Change search
Refine search result
1234567 1 - 50 of 434
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abedin, Ahmad
    et al.
    KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.
    Moeen, Mahdi
    KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.
    Cappetta, Carmine
    KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.
    Östling, Mikael
    KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.
    Radamson, Henry H.
    KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.
    Sensitivity of the crystal quality of SiGe layers grown at low temperatures by trisilane and germane2016In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 613, p. 38-42Article in journal (Refereed)
    Abstract [en]

    This work investigates the crystal quality of SiGe layers grown at low temperatures using trisilane, and germane precursors. The crystal quality sensitivity was monitored for hydrogen chloride and/or minor oxygen amount during SiGe epitaxy or at the interface of SiGe/Si layers. The quality of the epi-layerswas examined by quantifying noise parameter, K-1/f obtained from the power spectral density vs. 1/f curves. The results indicate that while it is difficult to detect small defect densities in SiGe layers by physical material characterization, the noise measurement could reveal the effects of oxygen contamination as low as 0.16mPa inside and in the interface of the layers.

  • 2. Abom, A.E.
    et al.
    Persson, Per
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics.
    Hultman, Lars
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics.
    Eriksson, Mats
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Influence of gate metal film growth parameters on the properties of gas sensitive field-effect devices2002In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 409, no 2, p. 233-242Article in journal (Refereed)
    Abstract [en]

    Thin films of Pt have been grown as gate metals on the oxide surface of gas sensitive field-effect devices. Both electron beam evaporation and dc magnetron sputtering has been used. The energy of the impinging Pt atoms, the substrate temperature and the thickness of the Pt film were used as parameters in this study. The influence of the growth parameters on the gas response has been investigated and compared with the properties of the films, studied by transmission electron microscopy, Auger electron spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction. The conditions during growth of the Pt film are found to have a large impact on the properties of the device. As expected, crystallinity, morphology and the metal/substrate interfacial structure are also affected by processing parameters. Three different growth processes stand out as the most promising from gas sensor considerations, namely room temperature evaporation, sputtering at high pressures and sputtering at high temperatures. The correlation between gas responses and properties of the gas sensitive layer is discussed. © 2002 Elsevier Science B.V. All rights reserved.

  • 3.
    Abou-Ras, Daniel
    et al.
    Helmholtz Zentrum Berlin Mat & Energie GmbH, Hahn Meitner Pl 1, D-14109 Berlin, Germany..
    Wagner, Sigurd
    Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA..
    Stanbery, Bill J.
    Siva Power, 5102 Calle Sol, Santa Clara, CA 95054 USA..
    Schock, Hans-Werner
    Helmholtz Zentrum Berlin Mat & Energie GmbH, Hahn Meitner Pl 1, D-14109 Berlin, Germany..
    Scheer, Roland
    Martin Luther Univ Halle Wittenberg, Inst Phys, Photovolta Grp, D-06120 Halle, Saale, Germany..
    Stolt, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics. Solibro Res AB, Sweden.
    Siebentritt, Susanne
    Univ Luxembourg, Phys & Mat Sci Res Unit, Lab Photovolta, Belvaux, Luxembourg..
    Lincot, Daniel
    CNRS EDF Chim Paristech PSL, Inst Photovolta Ile France IPVF, IRDEP, 6 Quai Watier, F-78401 Chatou, France..
    Eberspacher, Chris
    Solopower Syst Inc, Corp & Mfg Headquarters, 6308 North Marine Dr, Portland, OR 97203 USA..
    Kushiya, Katsumi
    Solar Frontier KK, 123-1 Shimo Kawairi, Atsugi, Kanagawa, Japan..
    Tiwari, Ayodhya N.
    Empa Swiss Fed Labs Mat Sci & Technol, Lab Thin Films & Photovolta, Ueberlandstr 129, CH-8600 Dubendorf, Switzerland..
    Innovation highway: Breakthrough milestones and key developments in chalcopyrite photovoltaics from a retrospective viewpoint2017In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 633, p. 2-12Article in journal (Refereed)
    Abstract [en]

    The present contribution is a summary of an event that was organized as a special evening session in Symposium V "Chalcogenide Thin-Film Solar Cells" at the E-MRS 2016 Spring Meeting, Lille, France. The presentations in this session were given by the coauthors of this paper. These authors present retrospectives of key developments in the field of Cu(In,Ga)(S,Se)(2) solar cells as they themselves had witnessed in their laboratories or companies. Also, anecdotes are brought up, which captured interesting circumstances in that evolutionary phase of the field. Because the focus was on historical perspectives rather than a comprehensive review of the field, recent developments intentionally were not addressed.

  • 4.
    Adamovic, Dragan
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics . Linköping University, The Institute of Technology.
    Chirita, Valeriu
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Münger, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics . Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Greene, Joe
    University of Illinois.
    Enhanced intra- and interlayer mass transport on Pt(111) via 5 - 50 eV Pt atom impacts on two-dimensional Pt clusters2006In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 515, no 4, p. 2235-2243Article in journal (Refereed)
    Abstract [en]

    Embedded-atom molecular dynamics simulations were used to investigate the effects of low-energy (5–50 eV) normally-incident self-ion irradiation of two-dimensional compact Pt3, Pt7, Pt19, and Pt37 clusters on Pt(111). We follow atomistic pathways leading to bombardment-induced intra- and interlayer mass transport. The results can be described in terms of three impact energy regimes. With E ≤ 20 eV, we observe an increase in 2D island dimensions and negligible residual point defect formation. As the impact energy is raised above 20 eV, we observe an increase in irradiation-induced lateral mass transport, a decrease in island size, and the activation of interlayer processes. For E ≥ 35 eV, this trend continues, but point defects, in the form of surface vacancies, are also formed. The results illustrate the richness of the dynamical interaction mechanisms occurring among incident energetic species, target clusters, and substrate atoms, leading to island preservation, reconfiguration, disruption and/or residual point defects formation. We discuss the significance of these results in terms of thin film growth.

  • 5.
    Aggerstam, Thomas
    et al.
    KTH, School of Information and Communication Technology (ICT), Centres, Electrum Laboratory, ELAB.
    Lourdudoss, Sebastian
    KTH, School of Information and Communication Technology (ICT), Centres, Electrum Laboratory, ELAB.
    Radamson, Henry H.
    KTH, School of Information and Communication Technology (ICT), Centres, Electrum Laboratory, ELAB.
    Sjödin, Mikael
    KTH, School of Information and Communication Technology (ICT), Centres, Electrum Laboratory, ELAB.
    Lorenzini, P.
    CNRS-CHREA.
    Look, D.C.
    Semiconductor Research Center, Wright State University.
    Investigation of the interface properties of MOVPE grown AlGaN/GaN high electron mobility transistor (HEMT) structures on sapphire2006In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 515, no 2, p. 705-707Article in journal (Refereed)
    Abstract [en]

    We have developed a virtual GaN substrate on sapphire based on a two-step growth method. By optimizing the growth scheme for the virtual substrate we have improved crystal quality and reduced interface roughness. Our Al0.22Ga0.78N/GaN HEMT structure grown on the optimized semi-insulating GaN virtual substrate, exhibits Hall mobilities as high as 1720 and 7350 cm(2)/Vs and sheet carrier concentrations of 8.4 x 1012 and 10.0 x 1012 cm(-2) at 300 K and 20 K, respectively The presence of good AlGaN/GaN interface quality and surface morphology is also substantiated by X-Ray reflectivity and Atomic Force Microscopy measurements. A simplified transport model is used to fit the experimental Hall mobility.

  • 6. Agnarsson, Björn
    et al.
    Magnus, Fridrik
    Tryggvason, T. K.
    Ingason, Arni S.
    Leosson, K
    Olafsson, S
    Gudmundsson, Jon Tomas
    University of Iceland.
    Rutile TiO2 thin films grown by reactive high power impulse magnetron sputtering2013In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 545, p. 445-450Article in journal (Refereed)
  • 7.
    Agnarsson, Björn
    et al.
    KTH, School of Information and Communication Technology (ICT), Microelectronics and Applied Physics, MAP.
    Qi, B.
    Götelid, Mats
    KTH, School of Information and Communication Technology (ICT), Microelectronics and Applied Physics, MAP.
    Olafsson, S.
    Gislason, H. P.
    The effect of hard nitridation on Al(2)O(3) using a radio frequency operated plasma cell2011In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 519, no 22, p. 7796-7802Article in journal (Refereed)
    Abstract [en]

    We report on an atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) investigation of hard nitridation of sapphire (alpha.-Al(2)O(3)) substrate, using an Epi UNI-Bulb RF plasma cell at substrate temperatures ranging from 250 to 600 degrees C. Our results show that an AlN(1-x)O(x) layer forms on sapphire after extended nitridation at all temperatures, following a Stranski-Krastanov growth mode, with less islands forming at higher temperatures. We also observe a layer-dependent charging shift in XPS, separating smooth AlN(1-x)O(x) layers from rough AlN(1-x)O(x) islands due to their different electronic coupling to the substrate. Although the island growth is suppressed at higher temperatures, the surface roughness increases at higher temperatures as seen by AFM. We also observe sputtering effects with protrusions and pits.

  • 8.
    Agnarsson, Björn
    et al.
    KTH, School of Information and Communication Technology (ICT), Material Physics, Material Physics, MF.
    Qi, B.
    Szamota-Leandersson, Karolina
    KTH, School of Information and Communication Technology (ICT), Material Physics, Material Physics, MF.
    Olafsson, S.
    Göthelid, Mats
    KTH, School of Information and Communication Technology (ICT), Material Physics, Material Physics, MF.
    Investigation on the role of indium in the removal of metallic gallium from soft and hard sputtered GaN (0001) surfaces2009In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 517, no 21, p. 6023-6026Article in journal (Refereed)
    Abstract [en]

    Cleaning of GaN by argon sputtering and subsequent annealing introduces metallic gallium on the GaN surface. Once formed, this metallic gallium can be difficult to remove. it has a strong influence on the Fermi level position in the band gap and poses a problem for subsequent epitaxial growth on the surface. We present a method of removing metallic gallium from moderately damaged GaN surfaces by deposition of indium, and formation of an In-Ga alloy that can be desorbed by annealing at similar to 550 degrees C. After the In-Ga alloy has desorbed, photoemission spectra show that the Ga3d bulk component becomes narrower indicating a smoother and more homogeneous surface. This is also reflected in a sharper low energy electron diffraction pattern. On heavily damaged GaN surfaces, caused by hard sputtering, larger amount of metallic gallium forms after annealing at 600 degrees C. This gallium readily alloys with deposited indium, but the alloy does not desorb until a temperature of 840 degrees C is reached and even then, traces of both indium and metallic gallium could be found on the surface.

  • 9.
    Aiempanakit, Montri
    et al.
    Plasma & Coatings Physics Division, IFM, Material Physics, Linköping University.
    Kubart, Tomas
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Larsson, Petter
    Plasma & Coatings Physics Division, IFM, Material Physics, Linköping University.
    Sarakinos, Kostas
    Plasma & Coatings Physics Division, IFM, Material Physics, Linköping University.
    Jensen, Jens
    Thin Film Physics Division , IFM, Material Physics, Linköping University.
    Helmersson, Ulf
    Plasma & Coatings Physics Division, IFM, Material Physics, Linköping University.
    Hysteresis and process stability in reactive high power impulse magnetron sputtering of metal oxides2011In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 519, no 22, p. 7779-7784Article in journal (Refereed)
    Abstract [en]

    In the further development of reactive sputter deposition, strategies which allow for stabilization of the transition zone between the metallic and compound modes, elimination of the process hysteresis, and increase of the deposition rate, are of particular interest. In this study, the hysteresis behavior and the characteristics of the transition zone during reactive high power impulse magnetron sputtering (HiPIMS) of Al and Ce targets in an Ar-O(2) atmosphere as a function of the pulsing frequency and the pumping speed are investigated. Comparison with reactive direct current magnetron sputtering (DCMS) reveals that HiPIMS allows for elimination/suppression of the hysteresis and a smoother transition from the metallic to the compound sputtering mode. For the experimental conditions employed in the present study, optimum behavior with respect to the hysteresis width is obtained at frequency values between 2 and 4 kHz, while HiPIMS processes with values below or above this range resemble the DCMS behavior. Al-O films are deposited using both HiPIMS and DCMS. Analysis of the film properties shows that elimination/suppression of the hysteresis in HiPIMS facilitates the growth of stoichiometric and transparent Al(2)O(3) at relatively high deposition rates over a wider range of experimental conditions as compared to DCMS.

  • 10.
    Aiempanakit, Montri
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics.
    Kubart, Tomas
    Uppsala University, Sweden.
    Larsson, Petter
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics.
    Sarakinos, Kostas
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Helmersson, Ulf
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
    Hysteresis and process stability in reactive high power impulse magnetron sputtering of metal oxides2011In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 519, no 22, p. 7779-7784Article in journal (Refereed)
    Abstract [en]

    In the further development of reactive sputter deposition, strategies which allow for stabilization of the transition zone between the metallic and compound modes, elimination of the process hysteresis, and increase of the deposition rate, are of particular interest. In this study, the hysteresis behavior and the characteristics of the transition zone during reactive high power impulse magnetron sputtering (HiPIMS) of Al and Ce targets in an Ar-O(2) atmosphere as a function of the pulsing frequency and the pumping speed are investigated. Comparison with reactive direct current magnetron sputtering (DCMS) reveals that HiPIMS allows for elimination/suppression of the hysteresis and a smoother transition from the metallic to the compound sputtering mode. For the experimental conditions employed in the present study, optimum behavior with respect to the hysteresis width is obtained at frequency values between 2 and 4 kHz, while HiPIMS processes with values below or above this range resemble the DCMS behavior. Al-O films are deposited using both HiPIMS and DCMS. Analysis of the film properties shows that elimination/suppression of the hysteresis in HiPIMS facilitates the growth of stoichiometric and transparent Al(2)O(3) at relatively high deposition rates over a wider range of experimental conditions as compared to DCMS.

  • 11.
    Alami, Jones
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics . Linköping University, The Institute of Technology.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Andersson, Jon M.
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics . Linköping University, The Institute of Technology.
    Lattemann, Martina
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Wallin, Erik
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics . Linköping University, The Institute of Technology.
    Böhlmark, Johan
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics . Linköping University, The Institute of Technology.
    Persson, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Helmersson, Ulf
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics . Linköping University, The Institute of Technology.
    Phase tailoring of Ta thin films by highly ionized pulsed magnetron sputtering2007In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 515, no 7-8, p. 3434-3438Article in journal (Refereed)
    Abstract [en]

    Ta thin films were grown on Si substrates at different inclination angles with respect to the sputter source using high power impulse magnetron sputtering (HIPIMS), an ionized physical vapor deposition technique. The ionization allowed for better control of the energy and directionality of the sputtered species, and consequently for improved properties of the deposited films. Depositions were made on Si substrates with the native oxide intact. The structure of the as deposited films was investigated using X-ray diffraction, while a four-point probe setup was used to measure the resistivity. A substrate bias process-window for growth of bcc-Ta was observed. However, the process-window position changed with changing inclination angles of the substrate. The formation of this low-resistivity bcc-phase could be understood in light of the high ion flux from the HIPIMS discharge.

  • 12.
    Alami, Jones
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Emmerlich, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Wilhelmsson, O.
    Department of Materials Chemistry, The Ångström Laboratory, Uppsala University, Uppsala, Sweden.
    Jansson, U.
    Department of Materials Chemistry, The Ångström Laboratory, Uppsala University, Uppsala, Sweden.
    Högberg, Hans
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Helmersson, Ulf
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
    High-power impulse magnetron sputtering of Ti-Si-C thin films from a Ti3SiC2 compound target2006In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 515, no 4, p. 1731-1736Article in journal (Refereed)
    Abstract [en]

    We have deposited Ti-Si-C thin films using high-power impulse magnetron sputtering (HIPIMS) from a Ti3SiC2 compound target. The as-deposited films were composite materials with TiC as the main crystalline constituent. X-ray diffraction and photoelectron spectroscopy indicated that they also contained amorphous SiC, and for films deposited on inclined substrates, crystalline Ti5Si3Cx. The film morphology was dense and flat, while films deposited with dc magnetron sputtering under comparable conditions were rough and porous. Due to the high degree of ionization of the sputtered species obtained in HIPIMS, it is possible to control the film composition, in particular the C content, by tuning the substrate inclination angle, the Ar process pressure, and the bias voltage.

  • 13.
    Alfredsson, Ylfi
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics.
    Åhlund, John
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics.
    Nilson, Katharina
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics.
    Kjeldgaard, Lisbeth
    O´Shea, J. N.
    Theobald, J.
    Bao, Zhuo
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics.
    Mårtensson, Nils
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics.
    Sandell, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics.
    Puglia, Carla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics.
    Siegbahn, Hans
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics.
    Phase and molecular orientation in H2Pc on conducting glass: characterization of two deposition methods2005In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 493, no 1-2, p. 13-19Article in journal (Refereed)
    Abstract [en]

    In this study, metal-free phthalocyanine has been deposited on a conducting glass surface by two methods: by spreading the molecular powder directly on the substrate in air and by vapor sublimation under ultra-high vacuum conditions (evaporation). The films have been characterized by means of core level X-ray Photoemission Spectroscopy, X-ray Absorption Spectroscopy (XAS) and Ultra Violet and Visible absorption spectroscopy (UV-Vis). Our results show that the two deposition methods produce molecular overlayers in different polymorphic phases; the UV-Vis measurements indicate that the film obtained by powder deposition is of x-phase type whereas sublimation leads to an α-polymorph structure. The XAS results show that in the powder deposited film the molecules are mainly oriented parallel to the surface. This is opposite to the case of the vapor deposited film, where the molecules mainly are oriented orthogonal to the surface.

  • 14.
    Almer, J
    et al.
    Linköping University, Department of Mechanical Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Odén, Magnus
    Linköping University, The Institute of Technology. Linköping University, Department of Mechanical Engineering, Engineering Materials.
    Håkansson, G
    Bodycote Värmebehandling AB Linköping.
    Microstructure, stress and mechanical properties of arc-evaporated Cr-C-N coatings2001In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 385, no 1-2, p. 190-197Article in journal (Refereed)
    Abstract [en]

    The relationships between coating microstructure and properties in the Cr-C-N system have been investigated as a function of composition and post-deposition annealing. Coatings of varying compositions were grown using arc-evaporation, by varying the reactive gas flow ratio fR = f(C2H4)/f(N2) from 0 to 0.2, and were found to consist primarily of the cubic d-Cr(C,N) phase. Changes in both the unstressed lattice parameter, ao, and X-ray diffraction background intensity indicate that both the carbon concentration within the d-phase and amorphous/crystalline content increases with fR. Increasing fR also decreases the magnitude of the compressive biaxial residual stress, from approximately 6 to 1 GPa, while increasing both the inhomogeneous stress and thermal stability. The elastic modulus and hardness of as-deposited coatings were determined from nanoindentation to be 320 and 23 GPa, respectively, for moderate carbon concentrations (fR=0.05). Concurrent variations in microstructure and hardness with post-deposition annealing indicate that the as-deposited hardness is significantly enhanced by the microstructure, primarily by lattice defects and related stresses (microstresses) rather than average stresses (macrostresses).

  • 15.
    Almqvist, Nils
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science.
    Rubel, M.
    Royal Institute of Technology, Physics Department-Frescati, Association EURATOM-NFR.
    Wienhold, P.
    Institute of Plasma Physics, Forschungszentrum Jülich, Association EURATOM-KFA.
    Fredriksson, Sverker
    Roughness determination of plasma-modified surface layers with atomic force microscopy1995In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 270, no 1-2, p. 426-430Article in journal (Refereed)
    Abstract [en]

    Graphite surfaces exposed to the deuterium plasma in the TEXTOR tokamak were characterized in detail by means of scanning probe microscopy, ion beam analysis and colorimetry methods. The aim is to study the composition and structure of thin layer deposits formed on surfaces subjected to the tokamak plasma. The surface roughness was measured and parametrized in terms of fractal dimension and scaling constant. Several different methods for the fractal analysis of plasma-exposed surfaces have been critically evaluated. The main emphasis of this paper is on the correlation between surface roughness (fractal parameters), the amount of deposited atoms and the layer thickness.

  • 16.
    Anders, Andre
    et al.
    University of California Berkeley.
    Lim, Sunnie H. N.
    University of California Berkeley.
    Man Yu, Kin
    University of California Berkeley.
    Andersson, Joakim
    University of California Berkeley.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    McFarland, Mike
    Acree Technology Inc.
    Brown, Jeff
    Acree Technology Inc.
    High quality ZnO:Al transparent conducting oxide films synthesized by pulsed filtered cathodic arc deposition2010In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 518, no 12, p. 3313-3319Article in journal (Refereed)
    Abstract [en]

    Aluminum-doped zinc oxide, ZnO:Al or AZO, is a well-known n-type transparent conducting oxide with great potential in a number of applications currently dominated by indium tin oxide. In this study, the optical and electrical properties of AZO thin films deposited on glass and silicon by pulsed filtered cathodic arc deposition are systematically studied. In contrast to magnetron sputtering, this technique does not produce energetic negative ions, and therefore ion damage can be minimized. The quality of the AZO films strongly depends on growth temperature while only marginal improvements are obtained with post-deposition annealing. The best films, grown at a temperature of about 200 degrees C, have resistivities in the low to mid 10(-4) Omega cm range with a transmittance better than 85% in the visible part of the spectrum. It is remarkable that relatively good films of small thickness (60 nm) can be fabricated using this method.

  • 17. Anders, Andre
    et al.
    Lim, Sunnie H. N.
    Yu, Kin Man
    Andersson, Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Rosen, Johanna
    McFarland, Mike
    Brown, Jeff
    High quality ZnO:Al transparent conducting oxide films synthesized by pulsed filtered cathodic arc deposition2010In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 518, no 12, p. 3313-3319Article in journal (Refereed)
    Abstract [en]

    Aluminum-doped zinc oxide, ZnO:Al or AZO, is a well-known n-type transparent conducting oxide with great potential in a number of applications currently dominated by indium tin oxide. In this study, the optical and electrical properties of AZO thin films deposited on glass and silicon by pulsed filtered cathodic arc deposition are systematically studied. In contrast to magnetron sputtering, this technique does not produce energetic negative ions, and therefore ion damage can be minimized. The quality of the AZO films strongly depends on growth temperature while only marginal improvements are obtained with post-deposition annealing. The best films, grown at a temperature of about 200 degrees C, have resistivities in the low to mid 10(-4) Omega cm range with a transmittance better than 85% in the visible part of the spectrum. It is remarkable that relatively good films of small thickness (60 nm) can be fabricated using this method.

  • 18.
    Andersson, Jon Martin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics . Linköping University, The Institute of Technology.
    Wallin, Erik
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics . Linköping University, The Institute of Technology.
    Helmersson, Ulf
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics . Linköping University, The Institute of Technology.
    Kreissig, U.
    Institute for Ion Beam Physics and Materials Research, Forschungszentrum Rossendorf, PF 510119, D-01314 Dresden, Germany.
    Münger, E. Peter
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics . Linköping University, The Institute of Technology.
    Phase control of Al2O3 thin films grown at low temperatures2006In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 513, no 1-2, p. 57-59Article in journal (Refereed)
    Abstract [en]

    Low-temperature growth (500 °C) of α-Al2O3 thin films by reactive magnetron sputtering was achieved for the first time. The films were grown onto Cr2O3 nucleation layers and the effects of the total and O2 partial pressures were investigated. At 0.33 Pa total pressure and ≥ 16 mPa O2 partial pressure α-Al2O3 films formed, while at lower O2 pressure or higher total pressure (0.67 Pa), only γ phase was detected in the films (which were all stoichiometric). Based on these results we suggest that α phase formation was promoted by a high energetic bombardment of the growth surface. This implies that the phase content of Al2O3 films can be controlled by controlling the energy of the depositing species. The effect of residual H2O (10− 4 Pa) on the films was also studied, showing no change in phase content and no incorporated H (< 0.1%). Overall, these results are of fundamental importance in the further development of low-temperature Al2O3 growth processes.

  • 19.
    Andersson, Kent
    et al.
    Uppsala universitet.
    Wahlström, M.K.
    Uppsala Universitet.
    Roos, Arne
    Uppsala Universitet.
    High stability titanium nitride based solar control films1992In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 214, no 2, p. 213-218Article in journal (Refereed)
    Abstract [en]

    Triple-layer structures of TiO2TiN/TiO2 and quadruple layer structures of TiO2Al/TiN/TiO2 have been sputtered on glass substrates at temperatures ranging from room temperature to 300°C. The reflectance and transmittance were measured in the visible and the near-IR wavelength regions. The thin layer of aluminium, in the quadruple layer, oxidizes and forms a dense diffusion barrier. The multilayers exhibit improved optical selectivity which also improves with substrate temperature up to 300°C.

  • 20. Andersson, LP
    et al.
    Berg, Sören
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Norström, H
    Olaison, R
    Towta, S
    Properties and coating rates of diamond-like carbon films produced by RF glow discharge of hydrocarbon gases1979In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 58, p. 117-Article in journal (Refereed)
  • 21.
    Andersson, Matilda
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Urbonaite, Sigita
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Lewin, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Jansson, Ulf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Magnetron sputtering of Zr-Si-C thin films2012In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 520, no 20, p. 6375-6381Article in journal (Refereed)
    Abstract [en]

    The phase composition and chemical bonding of Zr-C and Zr-Si-C films deposited by magnetron sputtering has been studied. The results show that the binary Zr-C films at higher carbon contents form nanocrystallites of ZrC in an amorphous carbon matrix. The addition of Si induces a complete amorphization of the films above a critical concentration of about 15 at.%. X-ray diffraction and transmission electron microscopy confirm that the amorphous films contain no nanocrystallites and therefore can be described as truly amorphous carbides. The amorphous films are thermally stable but start to crystallize above 500 degrees C. Analysis of the chemical bonding with X-ray photoelectron spectroscopy suggests that the amorphous films exhibit a mixture of different chemical bonds such as Zr-C, Zr-Si and Si-C and that the electrical and mechanical properties are dependent on the distribution of these bonds. For higher carbon contents, strong Si-C bonds are formed in the amorphous Zr-Si-C films making them harder than the corresponding binary Zr-C films.

  • 22. Aouadi, S
    et al.
    Broitman, Esteban
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Stuber, M.
    Veprek, S.
    Franz, R.
    ICMCTF 2014 : Preface2014In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 572, p. 1-1Article in journal (Refereed)
    Abstract [en]

    The 41st International Conference on Metallurgical Coatings andThin Films (ICMCTF), sponsored by the Advanced Surface EngineeringDivision (ASED) of the American Vacuum Society (AVS), was heldfrom April 28 to May 2, 2014 in San Diego, California, USA.The week's technical program consisted of 37 technical sessions,which were organized into 13 symposia. The conference opened witha Plenary Lecture by Prof. Sybrand van der Zwaag, Materials Scienceand Engineering at the faculty of Aerospace Engineering at the TUDelft, The Netherlands, on “Self-healing Materials: an Alternative Approachto Create More Durable/Reliable Materials and Products”. TheExhibition Keynote Lecture was presented by Prof. Timothy P. Weihs,Department of Materials Science and Engineering at the Johns HopkinsUniversity, Baltimore, MD, USA, on “Driving Commercial Applicationsand Exploring Scientific Questions with Reactive Multilayer Foils”.During the conference week, a well subscribed poster session wasattended by a large and appreciative attendee audience. An expansivelarge two-day interactive industrial exhibition, with more than 50booths,was held inwhich companies displayed theirmost recent developmentsin vacuumscience and plasma-based deposition technologies.In addition to the technical symposia sessions, there were threefocused topical sessions, and six specialized short courses offered.Professor Jindrich Musil from the faculty of Applied Sciences atthe University of Bohemia, Plzeň, Czech Republic, was the recipientof the 2014 ASED R.F. Bunshah Annual Award; he presented the HonoraryLecture, “Advanced Hard Nanocomposite Coatings with UniqueProperties”. The award recognizes and honors Prof. Musil's seminalcontributions to the development of advanced nanocomposite coatingswith enhanced hardness, oxidation resistance, toughness, and crackresistance.The ASED Annual ICMCTF Graduate Student Awards werepresented to Shiyu Liu (Gold Medal), University of Cambridge, UK;Samantha K. Lawrence (Silver Medal), Purdue University, WestLafayette, IN, USA; and Trevor Hardcastle (Bronze Medal), Universityof Leeds, UK.The electronic submission and handling of manuscripts via theElsevier Editorial System (EES), including the selection of reviewersand evaluation ofmanuscripts,were identical to the procedures appliedto manuscripts submitted as regular contributions for publication ininternational scientific journals. Following the tradition practiced since1987, the accepted manuscripts are published in the archival journalsSurface and Coatings Technology and Thin Solid Films. ICMCTF 2014proceedings are open-access to the participants for one year via theElsevier journals' web sites.The organization of this conference and the preparation of proceedingsvolumes would have been impossible without the tremendouseffort and dedication of many individuals, including the General Chair,Yip-Wah Chung, Northwestern University, USA, and the ProgramChair, Claus Rebholz, the University of Cyprus, the team of symposiaand session chairs that made possible the realization of an exciting technicalprogram. We especially thank all the authors and presenters fortheir contributions; we also thank the hundreds of reviewers for theirtimely submission of high quality reports. To our sponsors,we acknowledge,appreciate, and thank these companies for their most generousand continuing support.The 42nd International Conference on Metallurgical Coatings andThin Films (ICMCTF 2015) will be held in San Diego, California, April20–24, 2015, with Claus Rebholz, University of Cyprus, as the GeneralChair and Suneel Kodambaka, the University of California at Los Angeles, as the Program Chair.

  • 23.
    Aouadi, Samir
    et al.
    University of North Texas, TX 76203 USA.
    Broitman, Esteban
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering.
    Figueroa, Carlos A.
    University of Caxias do Sul, Brazil.
    Greczynski, Grzegorz
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Muratore, Christopher
    University of Dayton, OH 45469 USA.
    Stueber, Michael
    Karlsruhe Institute Technology, Germany.
    ICMCTF 2017-Preface2017In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 644Article in journal (Other academic)
    Abstract [en]

    n/a

  • 24.
    Aouadi, Samir
    et al.
    Univ North Texas, TX 76203 USA.
    Broitman, Esteban
    SKF Res and Technol Dev Nieuwegein, Netherlands.
    Figueroa, Carlos A.
    Univ Caxias SulRua, Brazil.
    Greczynski, Grzegorz
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Zapien, Juan Antonio
    City Univ Hong Kong, Peoples R China.
    Stueber, Michael
    Karlsruhe Inst Technol, Germany.
    Editorial Material: ICMCTF 2018-Preface in THIN SOLID FILMS, vol 669, issue , pp 670-6702019In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 669, p. 670-670Article in journal (Other academic)
    Abstract [en]

    n/a

  • 25.
    Arias, A.C.
    et al.
    Department of Physics, Univ. Cambridge, Cavendish Lab., M., Cambridge, United Kingdom.
    Roman, L.S.
    Kugler, Thomas
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Toniolo, R.
    Departamento de Física, Univ. Fed. Do Parana, C.P., Curitiba, Brazil.
    Meruvia, M.S.
    Departamento de Física, Univ. Fed. Do Parana, C.P., Curitiba, Brazil.
    Hummelgen, I.A.
    Hümmelgen, I.A., Departamento de Física, Univ. Fed. Do Parana, C.P., Curitiba, Brazil.
    Use of tin oxide thin films as a transparent electrode in PPV based light-emitting diodes2000In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 371, no 1, p. 201-206Article in journal (Refereed)
    Abstract [en]

    Tin oxide (TO) thin films, nominally undoped, have been used as electrodes in poly(p-phenylene vinylene) (PPV) based organic electroluminescent devices. The evolution of the crystallinity and the electrical resistance of TO films submitted to the PPV thermal conversion conditions, have been investigated. It has been found that the electrical resistance is decreased whereas the crystallinity of the film is increased. It is shown in this work, that the photoluminescence of PPV converted on top of TO substrates is not as quenched as it is when converted on top of indium-tin oxide (ITO) substrates. The quantum efficiency of light-emitting diode is 0.07% at 17 V forward bias. It is also shown that the work function of TO films is very stable to different cleaning procedures, in contrast with previous results obtained for ITO films.

  • 26.
    Arvizu, Miguel A
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics. Univ Politecn Chiapas, Campus Suchiapa,Carretera Tuxtla Gutierrez, Suchiapa 29150, Chiapas, Mexico..
    Qu, Hui-Ying
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Niklasson, Gunnar A
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Granqvist, Claes Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Electrochemical pretreatment of electrochromic WO3 films gives greatly improved cycling durability2018In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 653, p. 1-3Article in journal (Refereed)
    Abstract [en]

    Electrochromic WO3 thin films have important applications in devices such as smart windows for energy-efficient buildings. Long-term electrochemical cycling durability of these films is essential and challenging. Here we investigate reactively sputter-deposited WO3 films, backed by indium-tin oxide layers and immersed in electrolytes of LiClO4 in propylene carbonate, and demonstrate unprecedented electrochemical cycling durability after straight-forward electrochemical pretreatments by the application of a voltage of 6 V vs. Li/Li+ for several hours.

  • 27.
    Arwin, Hans
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Optics .
    Ellipsometry on thin organic layers of biological interest: Characterization and applications2000In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 377-378, p. 48-56Article in journal (Refereed)
    Abstract [en]

    The thickness resolution and in situ advantage of ellipsometry make this optical technique particularly suitable for studies of thin organic layers of biological interest. Early ellipsometric studies in this area mainly provided thickness quantification, often expressed in terms of surface mass. However, today it is possible to perform monolayer spectroscopy, e.g. of a protein layer at a solid/liquid interface, and also to resolve details in the kinetics of layer formation. Furthermore, complicated microstructures, like porous silicon layers, can be modeled and protein adsorption can be monitored in such layers providing information about pore filling and penetration depths of protein molecules of different size and type. Quantification of adsorption and microstructural parameters of thin organic layers on planar surfaces and in porous layers is of high interest, especially in areas like biomaterials and surface-based biointeraction. Furthermore, by combining ellipsometric readout and biospecificity, possibilities to develop biosensor concepts are emerging. In this report we review the use of ellipsometry in various forms for studies of organic layers with special emphasis on biologically-related issues including in situ monitoring of protein adsorption on planar surfaces and in porous layers, protein monolayer spectroscopy and ellipsometric imaging for determination of thickness distributions. Included is also a discussion about recent developments of biosensor systems and possibilities for in situ monitoring of engineering of multilayer systems based on macromolecules.

  • 28.
    Arwin, Hans
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.
    Fernández del Río, Lia
    Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.
    Järrendahl, Kenneth
    Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.
    Comparison and analysis of Mueller-matrix spectra from exoskeletons of blue, green and red Cetonia aurata2014In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 571, p. 739-743Article in journal (Refereed)
    Abstract [en]

    The exoskeleton, also called the cuticle, of specimens of the scarab beetle Cetonia aurata is a narrow-band reflector which exhibits metallic shine. Most specimens of C. aurata have a reflectance maximum in the green part of the spectrum but variations from blue–green to red–green are also found. A few specimens are also more distinct blue or red. Furthermore, the reflected light is highly polarized and at near-normal incidence near-circular left-handed polarization is observed. The polarization and color phenomena are caused by a nanostructure in the cuticle. This nanostructure can be modeled as a multilayered twisted biaxial layer from which reflection properties can be calculated. Specifically we calculate the cuticle Mueller matrix which then is fitted to Mueller matrices determined by dual-rotating compensator ellipsometry in the spectral range 400–800 nm at multiple angles of incidence. This non-linear regression analysis provides structural parameters like pitch of the chiral structure as well as layer refractive index data for the different layers in the cuticle. The objective here is to compare spectra measured on C. aurata with different colors and develop a generic structural model. Generally the degree of polarization is large in the spectral region corresponding to the color of the cuticle which for the blue specimen is 400–600 nm whereas for the red specimen it is 530–730 nm. In these spectral ranges, the Mueller-matrix element m41 is non-zero and negative, in particular for small angles of incidence, implicating that the reflected light becomes near-circularly polarizedwith an ellipticity angle in the range 20°–45°.

  • 29. Astrath, N. G. C.
    et al.
    Bento, A. C.
    Baesso, M. L.
    da Silva, A. Ferreira
    Persson, Clas
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics.
    Photoacoustic spectroscopy to determine the optical properties of thin film 4H-SiC2006In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 515, no 4, p. 2821-2823Article in journal (Refereed)
    Abstract [en]

    The optical transitions in a range of 1.5-5.2 eV of n-type 4H-SiC have been investigated experimentally by photoacoustic spectroscopy and theoretically by a full-potential linearized augmented plane wave method. From the absorption spectrum, we found the indirect optical bandgap at 3.2 eV and the direct transitions around 4.5 eV in very good agreement with what has been predicted by theoretical calculations.

  • 30.
    Azarov, Alexander
    et al.
    KTH, School of Information and Communication Technology (ICT), Microelectronics and Applied Physics, MAP.
    Zamani, Atieh
    KTH, School of Information and Communication Technology (ICT), Microelectronics and Applied Physics, MAP.
    Radamson, Henry H.
    KTH, School of Information and Communication Technology (ICT), Microelectronics and Applied Physics, MAP.
    Vines, L.
    Kuznetsov, A. Yu.
    Hallén, Anders
    KTH, School of Information and Communication Technology (ICT), Microelectronics and Applied Physics, MAP.
    Dopant incorporation in thin strained Si layers implanted with Sb2010In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 518, no 9, p. 2474-2477Article in journal (Refereed)
    Abstract [en]

    The effect of tensile strain on Sb incorporation in Si and its activation during post-implantation annealing has been Studied by a combination of Rutherford backscattering/channeling spectrometry, secondary ion mass spectrometry. X-ray diffraction and 4-point probe measurements Our results show that, for Sb implanted samples a tensile strain has an important role for dopant behavior Particularly, increasing the tensile strain in the Si layer from 0 to 0 8% leads to an enhancement of the fraction of incorporated Sb atoms in substitutional sites already during implantation from similar to 7 to 30% Furthermore, 0 8% strain in antimony doped Si gives similar to 20% reduction in the sheet resistance in comparison to the unstrained sample.

  • 31.
    Bantikassegn, W.
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, Faculty of Science & Engineering.
    Dannetun, Per
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, Faculty of Science & Engineering.
    Salaneck, William R.
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering.
    Absence of Schottky barrier formation in junctions of Al and polypyrrole-polyelectrolyte polymer complexes1993In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 224, no 2, p. 232-236Article in journal (Refereed)
    Abstract [en]

    Thin films of conducting polypyrrole doped with large polymeric anions of polystyrene-sulphonate are electrochemically prepared to study the metal/polymer junctions. Aluminium and gold contacts are vacuum deposited to form metal/polymer/gold sandwich structures for current-voltage characterization. Photoelectron spectroscopy, using UV and X-ray photons, is carried out to investigate the possible causes of current limitation in the Al/PPy(PSS) junction.

  • 32.
    Barbe, Jeremy
    et al.
    CEA, Liten, Grenoble, och Université de Toulouse, UPS, INPT, LAPLACE, Frankrike.
    Xie, Ling
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Leifer, Klaus
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Faucherand, Pascal
    CEA, Liten, Grenoble, Frankrike.
    Morin, Christine
    CEA, Liten, Grenoble Frankrike.
    Rapisarda, Dario
    CEA, Liten, Grenoble, Frankrike.
    De Vito, Eric
    CEA, Liten, Grenoble, Frankrike.
    Makasheva, Kremena
    Université de Toulouse, UPS, INPT, LAPLACE, Frankrike.
    Despax, Bernard
    Université de Toulouse, UPS, INPT, LAPLACE, Frankrike.
    Perraud, Simon
    CEA, Liten, Grenoble, Frankrike.
    Silicon nanocrystals on amorphous silicon carbide alloy thin films: Control of film properties and nanocrystals growth2012In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 522, p. 136-144Article in journal (Refereed)
    Abstract [en]

    The present study demonstrates the growth of silicon nanocrystals on amorphous silicon carbide alloy thin films. Amorphous silicon carbide films [a-Si1 − xCx:H (with x < 0.3)] were obtained by plasma enhanced chemical vapor deposition from a mixture of silane and methane diluted in hydrogen. The effect of varying the precursor gas-flow ratio on the film properties was investigated. In particular, a wide optical band gap (2.3 eV) was reached by using a high methane-to-silane flow ratio during the deposition of the a-Si1 − xCx:H layer. The effect of short-time annealing at 700 °C on the composition and properties of the layer was studied by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. It was observed that the silicon-to-carbon ratio in the layer remains unchanged after short-time annealing, but the reorganization of the film due to a large dehydrogenation leads to a higher density of SiC bonds. Moreover, the film remains amorphous after the performed short-time annealing. In a second part, it was shown that a high density (1 × 1012 cm− 2) of silicon nanocrystals can be grown by low pressure chemical vapor deposition on a-Si0.8C0.2 surfaces at 700 °C, from silane diluted in hydrogen. The influence of growth time and silane partial pressure on nanocrystals size and density was studied. It was also found that amorphous silicon carbide surfaces enhance silicon nanocrystal nucleation with respect to SiO2, due to the differences in surface chemical properties.

  • 33. Bardos, L
    et al.
    Berg, Sören
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Barankova, Hana
    Carlsson, JO
    Reactive deposition of diamond and Si carbide films by hydrogen plasma etching of graphite and Si in rf plasma jet1993In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 223, p. 218-222Article in journal (Refereed)
  • 34.
    Bastuck, Manuel
    et al.
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering. University of Saarland, Germany.
    Puglisi, Donatella
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering.
    Huotari, J.
    University of Oulu, Finland.
    Sauerwald, T.
    University of Saarland, Germany.
    Lappalainen, J.
    University of Oulu, Finland.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering. University of Oulu, Finland.
    Andersson, Mike
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering. University of Oulu, Finland.
    Schuetze, A.
    University of Saarland, Germany.
    Exploring the selectivity of WO3 with iridium catalyst in an ethanol/naphthalene mixture using multivariate statistics2016In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 618, p. 263-270Article in journal (Refereed)
    Abstract [en]

    Temperature cycled operation and multivariate statistics have been used to compare the selectivity of two gate (i.e. sensitive) materials for gas-sensitive, silicon carbide based field effect transistors towards naphthalene and ethanol in different mixtures of the two substances. Both gates have a silicon dioxide (SiO2) insulation layer and a porous iridium (Ir) electrode. One of it has also a dense tungsten trioxide (WO3) interlayer between Ir and SiO2. Both static and transient characteristics play an important role and can contribute to improve the sensitivity and selectivity of the gas sensor. The Ir/SiO2 is strongly influenced by changes in ethanol concentration, and is, thus, able to quantify ethanol in a range between 0 and 5 ppm with a precision of 500 ppb, independently of the naphthalene concentrations applied in this investigation. On the other hand, this sensitivity to ethanol reduces its selectivity towards naphthalene, whereas Ir/WO3/SiO2 shows an almost binary response to ethanol. Hence, the latter has a better selectivity towards naphthalene and can quantify legally relevant concentrations down to 5 ppb with a precision of 2.5 ppb, independently of a changing ethanol background between 0 and 5 ppm. (C) 2016 Elsevier B.V. All rights reserved.

  • 35. Baudin, M.
    et al.
    Wojcik, M.
    Hermansson, Kersti
    KTH, Superseded Departments, Biotechnology.
    Molecular dynamics simulations of an Al2O3(0001 +/-, 0-10(II))/CeO2 (011 +/-,01-1(II)) interface system2001In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 401, no 02-jan, p. 159-164Article in journal (Refereed)
    Abstract [en]

    Constant stress, constant temperature (10 K, 300 K) molecular dynamics simulations were carried out with shell-model potentials for an infinite composite ceria-alumina slab with two free surfaces [alpha -Al2O3 (0001) and CeO2(011) and their opposite counterparts]. The interface introduces considerable structural and dynamical changes, both at the slab surfaces and in the center of the slab. Structurally, both oxide surfaces become effectively oxygen-terminated and the surface structures become disordered close to the interface. Dynamically, in the region near the 'alumina surface/ceria surface/alumina-ceria interface' 3-phase junction the ionic motion is considerably enhanced. Thus, in the interface region, the ionic mean-square displacements increase 2-3 times compared to the pure slabs. Moreover, the ions at the interface participate in a new kind of motion, not present in the pure oxide slabs: large occasional, but frequently reoccurring, back-and-forth ionic motions take place with square-amplitudes as large as similar to0.70 Angstrom (2).

  • 36. Bennett, N. S.
    et al.
    Radamson, Henry H.
    KTH, School of Information and Communication Technology (ICT), Microelectronics and Information Technology, IMIT.
    Beer, C. S.
    Smith, A. J.
    Gwilliam, R. M.
    Cowern, N. E. B.
    Sealy, B. J.
    Enhanced n-type dopant solubility in tensile-strained Si2008In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 517, no 1, p. 331-333Article in journal (Refereed)
    Abstract [en]

    The creation of highly conductive ultrashallow-doped regions in strained Si is a key requirement for future Si based devices. It is shown that in the presence of tensile strain, Sb becomes a contender to replace As in strain-engineered CMOS devices due to advantages in sheet resistance. While strain reduces resistance for both As and Sb; a result of enhanced electron mobility, the reduction is significantly larger for Sb due to an increase in donor activation. Differential Hall measurements suggest this is a consequence of a strain-induced Sb solubility enhancement following solid-phase epitaxial regrowth, increasing Sb solubility in Si to levels approaching 10(21) cm(-3). Experiments highlight the importance of maintaining substrate strain during thermal annealing to maintain this high Sb activation.

  • 37.
    Berg, Sören
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Andersson, LP
    Diamond-like carbonfilms produced in a butane plasma1979In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 58, p. 117-Article in journal (Refereed)
  • 38.
    Berg, Sören
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Katardjiev, Ilia V
    Nender, C
    Carlsson, P
    Large area selective thin film deposition by bias sputtering1994In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 241, p. 1-8Article in journal (Refereed)
  • 39.
    Berg, Sören
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Masszi, Ferenc
    Biersack, JP
    Substrate dependent escape depths of sputtered substrate atoms through thin film overlayers1989In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731Article in journal (Refereed)
  • 40.
    Berg, Sören
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Särhammar, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Nyberg, Tomas
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Upgrading the “Berg-model” for reactive sputtering processes2014In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 565, p. 186-192Article, review/survey (Refereed)
    Abstract [en]

    Several phenomena are neglected in the original “Berg model” in order to provide a simple model of the reactive sputtering process. There exist situations, however, where this simplified treatment limits the usefulness of the model. To partly correct for this, we introduce an upgraded version of the basic model. We abandon the simplifying assumption that compound targets are sputter eroded as molecules. Instead, the molecule is split and individual atoms will be sputter ejected. Also, the effect of ionized reactive gas atoms implanted into the target will be considered. We outline how to modify the original model to include these effects. Still, the mathematical treatment is maintained simple so that the new model may serve as an easy-to-understand tutorial of the complex mechanisms of reactive sputtering.

  • 41.
    Berlind, Torun
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.
    Furland, Andrej
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Czigany, Zs.
    Research Institute for Technical Physics and Materials Science, Hungarian Academy of Sciences, H-1525 Budapest, Hungary.
    Neidhardt, Jörg
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Arwin, Hans
    Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.
    Spectroscopic ellipsometry characterization of amorphous carbon and amorphous,graphitic and fullerene-like carbon nitride thin films2009In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 517, no 24, p. 6652-6658Article in journal (Refereed)
    Abstract [en]

    Carbon nitride (CNx) and amorphous carbon (a-C) thin films are deposited by reactive magnetron sputtering onto silicon (001) wafers under controlled conditions to achieve amorphous, graphitic and fullerene-like microstructures. As-deposited films are analyzed by Spectroscopic Ellipsometry in the UV–VIS–NIR and IR spectral ranges in order to get further insight into the bonding structure of the material. Additional characterization is performed by High Resolution Transmission Electron Microscopy, X-ray Photoelectron Spectroscopy, and Atomic Force Microscopy. Between eight and eleven resonances are observed and modeled in the ellipsometrically determined optical spectra of the films. The largest or the second largest resonance for all films is a feature associated with C–N or C–C modes. This feature is generally associated with sp3 C–N or sp3 C–C bonds, which for the nitrogen-containing films instead should be identified as a three-fold or two-fold sp2 hybridization of N, either substituted in a graphite site or in a pyridine-like configuration, respectively. The π→πlow asterisk electronic transition associated with sp2 C bonds in carbon films and with sp2 N bonds (as N bonded in pyridine-like manner) in CNx films is also present, but not as strong. Another feature present in all CNx films is a resonance associated with nitrile often observed in carbon nitrides. Additional resonances are identified and discussed and moreover, several new, unidentified resonances are observed in the ellipsometric spectra.

  • 42.
    Bernard, M
    et al.
    CNRS, LEPES, F-38042 Grenoble 9, France Fac Sci & Tech St Jerome, MATOP, CNRS, F-13397 Marseille, France Linkoping Univ, Dept Phys, S-58183 Linkoping, Sweden.
    Deneuville, A
    CNRS, LEPES, F-38042 Grenoble 9, France Fac Sci & Tech St Jerome, MATOP, CNRS, F-13397 Marseille, France Linkoping Univ, Dept Phys, S-58183 Linkoping, Sweden.
    Thomas, O
    CNRS, LEPES, F-38042 Grenoble 9, France Fac Sci & Tech St Jerome, MATOP, CNRS, F-13397 Marseille, France Linkoping Univ, Dept Phys, S-58183 Linkoping, Sweden.
    Gergaud, P
    CNRS, LEPES, F-38042 Grenoble 9, France Fac Sci & Tech St Jerome, MATOP, CNRS, F-13397 Marseille, France Linkoping Univ, Dept Phys, S-58183 Linkoping, Sweden.
    Sandstrom, P
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Raman spectra of TiN/AlN superlattices2000In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 380, no 1-2, p. 252-255Article in journal (Refereed)
    Abstract [en]

    TiN (4.5 nm)/AIN (3, 6, 22 nm) superlattices deposited by DC magnetron sputtering on MgO(001) at a temperature of 850 degreesC exhibit Raman signals. They indicate N and Ti vacancies (as in thick TiN) in TiN1-x layers (x = 3 +/- 2%). x is higher for the sample with 3-nm thick AIN layers, which is ascribed to N diffusion from AIN (standing close to the TiN interfaces) to TiN. In comparison to Raman peaks of thick ALN, there are split signals of wurzite ALN phase, and a signal from another phase, which might be defective rocksalt AIN standing close to the TiN interfaces. The Raman signals clearly show interactions between ALN and TiN layers. (C) 2000 Elsevier Science B.V. All rights reserved.

  • 43. Bexell, U.
    et al.
    Berger, R.
    Olsson, M.
    Grehk, T. M.
    Sundell, P. E.
    Johansson, Mats K. G.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Bonding of vegetable oils to mercapto silane treated metal surfaces: Surface engineering on the nano scale2006In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 515, no 2, p. 838-841Article in journal (Refereed)
    Abstract [en]

    In this paper the bonding of thin vegetable oil films on mercapto silane treated aluminium surfaces has been studied. The silane molecules are attached to the surface by metal-oxygen-silicon bonds. The coupling between the unsaturated bonds of the vegetable oil and the thiol functionalised surface was obtained through a photoinduced thiol-ene reaction. The surfaces were characterised by X-ray photoelectron spectroscopy (XPS). Vegetable oil contains both saturated and unsaturated carbon chains. For the reactions investigated in this study it is the unsaturated carbon chains that can react by a thiol-ene reaction and the results indicate that it is possible to attach a vegetable oil to a metal surface pre-treated with a thiol functionalised silane.

  • 44.
    Bexell, Ulf
    et al.
    Dalarna University, School of Technology and Business Studies, Material Science.
    Berger, Robert
    Dalarna University, School of Technology and Business Studies, Material Science.
    Olsson, Mikael
    Dalarna University, School of Technology and Business Studies, Material Science.
    Grehk, Mikael
    Dalarna University, School of Technology and Business Studies, Material Science.
    Sundell, Per-Erik
    Johansson, Mats
    Bonding of vegetable oils to mercapto silane treated metal surfaces: surface engineering on the nano scale2006In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 515, no 2, p. 838-841Article in journal (Refereed)
    Abstract [en]

    In this paper the bonding of thin vegetable oil films on mercapto silane treated aluminium surfaces has been studied. The silane molecules are attached to the surface by metal–oxygen–silicon bonds. The coupling between the unsaturated bonds of the vegetable oil and the thiol functionalised surface was obtained through a photoinduced thiol-ene reaction. The surfaces were characterised by X-ray photoelectron spectroscopy (XPS). Vegetable oil contains both saturated and unsaturated carbon chains. For the reactions investigated in this study it is the unsaturated carbon chains that can react by a thiol-ene reaction and the results indicate that it is possible to attach a vegetable oil to a metal surface pre-treated with a thiol functionalised silane.

  • 45.
    Birch, Jens
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Joelsson, Torbjörn
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Eriksson, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Ghafoor, Naureen
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Single crystal CrN/ScN superlattice soft X-ray mirrors: epitaxial growth, structure, and properties2006In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 514, no 1-2, p. 10-19Article in journal (Refereed)
    Abstract [en]

    Single crystal CrN/ScN superlattice films with modulation periods of 1.64 nm were grown on MgO(001) substrates. By utilizing a magnetically enhanced plasma in the vicinity of the substrate and a negative substrate bias, ion/metal nitride flux ratios of 45 and 144 were achieved during deposition of CrN and ScN, respectively. The effects of ion energies in the range [16–58 eV] and substrate temperatures in the range [535–853 °C] on the composition, interface width, crystal quality, and microstructure evolution were investigated using elastic recoil detection analysis, hard X-ray reflectivity, X-ray diffraction, and transmission electron microscopy (TEM). Minimal interface widths of 0.2 nm = 1/2 nitride unit cell were achieved at a growth temperature of 735 °C and ion energies of 24 and 28 eV for CrN and ScN, respectively. Under these conditions, also an optimum in the crystal quality was observed for near stoichiometric composition of CrN and ScN. TEM confirmed a cube-on-cube epitaxial relationship for the system with CrN(001)ScN(001)MgO(001) and CrN[100]ScN[100]MgO[100]. Also, the layers were coherently strained to each other with no misfit dislocations, threading dislocations, surface cusps, voids or gas bubbles present. Higher ion energies or lower deposition temperatures gave over-stoichiometric films with poor superlattice modulation while higher growth temperatures yielded a decreased crystal quality, due to loss of N. As-deposited superlattices with only 61 periods exhibited an absolute soft X-ray reflectance of 6.95% at an energy of 398.8 eV (Sc 2p-absorption edge) which is comparable to the performance of Cr/Sc. The compositional modulation and phase structure was stable during extended annealing at 850 °C, which is the highest thermal stability for an X-ray multilayer mirror. It is concluded that the ScN layers serve as effective diffusion barriers to hinder decomposition of the CrN layers and stabilize the pseudomorphic superlattice structure. Nanoindentation experiments showed that the hardness of the CrN/ScN superlattice films was 19 GPa.

  • 46. Björck, M.
    et al.
    Soroka, I. L.
    Stockholm University, Faculty of Science, Department of Physics. Uppsala University, Sweden.
    Chacon-Carillo, C.
    Andersson, G.
    The asymmetric interface structure of bcc Fe82Ni18/Co superlattices as revealed by neutron diffraction2007In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 515, no 08-jul, p. 3619-3623Article in journal (Refereed)
    Abstract [en]

    The interface structure of Fe82Ni18/Co (001) Superlattices has been studied with a combination of X-ray and neutron diffraction. The analysis 'reveals highly asymmetric interfaces with total interface widths of 10 +/- 1 ML(monolayers) for Fe82Ni18 on Co and a maximum interface width of 1 ML for Co on Fe82Ni18. In addition it is concluded that there is no detectable long range B2-type chemical order occurring in the interface region. These results are also discussed in the context of previously measured magnetic mornents of the same system.

  • 47.
    Björck, M.
    et al.
    Uppsala Universitet.
    Soroka, Inna
    Uppsala Universitet.
    Chacon-Carillo, C.
    Universite Paris, France.
    Andersson, G.
    Uppsala Universitet.
    The asymmetric interface structure of bcc Fe82Ni18/Co superlattices as revealed by neutron diffraction2007In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 515, no 7-8, p. 3619-3623Article in journal (Refereed)
    Abstract [en]

    The interface structure of Fe82Ni18/Co (001) superlattices was studied by a combination of X-ray and neutron diffraction. The anal. revealed highly asym. interfaces with total interface widths of 10±1 ML (monolayers) for Fe82Ni18 on Co and a max. interface width of 1 ML for Co on Fe82Ni18. In addn., there was no detectable long range B2-type chem. order occurring in the interface region. These results are discussed in the context of previously measured magnetic moments of the same system.

  • 48.
    Björck, Matts
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics.
    Soroka, Inna
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics.
    Chacon-Carillo, Cyril
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics.
    Andersson, Gabriella
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics.
    The asymmetric interface structure of bcc Fe82Ni18/Co superlattices as revealed by neutron diffraction2007In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 515, no 7-8, p. 3619-3623Article in journal (Refereed)
    Abstract [en]

    The interface structure of Fe82Ni18/Co (001) superlattices has been studied with a combination of X-ray and neutron diffraction. The analysis reveals highly asymmetric interfaces with total interface widths of 10 ± 1 ML(monolayers) for Fe82Ni18 on Co and a maximum interface width of 1 ML for Co on Fe82Ni18. In addition it is concluded that there is no detectable long range B2-type chemical order occurring in the interface region. These results are also discussed in the context of previously measured magnetic moments of the same system.

  • 49.
    Blom, Hans-Olof
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Berg, Sören
    Larsson, T
    Mass flow limitations in reactive sputtering1985In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 130, p. 307-313Article in journal (Refereed)
  • 50.
    Blom, Hans-Olof
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Norström, H
    Östling, m
    Nygren, S
    Buchta, R
    Petersson, CS
    A comparative study of the diffusion barrier properties for TiN and ZrN1984In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731Article in journal (Refereed)
1234567 1 - 50 of 434
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf