Change search
Refine search result
1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Armstrong, Andrea
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Mattsson, Niklas
    Sahlgrens University Hospital, Sweden University of Calif San Francisco, CA 94143 USA .
    Appelqvist, Hanna
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Janefjord, Camilla
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Sandin, Linnea
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Agholme, Lotta
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Olsson, Bob
    Sahlgrens University Hospital, Sweden .
    Svensson, Samuel
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Health Sciences. AlzeCure Fdn.
    Blennow, Kaj
    Sahlgrens University Hospital, Sweden .
    Zetterberg, Henrik
    Sahlgrens University Hospital, Sweden UCL Institute Neurol, England .
    Kågedal, Katarina
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Lysosomal Network Proteins as Potential Novel CSF Biomarkers for Alzheimers Disease2014In: Neuromolecular medicine, ISSN 1535-1084, E-ISSN 1559-1174, Vol. 16, no 1, p. 150-160Article in journal (Refereed)
    Abstract [en]

    The success of future intervention strategies for Alzheimers disease (AD) will likely rely on the development of treatments starting early in the disease course, before irreversible brain damage occurs. The pre-symptomatic stage of AD occurs at least one decade before the clinical onset, highlighting the need for validated biomarkers that reflect this early period. Reliable biomarkers for AD are also needed in research and clinics for diagnosis, patient stratification, clinical trials, monitoring of disease progression and the development of new treatments. Changes in the lysosomal network, i.e., the endosomal, lysosomal and autophagy systems, are among the first alterations observed in an AD brain. In this study, we performed a targeted search for lysosomal network proteins in human cerebrospinal fluid (CSF). Thirty-four proteins were investigated, and six of them, early endosomal antigen 1 (EEA1), lysosomal-associated membrane proteins 1 and 2 (LAMP-1, LAMP-2), microtubule-associated protein 1 light chain 3 (LC3), Rab3 and Rab7, were significantly increased in the CSF from AD patients compared with neurological controls. These results were confirmed in a validation cohort of CSF samples, and patients with no neurochemical evidence of AD, apart from increased total-tau, were found to have EEA1 levels corresponding to the increased total-tau levels. These findings indicate that increased levels of LAMP-1, LAMP-2, LC3, Rab3 and Rab7 in the CSF might be specific for AD, and increased EEA1 levels may be a sign of general neurodegeneration. These six lysosomal network proteins are potential AD biomarkers and may be used to investigate lysosomal involvement in AD pathogenesis.

  • 2.
    Gu, Gucci Jijuan
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular tools. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Lund, Harald
    Wu, Di
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular tools. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Blokzijl, Andries
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular tools. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Classon, Christina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular tools. Uppsala University, Science for Life Laboratory, SciLifeLab.
    von Euler, Gabriel
    Landegren, Ulf
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular tools. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Sunnemark, Dan
    Kamali-Moghaddam, Masood
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular tools. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Role of Individual MARK Isoforms in Phosphorylation of Tau at Ser(262) in Alzheimer's Disease2013In: Neuromolecular medicine, ISSN 1535-1084, E-ISSN 1559-1174, Vol. 15, no 3, p. 458-469Article in journal (Refereed)
    Abstract [en]

    The microtubule-affinity regulating kinase (MARK) family consists of four highly conserved members that have been implicated in phosphorylation of tau protein, causing formation of neurofibrillary tangles in Alzheimer's disease (AD). Understanding of roles by individual MARK isoform in phosphorylating tau has been limited due to lack of antibodies selective for each MARK isoform. In this study, we first applied the proximity ligation assay on cells to select antibodies specific for each MARK isoform. In cells, a CagA peptide specifically and significantly inhibited tau phosphorylation at Ser(262) mediated by MARK4 but not other MARK isoforms. We then used these antibodies to study expression levels of MARK isoforms and interactions between tau and individual MARK isoforms in postmortem human brains. We found a strong and significant elevation of MARK4 expression and MARK4-tau interactions in AD brains, correlating with the Braak stages of the disease. These results suggest the MARK4-tau interactions are of functional importance in the progression of AD and the results also identify MARK4 as a promising target for AD therapy.

  • 3. Narkilahti, Susanna
    et al.
    Jutila, Leena
    Alafuzoff, Irina
    Department of Neuroscience and Neurology, University of Kuopio Finland .
    Karkola, Kari
    Paljärvi, Leo
    Immonen, Arto
    Vapalahti, Matti
    Mervaala, Esa
    Kälviäinen, Reetta
    Pitkänen, Asla
    Increased expression of caspase 2 in experimental and human temporal lobe epilepsy.2007In: Neuromolecular medicine, ISSN 1535-1084, E-ISSN 1559-1174, Vol. 9, no 2, p. 129-44Article in journal (Refereed)
    Abstract [en]

    Temporal lobe epilepsy (TLE) is often caused by a neurodegenerative brain insult that triggers epileptogenesis, and eventually results in spontaneous seizures, i.e., epilepsy. Understanding the mechanisms of cell death is a key for designing new drug therapies for preventing the neurodegeneration associated with TLE. Here, we investigated the expression of caspase 2, a protein involved in programmed cell death, during the course of epilepsy. We investigated caspase 2 expression in hippocampal samples derived from patients operated on for drug refractory TLE. To understand the evolution of altered-caspase 2 expression during the epileptic process, we also examined caspase 2 expression and activity in the rat hippocampus after status epilepticus-induced acute damage, during epileptogenesis, and after the onset of epilepsy. Caspase 2 expression was enhanced in the hippocampal neurons in chronic TLE patients. In rats, status epilepticus-induced caspase 2 labeling paralleled the progression of neurodegeneration. Proteolytic activation and cleavage of caspase 2 was also detected in the rat brain undergoing epileptogenesis. Our data suggest that caspase 2-mediated programmed cell death participates in the seizure-induced degenerative process in experimental and human TLE.

  • 4.
    Rosen, Christoffer
    et al.
    University of Gothenburg.
    Andreasson, Ulf
    University of Gothenburg.
    Mattsson, Niklas
    University of Gothenburg.
    Marcusson, Jan
    Linköping University, Department of Clinical and Experimental Medicine, Geriatric. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Geriatric Medicine.
    Minthon, Lennart
    Lund University.
    Andreasen, Niels
    Karolinska University Hospital.
    Blennow, Kaj
    University of Gothenburg.
    Zetterberg, Henrik
    University of Gothenburg.
    Cerebrospinal Fluid Profiles of Amyloid beta-Related Biomarkers in Alzheimers Disease2012In: Neuromolecular medicine, ISSN 1535-1084, E-ISSN 1559-1174, Vol. 14, no 1, p. 65-73Article in journal (Refereed)
    Abstract [en]

    The amyloid cascade hypothesis on the pathogenesis of Alzheimers disease (AD) states that amyloid beta (A beta) accumulation in the brain is a key factor that initiates the neurodegenerative process. A beta is generated from amyloid precursor protein (APP) through sequential cleavages by BACE1 (the major beta-secretase in the brain) and gamma-secretase. The purpose of this study was to characterize APP metabolism in vivo in AD patients versus cognitively healthy subjects by examining alterations in cerebrospinal fluid (CSF) biomarkers. We measured BACE1 activity and concentrations of alpha- and beta-cleaved soluble APP (sAPP alpha and sAPP beta, respectively) and A beta 40 in CSF, biomarkers that all reflect the metabolism of APP, in 75 AD patients and 65 cognitively healthy controls. These analytes were also applied in a multivariate model to determine whether they provided any added diagnostic value to the core CSF AD biomarkers A beta 42, T-tau, and P-tau. We found no significant differences in BACE1 activity or sAPP alpha, sAPP beta, and A beta 40 concentrations between AD patients and controls. A multivariate model created with all analytes did not improve the separation of AD patients from controls compared with using the core AD biomarkers alone, highlighting the strong diagnostic performance of A beta 42, T-tau, and P-tau for AD. However, AD patients in advanced clinical stage, as determined by low MMSE score (a parts per thousand currency sign20), had lower BACE1 activity and sAPP alpha, sAPP beta, and A beta 40 concentrations than patients with higher MMSE score, suggesting that these markers may be related to the severity of the disease.

  • 5.
    Warnecke, Andreas
    et al.
    Karolinska Inst, Appl Immunol & Immunotherapy, Dept Clin Neurosci, Ctr Mol Med,Karolinska Univ Hosp Solna, S-17176 Solna, Sweden..
    Abele, Sonja
    Karolinska Inst, Appl Immunol & Immunotherapy, Dept Clin Neurosci, Ctr Mol Med,Karolinska Univ Hosp Solna, S-17176 Solna, Sweden..
    Musunuri, Sravani
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Bergquist, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Harris, Robert A.
    Karolinska Inst, Appl Immunol & Immunotherapy, Dept Clin Neurosci, Ctr Mol Med,Karolinska Univ Hosp Solna, S-17176 Solna, Sweden..
    Scavenger Receptor A Mediates the Clearance and Immunological Screening of MDA-Modified Antigen by M2-Type Macrophages2017In: Neuromolecular medicine, ISSN 1535-1084, E-ISSN 1559-1174, Vol. 19, no 4, p. 463-479Article in journal (Refereed)
    Abstract [en]

    In this study, we investigated the uptake of malondialdehyde (MDA)-modified myelin oligodendrocyte glycoprotein (MOG) in the context of lipid peroxidation and its implications in CNS autoimmunity. The use of custom-produced fluorescently labeled versions of MOG or MDA-modified MOG enabled us to study and quantify the uptake by different macrophage populations and to identify the responsible receptor, namely SRA. The SRA-mediated uptake of MDA-modified MOG is roughly tenfold more efficient compared to that of the native form. Notably, this uptake is most strongly associated with anti-inflammatory M2-type macrophages. MDA-modified MOG was demonstrated to be resistant to degradation by lysine-dependent proteases in vitro, but the overall digestion fragments appeared to be similar in cell lysates, although their relative abundance appeared to be altered as a result of faster uptake. Accordingly, MDA-modified MOG is processed for presentation by APCs, allowing maximized recall proliferation of MOG(35-55)-specific 2D2 T cells in vitro due to higher uptake. However, MDA modification of MOG did not enhance immune priming or disease course in the in vivo MOG-EAE model, but did induce antibody responses to both MOG and MDA adducts. Taken together our results indicate that MDA adducts primarily constitute clearance signals for phagocytes and promote rapid removal of antigen, which is subjected to immunological screening by previously licensed T cells.

  • 6.
    Zetterström, Per
    et al.
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Clinical chemistry.
    Graffmo, Karin S.
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Andersen, Peter M
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    Brännström, Thomas
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Marklund, Stefan L.
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Clinical chemistry.
    Composition of soluble misfolded superoxide Dismutase-1 in murine models of Amyotrophic Lateral Sclerosis2013In: Neuromolecular medicine, ISSN 1535-1084, E-ISSN 1559-1174, Vol. 15, no 1, p. 147-158Article in journal (Refereed)
    Abstract [en]

    A common cause of amyotrophic lateral sclerosis is mutations in superoxide dismutase-1, which provoke the disease by an unknown mechanism. We have previously found that soluble hydrophobic misfolded mutant human superoxide dismutase-1 species are enriched in the vulnerable spinal cords of transgenic model mice. The levels were broadly inversely correlated with life spans, suggesting involvement in the pathogenesis. Here, we used methods based on antihuman superoxide dismutase-1 peptide antibodies specific for misfolded species to explore the composition and amounts of soluble misfolded human superoxide dismutase-1 in tissue extracts. Mice expressing 5 different human superoxide dismutase-1 variants with widely variable structural characteristics were examined. The levels were generally higher in spinal cords than in other tissues. The major portion of misfolded superoxide dismutase-1 was shown to be monomers lacking the C57-C146 disulfide bond with large hydrodynamic volume, indicating a severely disordered structure. The remainder of the misfolded protein appeared to be non-covalently associated in 130- and 250-kDa complexes. The malleable monomers should be prone to aggregate and associate with other cellular components, and should be easily translocated between compartments. They may be the primary cause of toxicity in superoxide dismutase-1-induced amyotrophic lateral sclerosis.

1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf