Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Arabi, R.
    et al.
    University of Borås, School of Engineering.
    Bemanian, S.
    University of Borås, School of Engineering.
    Taherzadeh, M.J.
    University of Borås, School of Engineering.
    Rapid Biodegradation of Methyl tert-Butyl Ether (MBTE) by Pure Bacterial cultures2007In: Iranian journal of chemistry & chemical engineering, ISSN 1021-9986, Vol. 26, no 1, p. 1-7Article in journal (Refereed)
    Abstract [en]

    Two pure bacterial strains capable of rapid degrading methyl tert–butyl ether (MTBE) were isolated from an industrial wastewater treatment plant, identified and characterized. These strains are able to grow on MTBE as the sole carbon and energy sources and completely mineralize it to the biomass and carbon dioxide. The strains were identified as Bacillus cereus and Klebsiella terrigena. Both strains are able to grow in the presence of 48 g/l MTBE in water, which is almost the maximum concentration of MTBE in the water. They were able to completely degrade 10 g/l MTBE in less than a day. The specific degradation rate of MTBE at optimum conditions were 5.89 and 5.78 g(MTBE)/g(cells). h for B. cereus and K. terrigena, respectively. The biomass yield was 0.085 and 0.076 g/g, respectively. The cultivations were carried out successfully at 25, 30 and 37 °C, while they showed the best performance at 37 °C. Neither of the strains was able to grow and degrade MTBE anaerobically.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf