the AQP4 amino acids K27 and W30 are of key importance for interaction with both Na,K-ATPase and mGluR5. To confirm that interaction also occurs within intact cells, we have performed fluorescence resonance energy transfer (FRET) studies in primary astrocytes derived from rat striatum. The results indicate close proximity of wild type AQP4 and Na,K-ATPase in the plasma membrane of rat astrocytes. FRET efficiencies observed with the mutants AQP4 K27A and AQP4 W30A were significantly lower, highlighting the importance of these residues for the interaction between AQP4 and Na,K-ATPase. We conclude that AQP4/Na,K-ATPase/mGluR5 can form a macromolecular complex/transporting microdomain in astrocytes. This complex may be of functional importance for the regulation of water and K+ homeostasis in the brain, as well as for neuron-astrocyte metabolic crosstalk. (C) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  • 35.
    Jonsson, Anna
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Fransson, Rebecca
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Haramaki, Yutaka
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Skogh, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Brolin, Erika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Watanabe, Hiroyuki
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Nordvall, Gunnar
    Hallberg, Mathias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Sandström, Anja
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Nyberg, Fred
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Small constrained SP1-7 analogues bind to a unique site and promote anti-allodynic effects following systemic injection in mice2015In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 298, p. 112-119Article in journal (Refereed)
    Abstract [en]

    Previous results have shown that the substance P (SP) N-terminal fragment SP1–7 may attenuate hyperalgesia and produce anti-allodynia in animals using various experimental models for neuropathic pain. The heptapeptide was found to induce its effects through binding to and activating specific sites apart from any known neurokinin or opioid receptor. Furthermore, we have applied a medicinal chemistry program to develop lead compounds mimicking the effect of SP1–7. The present study was designed to evaluate the pharmacological effect of these compounds using the mouse spared nerve injury (SNI) model of chronic neuropathic pain. Also, as no comprehensive screen with the aim to identify the SP1–7 target has yet been performed we screened our lead compound H-Phe-Phe-NH2 toward a panel of drug targets. The extensive target screen, including 111 targets, did not reveal any hit for the binding site among a number of known receptors or enzymes involved in pain modulation. Our animal studies confirmed that SP1–7, but also synthetic analogs thereof, possesses anti-allodynic effects in the mouse SNI model of neuropathic pain. One of the lead compounds, a constrained H-Phe-Phe-NH2 analog, was shown to exhibit a significant anti-allodynic effect.

  • 36.
    Kahsai, Lily
    et al.
    Stockholm University, Faculty of Science, Department of Zoology.
    Carlsson, Mikael A.
    Stockholm University, Faculty of Science, Department of Zoology.
    Winther, Åsa M.
    Stockholm University, Faculty of Science, Department of Zoology.
    Nässel, Dick R.
    Stockholm University, Faculty of Science, Department of Zoology.
    Distribution of metabotropic receptors of serotonin, dopamine, GABA, glutamate, and short neuropeptide F in the central complex of Drosophila2012In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 208, p. 11-26Article in journal (Refereed)
    Abstract [en]

    The central complex is a prominent set of midline neuropils in the insect brain, known to be a higher locomotor control center that integrates visual inputs and modulates motor outputs. It is composed of four major neuropil structures, the ellipsoid body (EB), fan-shaped body (FB), noduli (NO), and protocerebral bridge (PB). In Drosophila different types of central complex neurons have been shown to express multiple neuropeptides and neurotransmitters; however, the distribution of corresponding receptors is not known. Here, we have mapped metabotropic, G-protein–coupled receptors (GPCRs) of several neurotransmitters to neurons of the central complex. By combining immunocytochemistry with GAL4 driven green fluorescent protein, we examined the distribution patterns of six different GPCRs: two serotonin receptor subtypes (5-HT1B and 5-HT7), a dopamine receptor (DopR), the metabotropic GABAB receptor (GABABR), the metabotropic glutamate receptor (DmGluRA) and a short neuropeptide F receptor (sNPFR1). Five of the six GPCRs were mapped to different neurons in the EB (sNPFR1 was not seen). Different layers of the FB express DopR, GABABR, DmGluRA, and sNPFR1, whereas only GABABR and DmGluRA were localized to the PB. Finally, strong expression of DopR and DmGluRA was detected in the NO. In most cases the distribution patterns of the GPCRs matched the expression of markers for their respective ligands. In some nonmatching regions it is likely that other types of dopamine and serotonin receptors or ionotropic GABA and glutamate receptors are expressed. Our data suggest that chemical signaling and signal modulation are diverse and highly complex in the different compartments and circuits of the Drosophila central complex. The information provided here, on receptor distribution, will be very useful for future analysis of functional circuits in the central complex, based on targeted interference with receptor expression.

  • 37.
    Karalija, Amar
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Novikova, Ludmila N
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Kingham, Paul J
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Novikov, Lev N
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    The effects of N-acetyl-cysteine and acetyl-l-carnitine on neural survival, neuroinflammation and regeneration following spinal cord injury2014In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 269, p. 143-151Article in journal (Refereed)
    Abstract [en]

    Traumatic spinal cord injury induces a long-standing inflammatory response in the spinal cord tissue, leading to a progressive apoptotic death of spinal cord neurons and glial cells. We have recently demonstrated that immediate treatment with the antioxidants N-acetyl-cysteine (NAC) and acetyl-l-carnitine (ALC) attenuates neuroinflammation, induces axonal sprouting, and reduces the death of motoneurons in the vicinity of the trauma zone 4weeks after initial trauma. The objective of the current study was to investigate the effects of long-term antioxidant treatment on the survival of descending rubrospinal neurons after spinal cord injury in rats. It also examines the short- and long-term effects of treatment on apoptosis, inflammation, and regeneration in the spinal cord trauma zone. Spinal cord hemisection performed at the level C3 induced a significant loss of rubrospinal neurons 8weeks after injury. At 2weeks, an increase in the expression of the apoptosis-associated markers BCL-2-associated X protein (BAX) and caspase 3, as well as the microglial cell markers OX42 and ectodermal dysplasia 1 (ED1), was seen in the trauma zone. After 8weeks, an increase in immunostaining for OX42 and the serotonin marker 5HT was detected in the same area. Antioxidant therapy reduced the loss of rubrospinal neurons by approximately 50%. Treatment also decreased the expression of BAX, caspase 3, OX42 and ED1 after 2weeks. After 8weeks, treatment decreased immunoreactivity for OX42, whereas it was increased for 5HT. In conclusion, this study provides further insight in the effects of treatment with NAC and ALC on descending pathways, as well as short- and long-term effects on the spinal cord trauma zone.

  • 38.
    Karlsson, Miriam
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Developmental Neuroscience.
    Hallböök, Finn
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Developmental Neuroscience.
    Kainic acid, tetrodotoxin and light modulate expression of brain-derived neurotrophic factor in developing avian retinal ganglion cells and their tectal target1998In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 83, no 1, p. 137-150Article in journal (Refereed)
    Abstract [en]

    Increasing evidence underlies the importance of neurotrophins as neuron-derived trophic signals in the developing visual system, although their precise roles are still undefined. Here we show that brain-derived neurotrophic factor messenger RNA is simultaneously expressed in a subpopulation of retinal ganglion cells and in their target during late embryogenesis. Moreover, light as well as the excitotoxin; kainic acid, induced an increase of the brain-derived neurotrophic factor messenger RNA, which could be blocked by the sodium-channel blocker; tetrodotoxin. Messenger RNA for trkB, a receptor for brain-derived neurotrophic factor, was found in the retinal ganglion cells expressing brain-derived neurotrophic factor showing that certain retinal ganglion cells express messenger RNA both for brain-derived neurotrophic factor and trkB. Furthermore, trkB messenger RNA was found in tectum, in the same layers as the brain-derived neurotrophic factor messenger RNA. These findings suggest that brain-derived neurotrophic factor expression is regulated in an activity-dependent manner during the phase of development when neuronal activity plays an important role.

  • 39.
    Kastrup, Ylva
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Biomedicine and Surgery, Division of cell biology.
    Le Grevès, M
    Nyberg, F
    Blomqvist, Anders
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Biomedicine and Surgery, Division of cell biology.
    Distribution of growth hormone receptor mRNA in the brain stem and spinal cord of the rat2005In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 130, no 2, p. 419-425Article in journal (Refereed)
    Abstract [en]

    By using in situ hybridization histochemistry the distribution of growth hormone (GH) receptor mRNA was examined in the rat brain stem and spinal cord. Dense labeling was seen in the arcuate nucleus of the hypothalamus, as reported previously, but also in several other areas, including the locus coeruleus, the area postrema, and the commissural part of the nucleus of the solitary tract. Other labeled structures included the superior lateral parabrachial nucleus, the facial, hypoglossal and trigeminal motor nuclei, the nucleus incertus, the dorsal tegmental nucleus, the dorsal raphe nucleus, the nucleus of the trapezoid body, and the superficial layers of the dorsal horn of the spinal cord. These findings provide support for a direct action of GH on brain regions involved in various aspects of homeostatic control. Thus, the distribution of GH receptor mRNA to visceral sensory and motor structures is consonant with a role of GH in the regulation of food intake and energy homeostasis. Its presence in the superficial dorsal horn of the spinal cord indicates a role for GH in the initial processing of fine afferent input, and may help explain the beneficial effects of GH replacement in certain unclear pain conditions. © 2004 IBRO. Published by Elsevier Ltd. All rights reserved.

  • 40. Kastrup, Ylva
    et al.
    Le Grevès, Madeleine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Nyberg, Fred
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Blomqvist, Anders
    Distribution of growth hormone receptor mRNA in the brain stem and spinal cord of the rat2004In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 130, no 2, p. 419-425Article in journal (Refereed)
    Abstract [en]

    By using in situ hybridization histochemistry the distribution of growth hormone (GH) receptor mRNA was examined in the rat brain stem and spinal cord. Dense labeling was seen in the arcuate nucleus of the hypothalamus, as reported previously, but also in several other areas, including the locus coeruleus, the area postrema, and the commissural part of the nucleus of the solitary tract. Other labeled structures included the superior lateral parabrachial nucleus, the facial, hypoglossal and trigeminal motor nuclei, the nucleus incertus, the dorsal tegmental nucleus, the dorsal raphe nucleus, the nucleus of the trapezoid body, and the superficial layers of the dorsal horn of the spinal cord. These findings provide support for a direct action of GH on brain regions involved in various aspects of homeostatic control. Thus, the distribution of GH receptor mRNA to visceral sensory and motor structures is consonant with a role of GH in the regulation of food intake and energy homeostasis. Its presence in the superficial dorsal horn of the spinal cord indicates a role for GH in the initial processing of fine afferent input, and may help explain the beneficial effects of GH replacement in certain unclear pain conditions.

  • 41.
    Kindlundh, Anna MS
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Lindblom, Jonas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Bergström, Lena
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Nyberg, Fred
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    The anabolic-androgenic steroid nandrolone induces alterations in the density of serotonergic 5HT1B and 5HT2 receptors in the male rat brain2003In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 119, no 1, p. 113-120Article in journal (Refereed)
    Abstract [en]

    Anabolic-androgenic steroids (AAS) are partly misused by males in order to become brave and intoxicated and these agents are highly associated with psychosis, disinhibition, aggression and acts of violence. Since such behavioral states have been related to an imbalanced serotonergic system and the involvement of the serotonergic 5HT(1B) and the 5HT(2) receptors, it was important to discern the impact of AAS on these receptors. The objective of our study was to investigate the effects of 2 weeks of treatment with the AAS nandrolone decanoate at three different doses (1, 5, 15 mg/kg/day) on the total specific binding of the radioligands [(125)I]-(+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) (5HT(2) receptors) by autoradiography. All doses caused a significant down-regulation of the 5HT(1B) receptor density in the hippocampal CA(1) and in the medial globus pallidus and a significant up-regulation of the 5HT(2) receptor density in the nucleus accumbens shell. Alterations in receptor density were also observed in the lateral globus pallidus, ventromedial hypothalamus, the amygdala and in the intermediate layers of various cortex regions. In conclusion, serotonergic 5HT(1B) or 5HT(2) receptors are likely to play important roles in mediating observed emotional states and behavioral changes among AAS abusers.

  • 42. Kiyatkin, E. A.
    et al.
    Sharma, Hari Shanker
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Anaesthesiology and Intensive Care.
    Permeability of the blood-brain barrier depends on brain temperature2009In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 161, no 3, p. 926-939Article in journal (Refereed)
    Abstract [en]

    Increased permeability of the blood-brain barrier (BBB) has been reported in different conditions accompanied by hyperthermia, but the role of brain temperature per se in modulating brain barrier functions has not been directly examined. To delineate the contribution of this factor, we examined albumin immunoreactivity in several brain structures (cortex, hippocampus, thalamus and hypothalamus) of pentobarbital-anesthetized rats (50 mg/kg i.p.), which were passively warmed to different levels of brain temperature (32-42 degrees C). Similar brain structures were also examined for the expression of glial fibrillary acidic protein (GFAP), an index of astrocytic activation, water and ion content, and morphological cell abnormalities. Data were compared with those obtained from drug-free awake rats with normal brain temperatures (36-37 degrees C). The numbers of albumin- and GFAP-positive cells strongly correlate with brain temperature, gradually increasing from approximately 38.5 degrees C and plateauing at 41-42 degrees C. Brains maintained at hyperthermia also showed larger content of brain water and Na(+), K(+) and Cl(-) as well as structural abnormalities of brain cells, all suggesting acute brain edema. The latter alterations were seen at approximately 39 degrees C, gradually progressed with temperature increase, and peaked at maximum hyperthermia. Temperature-dependent changes in albumin immunoreactivity tightly correlated with GFAP immunoreactivity, brain water, and numbers of abnormal cells; they were found in each tested area, but showed some structural specificity. Notably, a mild BBB leakage, selective glial activation, and specific cellular abnormalities were also found in the hypothalamus and piriform cortex during extreme hypothermia (32-33 degrees C); in contrast to hyperthermia these changes were associated with decreased levels of brain water, Na(+) and K(+), suggesting acute brain dehydration. Therefore, brain temperature per se is an important factor in regulating BBB permeability, alterations in brain water homeostasis, and subsequent structural abnormalities of brain cells.

  • 43. Konradsson-Geuken, A
    et al.
    Wu, H Q
    Gash, C R
    Alexander, K S
    Campbell, A
    Sozeri, Y
    Pellicciari, R
    Schwarcz, R
    Bruno, J P
    Cortical kynurenic acid bi-directionally modulates prefrontal glutamate levels as assessed by microdialysis and rapid electrochemistry.2010In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 169, no 4Article in journal (Refereed)
    Abstract [en]

    Using two in vivo methods, microdialysis and rapid in situ electrochemistry, this study examined the modulation of extracellular glutamate levels by endogenously produced kynurenic acid (KYNA) in the prefrontal cortex (PFC) of awake rats. Measured by microdialysis, i.p. administration of KYNA's bioprecursor L-kynurenine dose-dependently elevated extracellular KYNA and reduced extracellular glutamate (nadir after 50 mg/kg kynurenine: 60% decrease from baseline values). This dose-dependent decrease in glutamate levels was also seen using a glutamate-sensitive microelectrode array (MEA) (31% decrease following 50 mg/kg kynurenine). The kynurenine-induced reduction in glutamate was blocked (microdialysis) or attenuated (MEA) by co-administration of galantamine (3 mg/kg i.p.), a drug that competes with KYNA at an allosteric potentiating site of the alpha 7 nicotinic acetylcholine receptor. In separate experiments, extracellular glutamate levels were measured by MEA following the local perfusion (45 min) of the PFC with kynurenine (2.5 microM) or the selective KYNA biosynthesis inhibitor S-ethylsulfonylbenzoylalanine (S-ESBA; 5 mM). In agreement with previous microdialysis studies, local kynurenine application produced a reversible reduction in glutamate (nadir: -29%), whereas perfusion with S-ESBA increased glutamate levels reversibly (maximum: +38%). Collectively, these results demonstrate that fluctuations in the biosynthesis of KYNA in the PFC bi-directionally modulate extracellular glutamate levels, and that qualitatively very similar data are obtained by microdialysis and MEA. Since KYNA levels are elevated in the PFC of individuals with schizophrenia, and since prefrontal glutamatergic and nicotinic transmission mediate cognitive flexibility, normalization of KYNA levels in the PFC may constitute an effective treatment strategy for alleviating cognitive deficits in schizophrenia.

  • 44.
    Korhonen, L.
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Hansson, I.
    Maugras, C.
    Wehrle, R.
    Kairisalo, M.
    Borgkvist, A.
    Jokitalo, E.
    Sotelo, C.
    Fisone, G.
    Dusart, I.
    Lindholm, D.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Expression of X-chromosome linked inhibitor of apoptosis protein in mature Purkinje cells and in retinal bipolar cells in transgenic mice induces neurodegeneration2008In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 156, no 3, p. 515-526Article in journal (Refereed)
    Abstract [en]

    Transgenic mice with overexpression of the caspase-inhibitor, X-chromosome-linked inhibitor of apoptosis protein (XIAP) in Purkinje cell (PC) and in retinal bipolar cells (RBCs) were produced to study the regulation of cell death. Unexpectedly, an increased neurodegeneration was observed in the PCs in these L7-XIAP mice after the third postnatal week with the mice exhibiting severe ataxia. The loss of PCs was independent of Bax as shown by crossing the L7-XIAP mice with Bax gene-deleted mice. Electron microscopy revealed intact organelles in PCs but with the stacking of ER cisterns indicative of cell stress. Immunostaining for cell death proteins showed an increased phosphorylation of c-Jun in the PCs, suggesting an involvement in cell degeneration. Apart from PCs, the number of RBCs was decreased in adult retina in line with the expression pattern for the L7 promoter. The data show that overexpression of the anti-apoptotic protein XIAP in vulnerable neurons leads to enhanced cell death. The mechanisms underlying this neurodegeneration can be related to the effects of XIAP on cell stress and altered cell signaling.

  • 45.
    Koskinen, Lars-Owe
    et al.
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    Olivecrona, Magnus
    Department of Anaesthesia and Intensive Care, University of Örebro, Sweden.
    Grande, P. O.
    Department of Clinical Science in Lund, Anaesthesia and Intensive Care, Lund University, Sweden.
    Severe traumatic brain injury management and clinical outcome using the Lund concept2014In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 283, p. 245-255Article, review/survey (Refereed)
    Abstract [en]

    This review covers the main principles of the Lund concept for treatment of severe traumatic brain injury. This is followed by a description of results of clinical studies in which this therapy or a modified version of the therapy has been used. Unlike other guidelines, which are based on meta-analytical approaches, important components of the Lund concept are based on physiological mechanisms for regulation of brain volume and brain perfusion and to reduce transcapillary plasma leakage and the need for plasma volume expanders. There have been nine non-randomized and two randomized outcome studies with the Lund concept or modified versions of the concept. The non-randomized studies indicated that the Lund concept is beneficial for outcome. The two randomized studies were small but showed better outcome in the groups of patients treated according to the modified principles of the Lund concept than in the groups given a more conventional treatment. This article is part of a Special Issue entitled: Brain compensation. For good?. (C) 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  • 46.
    Larsson, Maria
    et al.
    Stockholm University, Faculty of Social Sciences, Department of Psychology, Perception and psychophysics. Stockholm Brain Institute, Stockholm, Sweden.
    Farde, L.
    Karolinska Institutet.
    Hummel, T.
    University of Dresden Medical School.
    Witt, M.
    University of Dresden Medical School.
    Erixon Lindroth, N.
    Karolinska Institutet.
    Bäckman, Lars
    Karolinska Institutet.
    Age-related loss of olfactory sensitivity: Association to dopamine transporter binding in putamen2009In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 161, no 2, p. 422-426Article in journal (Refereed)
    Abstract [en]

    The relationship between age-related reductions in the binding potential for the striatal dopamine transporter (DAT) and age-related deficits in olfactory sensitivity was examined in 12 subjects ranging from 36 to 82 years of age. Positron emission tomography (PET) and the radioligand [11C]β-CIT-FE were used to determine DAT binding in two striatal regions, the caudate and the putamen. The results showed age-related losses of DAT binding from early to late adulthood of similar size for caudate and putamen, and there was a pronounced age deterioration in olfactory sensitivity. Importantly, the age-related olfactory deficit was associated with reductions in DAT binding in putamen, but not caudate. Also, DAT binding in putamen added systematic variance in odor threshold after controlling for age. The findings indicate that DAT binding in putamen is related to age-related olfactory deficits, as well as to odor sensitivity independently of age.

  • 47.
    Larsson, Max
    et al.
    Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
    Agalave, N
    Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
    Watanabe, M
    Department of Anatomy, Hokkaido University School of Medicine, Sapporo, Japan.
    Svensson, C I
    Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
    Distribution of transmembrane AMPA receptor regulatory protein (TARP) isoforms in the rat spinal cord.2013In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 248, p. 180-193Article in journal (Refereed)
    Abstract [en]

    The transmembrane α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor regulatory proteins (TARPs) are a family of auxiliary AMPA receptor subunits that differentially modulate trafficking and many functional properties of the receptor. To investigate which TARP isoforms may be involved in AMPA receptor-mediated spinal synaptic transmission, we have mapped the localization of five of the known TARP isoforms, namely γ-2 (also known as stargazin), γ-3, γ-4, γ-7 and γ-8, in the rat spinal cord. Immunoblotting showed expression of all isoforms in the spinal cord to varying degrees. At the light microscopic level, immunoperoxidase labeling of γ-4, γ-7 and γ-8 was found throughout spinal gray matter. In white matter, γ-4 and γ-7 immunolabeling was observed in astrocytic processes and in mature oligodendrocytes. In pepsin-treated spinal cord, γ-7 often colocalized with GluA2 immunopositive puncta in the deep dorsal horn as well as in the ventral horn, but not in the superficial dorsal horn. Postembedding immunogold labeling was further used to assess the synaptic localization of γ-2, γ-7 and γ-8 in the dorsal horn. Synaptic immunogold labeling of γ-2 was sparse throughout the dorsal horn, with some primary afferent synapses weakly labeled, whereas relatively strong γ-7 immunogold labeling was found at deep dorsal horn synapses, including at synapses formed by low-threshold mechanosensitive primary afferent terminals. Prominent immunogold labeling of γ-8 was frequently detected at synapses established by primary afferent fibers. The spinal localization patterns of TARP isoforms reported here suggest that AMPA receptors at spinal synaptic populations and in glial cells may exhibit different functional characteristics owing to differences in auxiliary subunit composition.

  • 48.
    Laska, Matthias
    et al.
    Yale University School of Medicine.
    Shepherd, G.M.
    Department of Neurobiology Yale University School of Medicine, USA.
    Olfactory discrimination ability of CD-1 mice for a large array of enantiomers2007In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 144, no 1, p. 295-301Article in journal (Refereed)
    Abstract [en]

    With use of a conditioning paradigm, the ability of eight CD-1 mice to distinguish between 15 enantiomeric odor pairs was investigated. The results demonstrate a) that CD-1 mice are capable of discriminating between all odor pairs tested, b) that the enantiomeric odor pairs clearly differed in their degree of discriminability and thus in their perceptual similarity, and c) that pre-training with the rewarded stimuli led to improved initial but not terminal or overall performance. A comparison between the proportion of discriminated enantiomeric odor pairs of the CD-1 mice and those of other species tested in earlier studies on the same discrimination tasks (or on subsets thereof) shows a significant positive correlation between discrimination performance and the number of functional olfactory receptor genes. These findings provide the first evidence of a highly developed ability of CD-1 mice to discriminate between an array of non-pheromonal chiral odorants. Further, they suggest that a species’ olfactory discrimination capabilities for these odorants may be correlated with its number of functional olfactory receptor genes. The data presented here may provide useful information for the interpretation of findings from electrophysiological or imaging studies in the mouse and the elucidation of odor structure-activity relationships.

  • 49.
    Lillesaar, Christina
    et al.
    Linköping University, Department of Biomedicine and Surgery, Cell biology. Linköping University, Faculty of Health Sciences.
    Arenas, E.
    Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics Karolinska Institutet, Stockholm, Sweden.
    Hildebrand, Claes
    Linköping University, Department of Biomedicine and Surgery, Cell biology. Linköping University, Faculty of Health Sciences.
    Fried, K.
    Center for Oral Biology, Novum, Karolinska Institutet, Huddinge, Sweden.
    Responses of rat trigeminal neurones to dental pulp cells or fibroblasts overexpressing neurotrophic factors in vitro2003In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 119, no 2, p. 443-451Article in journal (Refereed)
    Abstract [en]

    The adult dental pulp is innervated by sensory trigeminal axons and efferent sympathetic axons. Rat trigeminal ganglia extend neurites when co-cultivated in vitro with pulpal tissue explants, suggesting that pulpal cells secrete soluble molecules that stimulate the growth of trigeminal ganglion axons. In addition, cultured pulpal cells produce mRNAs for neurotrophins and glial cell line-derived neurotrophic factor-family members. These data suggest that neurotrophic factors are involved in the formation of a pulpal innervation. Here, we examine how pulpal cells and 3T3 fibroblasts overexpressing certain neurotrophic factors (nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, neurotrophin-4, glial cell line-derived neurotrophic factor or neurturin) influence survival and growth of single trigeminal ganglion neurones in vitro in quantitative terms. The results show that most of the neurotrophic factor-overexpressing fibroblasts induce similar neuronal soma diameters, but higher survival rates and neurite lengths compared with pulpal cells. With respect to neurite growth pattern, trigeminal ganglion neurones co-cultured with fibroblasts overexpressing nerve growth factor develop a geometry that is most similar to that seen in co-cultures with pulpal cells. We conclude that none of the fibroblasts overexpressing neurotrophic factors can fully mimic the effects of pulpal cells on trigeminal ganglion neurones, and that nerve growth factor promotes a neurite growth pattern most similar to the picture seen in co-cultures with pulpal cells.

  • 50.
    Lillesaar, Christina
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Fried, K.
    Center for Oral Biology, Novum, Karolinska Institutet, Huddinge, Sweden.
    Neurites from trigeminal ganglion explants grown in vitro are repelled or attracted by tooth-related tissues depending on developmental stage2004In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 125, no 1, p. 149-161Article in journal (Refereed)
    Abstract [en]

    Although neurite attracting factors are present in the developing dental pulp and trigeminal ganglion (TG) axons can respond to such factors, nerve fibres do not enter the tooth pulp until a late developmental stage compared with surrounding tissues supplied by the TG. This suggests that the dental pulp secretes neurite growth inhibitory molecules. Semaphorins represent one group of substances, which can inhibit/repel growing neurites. The aims of the present study were to investigate if dental tissue explants inhibit/repel neurite growth from TGs at some developmental stages in vitro, and if so, to seek evidence for or against a participation of semaphorins in that interaction. By co-culturing mandibular or dental epithelial and mesenchymal tissue explants and TGs in collagen gels, we found that embryonic day 11 (E11) mandibular and E13 dental mesenchymal explants repel neurites from corresponding TGs. Repulsion was replaced by attraction if tissues from late embryonic or early postnatal mice (E17–postnatal day 5) were used. Using semi-quantitative reverse transcription/polymerase chain reaction we showed that a number of semaphorins were expressed by tooth-related mesenchyme collected from embryonic and postnatal mice. The expression of some semaphorins (3A, 3C, 3F, 4F, 5B, 6A, 6B and 6C) was high early in development and then decreased in a temporal pattern that correlated with neurite inhibitory/repulsive effects of dental mesenchyme observed in co-cultures. The expression of other semaphorins increased with development (3B, 4A and 7A), whilst others varied irregularly or remained at a fairly constant level (3E, 4B, 4C, 4D, 4G and 5A). Immunohistochemistry was used to determine if tooth-related nerve fibres possess neuropilins. This revealed that axons surrounding embryonic tooth buds express neuropilin-1, but not neuropilin-2. In postnatal teeth, nerve fibres located within the tooth pulp were immunonegative for neuropilin-1 and neuropilin-2. We conclude that developing mandibular/dental mesenchyme can inhibit/repel neurite growth in vitro. Our results support the hypothesis that semaphorins may be involved in this interaction.

12 1 - 50 of 94
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf