Digitala Vetenskapliga Arkivet

Ändra sökning
Avgränsa sökresultatet
1234567 1 - 50 av 478
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Aiba, N.
    et al.
    Andersson Sundén, Erik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Binda, Federico
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Cecconello, Marco
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Conroy, Sean
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Dzysiuk, Nataliia
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Ericsson, Göran
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Eriksson, Jacob
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Hellesen, Carl
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Hjalmarsson, Anders
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Possnert, Göran
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Sjöstrand, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Skiba, Mateusz
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Weiszflog, Matthias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Zychor, I.
    Numerical analysis of ELM stability with rotation and ion diamagnetic drift effects in JET2017Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 57, nr 12, artikel-id 126001Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Stability to the type-I edge localized mode (ELM) in JET plasmas was investigated numerically by analyzing the stability to a peeling-ballooning mode with the effects of plasma rotation and ion diamagnetic drift. The numerical analysis was performed by solving the extended Frieman-Rotenberg equation with the MINERVA-DI code. To take into account these effects in the stability analysis self-consistently, the procedure of JET equilibrium reconstruction was updated to include the profiles of ion temperature and toroidal rotation, which are determined based on the measurement data in experiments. With the new procedure and MINERVA-DI, it was identified that the stability analysis including the rotation effect can explain the ELM trigger condition in JET with ITER like wall (JET-ILW), though the stability in JET with carbon wall (JET-C) is hardly affected by rotation. The key difference is that the rotation shear in JET-ILW plasmas analyzed in this study is larger than that in JET-C ones, the shear which enhances the dynamic pressure destabilizing a peeling-ballooning mode. In addition, the increase of the toroidal mode number of the unstable MHD mode determining the ELM trigger condition is also important when the plasma density is high in JET-ILW. Though such modes with high toroidal mode number are strongly stabilized by the ion diamagnetic drift effect, it was found that plasma rotation can sometimes overcome this stabilizing effect and destabilizes the peeling-ballooning modes in JET-ILW.

  • 2. Aiba, N.
    et al.
    Giroud, C.
    Honda, M.
    Delabie, E.
    Saarelma, S.
    Frassinetti, L
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Lupelli, I.
    Casson, F. J.
    Pamela, S.
    Urano, H.
    Maggi, C. F.
    Numerical analysis of ELM stability with rotation and ion diamagnetic drift effects in JET2017Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 57, nr 12, artikel-id 126001Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Stability to the type-I edge localized mode (ELM) in JET plasmas was investigated numerically by analyzing the stability to a peeling-ballooning mode with the effects of plasma rotation and ion diamagnetic drift. The numerical analysis was performed by solving the extended Frieman-Rotenberg equation with the MINERVA-DI code. To take into account these effects in the stability analysis self-consistently, the procedure of JET equilibrium reconstruction was updated to include the profiles of ion temperature and toroidal rotation, which are determined based on the measurement data in experiments. With the new procedure and MINERVA-DI, it was identified that the stability analysis including the rotation effect can explain the ELM trigger condition in JET with ITER like wall (JET-ILW), though the stability in JET with carbon wall (JET-C) is hardly affected by rotation. The key difference is that the rotation shear in JET-ILW plasmas analyzed in this study is larger than that in JET-C ones, the shear which enhances the dynamic pressure destabilizing a peeling-ballooning mode. In addition, the increase of the toroidal mode number of the unstable MHD mode determining the ELM trigger condition is also important when the plasma density is high in JET-ILW. Though such modes with high toroidal mode number are strongly stabilized by the ion diamagnetic drift effect, it was found that plasma rotation can sometimes overcome this stabilizing effect and destabilizes the peeling-ballooning modes in JET-ILW.

  • 3. Angioni, C.
    et al.
    Andersson Sundén, Erik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Asp, E.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Binda, Federico
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Cecconello, Marco
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Conroy, Sean
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Dzysiuk, Nataliia
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Ericsson, Göran
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Eriksson, Jacob
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Hellesen, Carl
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Hjalmarsson, Anders
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Possnert, Göran
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Sjöstrand, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Skiba, Mateusz
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Weiszflog, Matthias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Zychor, I.
    Gyrokinetic study of turbulent convection of heavy impurities in tokamak plasmas at comparable ion and electron heat fluxes2017Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 57, nr 2, artikel-id 022009Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In tokamaks, the role of turbulent transport of heavy impurities, relative to that of neoclassical transport, increases with increasing size of the plasma, as clarified by means of general scalings, which use the ITER standard scenario parameters as reference, and by actual results from a selection of discharges from ASDEX Upgrade and JET. This motivates the theoretical investigation of the properties of the turbulent convection of heavy impurities by nonlinear gyrokinetic simulations in the experimentally relevant conditions of comparable ion and electron heat fluxes. These conditions also correspond to an intermediate regime between dominant ion temperature gradient turbulence and trapped electron mode turbulence. At moderate plasma toroidal rotation, the turbulent convection of heavy impurities, computed with nonlinear gyrokinetic simulations, is found to be directed outward, in contrast to that obtained by quasi-linear calculations based on the most unstable linear mode, which is directed inward. In this mixed turbulence regime, with comparable electron and ion heat fluxes, the nonlinear results of the impurity transport can be explained by the coexistence of both ion temperature gradient and trapped electron modes in the turbulent state, both contributing to the turbulent convection and diffusion of the impurity. The impact of toroidal rotation on the turbulent convection is also clarified.

  • 4.
    Angioni, C.
    et al.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany.;Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Bergsåker, Henric
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Garcia Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Jonsson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Atom- och molekylfysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Tholerus, Simon
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    et al.,
    Gyrokinetic study of turbulent convection of heavy impurities in tokamak plasmas at comparable ion and electron heat fluxes2017Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 57, nr 2, artikel-id 022009Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In tokamaks, the role of turbulent transport of heavy impurities, relative to that of neoclassical transport, increases with increasing size of the plasma, as clarified by means of general scalings, which use the ITER standard scenario parameters as reference, and by actual results from a selection of discharges from ASDEX Upgrade and JET. This motivates the theoretical investigation of the properties of the turbulent convection of heavy impurities by nonlinear gyrokinetic simulations in the experimentally relevant conditions of comparable ion and electron heat fluxes. These conditions also correspond to an intermediate regime between dominant ion temperature gradient turbulence and trapped electron mode turbulence. At moderate plasma toroidal rotation, the turbulent convection of heavy impurities, computed with nonlinear gyrokinetic simulations, is found to be directed outward, in contrast to that obtained by quasi-linear calculations based on the most unstable linear mode, which is directed inward. In this mixed turbulence regime, with comparable electron and ion heat fluxes, the nonlinear results of the impurity transport can be explained by the coexistence of both ion temperature gradient and trapped electron modes in the turbulent state, both contributing to the turbulent convection and diffusion of the impurity. The impact of toroidal rotation on the turbulent convection is also clarified.

  • 5.
    Arnichand, H.
    et al.
    CEA, IRFM, F-13108 St Paul Les Durance, France.;IRFM, CEA, F-13108 St Paul Les Durance, France..
    Bergsåker, Henric
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Garcia Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Johnson, Thomas J.
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Tholerus, Simon
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    Discriminating the trapped electron modes contribution in density fluctuation spectra2015Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 55, nr 9, artikel-id 093021Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Quasi-coherent (QC) modes have been reported for more than 10 years in reflectometry fluctuations spectra in the core region of fusion plasmas. They have characteristics in-between coherent and broadband fluctuations as they oscillate at a marked frequency but have a wide spectrum. This work presents further evidences of the link recently established between QC modes and the trapped electron modes (TEM) instabilities (Arnichand et al 2014 Nucl. Fusion 54 123017). In electron cyclotron resonance heated discharges of Tore Supra, an enhancement of QC modes amplitude is observed in a region where TEM cause impurity transport and turbulence. In JET Ohmic plasmas, QC modes disappear during density ramp-up and current ramp-down. This is reminiscent of Tore Supra and TEXTOR observations during transitions from the linear Ohmic confinement (LOC) to the saturated Ohmic confinement (SOC) regimes. Evidencing TEM activity then becomes experimentally possible via analysis of fluctuation spectra.

  • 6. Aslanyan, V
    et al.
    Andersson Sundén, Erik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Binda, F.
    Cecconello, M.
    Conroy, Sean
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Dzysiuk, N.
    Ericsson, Göran
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Eriksson, Jacob
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Hellesen, C.
    Hjalmarsson, Anders
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Possnert, Göran
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Sjöstrand, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Skiba, M.
    Weiszflog, Matthias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Zychor, I.
    Gyrokinetic simulations of toroidal Alfven eigenmodes excited by energetic ions and external antennas on the Joint European Torus2019Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, nr 2, artikel-id 026008Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The gyrokinetic toroidal code (GTC) has been used to study toroidal Alfven eigenmodes (TAEs) in high-performance plasmas. Experiments performed at the Joint European Torus (JET), where TAEs were driven by energetic particles arising from neutral beams, ion cyclotron resonant heating, and resonantly excited by dedicated external antennas, have been simulated. Modes driven by populations of energetic particles are observed, matching the TAE frequency seen with magnetic probes in JET experiments. A synthetic antenna, composed of one toroidal and two neighboring poloidal harmonics has been used to probe the modes' damping rates and quantify mechanisms for this damping in GTC simulations. This method was also applied to frequency and damping rate measurements of stable TAEs made by the Alfven eigenmode active diagnostic in these discharges.

  • 7.
    Aslanyan, V
    et al.
    MIT PSFC, 175 Albany St, Cambridge, MA 02139 USA..
    Aslanyan, V.
    MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    Gyrokinetic simulations of toroidal Alfven eigenmodes excited by energetic ions and external antennas on the Joint European Torus2019Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, nr 2, artikel-id 026008Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The gyrokinetic toroidal code (GTC) has been used to study toroidal Alfven eigenmodes (TAEs) in high-performance plasmas. Experiments performed at the Joint European Torus (JET), where TAEs were driven by energetic particles arising from neutral beams, ion cyclotron resonant heating, and resonantly excited by dedicated external antennas, have been simulated. Modes driven by populations of energetic particles are observed, matching the TAE frequency seen with magnetic probes in JET experiments. A synthetic antenna, composed of one toroidal and two neighboring poloidal harmonics has been used to probe the modes' damping rates and quantify mechanisms for this damping in GTC simulations. This method was also applied to frequency and damping rate measurements of stable TAEs made by the Alfven eigenmode active diagnostic in these discharges.

  • 8.
    Baiocchi, B.
    et al.
    CEA, IRFM, F-13108 St Paul Les Durance, France.;CEA, IRFM, F-13108 St Paul Les Durance, France. EUROfus Consortium, JET, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.;IRFM, CEA, F-13108 St Paul Les Durance, France..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    --.
    et al.,
    Transport analysis and modelling of the evolution of hollow density profiles plasmas in JET and implication for ITER2015Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 55, nr 12, artikel-id 123001Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The density evolution during the transient phase just after the L-H transition is investigated using theoretical transport models. Cases characterized by core densities which evolve in longer timescales than the edge densities, leading to hollow density profiles (R/L-n = -R del n/n < 0) are modelled. This density evolution is particularly interesting because it has been shown to be beneficial in the view of the access to burning plasma conditions in ITER (Loarte et al 2013 Nucl. Fusion 53 083031). Self-consistent simulations of the JET discharge 79676 of the density-only, and of the density and the temperatures are carried out using a quasilinear gyrokinetic code, QuaLiKiz (Bourdelle et al 2007 Phys. Plasmas 14 112501), coupled with a transport code CRONOS (Artaud et al 2010 Nucl. Fusion 50 043001). The slow evolution of the hollow density, associated with the self-consistently calculated hollow NBI particle deposition, is well reproduced in the plasma core. Indeed, QuaLiKiz is shown to reproduce nonlinear gyrokinetic heat and particle fluxes well for both positive and negative R/L-n. That gives a theoretical and general basis for the persistence of the hollowness, laying the groundwork for the extrapolation to ITER.

  • 9. Baron-Wiechec, A.
    et al.
    Fortuna-Zalesna, E.
    Grzonka, J.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Widdowson, A.
    Ayres, C.
    Coad, J. P.
    Hardie, C.
    Heinola, K.
    Matthews, G. F.
    First dust study in JET with the ITER-like wall: sampling, analysis and classification2015Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 55, nr 11, artikel-id 113033Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Results of the first dust survey in JET with the ITER-Like Wall (JET-ILW) are presented. The sampling was performed using adhesive stickers from the divertor tiles where the greatest material deposition was detected after the first JET-ILW campaign in 2011-2012. The emphasis was especially on sampling and analysis of metal particles (Be and W) with the aim to determine the composition, size, surface topography and internal dust structure using a large set of methods: high-resolution scanning and transmission electron microscopy, focused ion beam, electron diffraction and also wavelength and energy dispersive x-ray spectroscopy. The most important was the identification of beryllium dust both in the form of flakes and droplets with dimensions in the micrometer range. Tungsten, molybdenum, inconel constituents were identified along with many impurity species. The particles are categorised and the origin of the various constituents discussed.

  • 10. Batistoni, P.
    et al.
    Andersson Sundén, Erik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Binda, Federico
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Cecconello, Marco
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Conroy, Sean
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Dzysiuk, Nataliia
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Ericsson, Göran
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Eriksson, Jacob
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Hellesen, Carl
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Hjalmarsson, Anders
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Possnert, Göran
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Sjöstrand, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Skiba, Mateusz
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Weiszflog, Matthias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Zychor, I.
    14 MeV calibration of JET neutron detectors-phase 1: calibration and characterization of the neutron source2018Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, nr 2, artikel-id UNSP 026012Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In view of the planned DT operations at JET, a calibration of the JET neutron monitors at 14 MeV neutron energy is needed using a 14 MeV neutron generator deployed inside the vacuum vessel by the JET remote handling system. The target accuracy of this calibration is +/- 10% as also required by ITER, where a precise neutron yield measurement is important, e.g. for tritium accountancy. To achieve this accuracy, the 14 MeV neutron generator selected as the calibration source has been fully characterised and calibrated prior to the in-vessel calibration of the JET monitors. This paper describes the measurements performed using different types of neutron detectors, spectrometers, calibrated long counters and activation foils which allowed us to obtain the neutron emission rate and the anisotropy of the neutron generator, i.e. the neutron flux and energy spectrum dependence on emission angle, and to derive the absolute emission rate in 4 pi sr. The use of high resolution diamond spectrometers made it possible to resolve the complex features of the neutron energy spectra resulting from the mixed D/T beam ions reacting with the D/T nuclei present in the neutron generator target. As the neutron generator is not a stable neutron source, several monitoring detectors were attached to it by means of an ad hoc mechanical structure to continuously monitor the neutron emission rate during the in-vessel calibration. These monitoring detectors, two diamond diodes and activation foils, have been calibrated in terms of neutrons/counts within +/- 5% total uncertainty. A neutron source routine has been developed, able to produce the neutron spectra resulting from all possible reactions occurring with the D/T ions in the beam impinging on the Ti D/T target. The neutron energy spectra calculated by combining the source routine with a MCNP model of the neutron generator have been validated by the measurements. These numerical tools will be key in analysing the results from the in-vessel calibration and to derive the response of the JET neutron detectors to DT plasma neutrons starting from the response to the generator neutrons, and taking into account all the calibration circumstances.

  • 11. Batistoni, P.
    et al.
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia Carrasco, Alvaro
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Jonsson, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Atom- och molekylfysik.
    Rubel, Marek
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Simon
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    et al.,
    Benchmark experiments on neutron streaming through JET Torus Hall penetrations2015Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 55, nr 5, artikel-id 053028Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Neutronics experiments are performed at JET for validating in a real fusion environment the neutronics codes and nuclear data applied in ITER nuclear analyses. In particular, the neutron fluence through the penetrations of the JET torus hall is measured and compared with calculations to assess the capability of state-of-art numerical tools to correctly predict the radiation streaming in the ITER biological shield penetrations up to large distances from the neutron source, in large and complex geometries. Neutron streaming experiments started in 2012 when several hundreds of very sensitive thermo-luminescence detectors (TLDs), enriched to different levels in (LiF)-Li-6/(LiF)-Li-7, were used to measure the neutron and gamma dose separately. Lessons learnt from this first experiment led to significant improvements in the experimental arrangements to reduce the effects due to directional neutron source and self-shielding of TLDs. Here we report the results of measurements performed during the 2013-2014 JET campaign. Data from new positions, at further locations in the South West labyrinth and down to the Torus Hall basement through the air duct chimney, were obtained up to about a 40m distance from the plasma neutron source. In order to avoid interference between TLDs due to self-shielding effects, only TLDs containing natural Lithium and 99.97% Li-7 were used. All TLDs were located in the centre of large polyethylene (PE) moderators, with Li-nat and Li-7 crystals evenly arranged within two PE containers, one in horizontal and the other in vertical orientation, to investigate the shadowing effect in the directional neutron field. All TLDs were calibrated in the quantities of air kerma and neutron fluence. This improved experimental arrangement led to reduced statistical spread in the experimental data. The Monte Carlo N-Particle (MCNP) code was used to calculate the air kerma due to neutrons and the neutron fluence at detector positions, using a JET model validated up to the magnetic limbs. JET biological shield and penetrations, the PE moderators and TLDs were modelled in detail. Different tallying methods were used in the calculations, which are routinely used in ITER nuclear analyses: the mesh tally and the track length estimator with multiple steps calculations using the surface source write/read capability available in MCNP. In both cases, the calculated neutron fluence (C) was compared to the measured fluence (E) and hence C/E comparisons have been obtained and are discussed. These results provide a validation of neutronics numerical tools, codes and nuclear data, used for ITER design.

  • 12.
    Batistoni, P.
    et al.
    Culham Sci Ctr, EUROfus Consortium, Abingdon OX14 3DB, Oxon, England.;ENEA, Dept Fus & Nucl Safety Technol, I-00044 Rome, Italy.;ENEA C R Frascati, Unit Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    14 MeV calibration of JET neutron detectors-phase 1: calibration and characterization of the neutron source2018Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, nr 2, artikel-id UNSP 026012Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In view of the planned DT operations at JET, a calibration of the JET neutron monitors at 14 MeV neutron energy is needed using a 14 MeV neutron generator deployed inside the vacuum vessel by the JET remote handling system. The target accuracy of this calibration is +/- 10% as also required by ITER, where a precise neutron yield measurement is important, e.g. for tritium accountancy. To achieve this accuracy, the 14 MeV neutron generator selected as the calibration source has been fully characterised and calibrated prior to the in-vessel calibration of the JET monitors. This paper describes the measurements performed using different types of neutron detectors, spectrometers, calibrated long counters and activation foils which allowed us to obtain the neutron emission rate and the anisotropy of the neutron generator, i.e. the neutron flux and energy spectrum dependence on emission angle, and to derive the absolute emission rate in 4 pi sr. The use of high resolution diamond spectrometers made it possible to resolve the complex features of the neutron energy spectra resulting from the mixed D/T beam ions reacting with the D/T nuclei present in the neutron generator target. As the neutron generator is not a stable neutron source, several monitoring detectors were attached to it by means of an ad hoc mechanical structure to continuously monitor the neutron emission rate during the in-vessel calibration. These monitoring detectors, two diamond diodes and activation foils, have been calibrated in terms of neutrons/counts within +/- 5% total uncertainty. A neutron source routine has been developed, able to produce the neutron spectra resulting from all possible reactions occurring with the D/T ions in the beam impinging on the Ti D/T target. The neutron energy spectra calculated by combining the source routine with a MCNP model of the neutron generator have been validated by the measurements. These numerical tools will be key in analysing the results from the in-vessel calibration and to derive the response of the JET neutron detectors to DT plasma neutrons starting from the response to the generator neutrons, and taking into account all the calibration circumstances.

  • 13. Batistoni, P.
    et al.
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    et al.,
    14 MeV calibration of JET neutron detectors-phase 2: in-vessel calibration2018Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, nr 10, artikel-id 106016Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A new DT campaign (DTE2) is planned at JET in 2020 to minimize the risks of ITER operations. In view of DT operations, a calibration of the JET neutron monitors at 14 MeV neutron energy has been performed using a well calibrated 14 MeV neutron generator (NG) deployed, together with its power supply and control unit, inside the vacuum vessel by the JET remote handling system. The NG was equipped with two calibrated diamond detectors, which continuously monitored its neutron emission rate during the calibration, and activation foils which provided the time integrated yield. Cables embedded in the remote handling boom were used to power the neutron generator, the active detectors and pre-amplifier, and to transport the detectors' signal. The monitoring activation foils were retrieved at the end of each day for decay gamma-ray counting, and replaced by fresh ones. About 76 hours of irradiation, in 9 days, were needed with the neutron generator in 73 different poloidal and toroidal positions in order to calibrate the two neutron yield measuring systems available at JET, the U-235 fission chambers (KN1) and the inner activation system (KN2). The NG neutron emission rates provided by the monitoring detectors were in agreement within 3%. Neutronics calculations have been performed using MCNP code and a detailed model of JET to derive the response of the JET neutron detectors to DT plasma neutrons starting from the response to the NG neutrons, and taking into account the anisotropy of the neutron generator and all the calibration circumstances. These calculations have made use of a very detailed and validated geometrical description of the neutron generator and of the modified. MNCP neutron source subroutine producing neutron energy-angle distribution for the neutrons emitted by the NG. The KN1 calibration factor for a DT plasma has been determined with +/- 4.2%' experimental uncertainty. Corrections due to NG and remote handling effects and the plasma volume effect have been calculated by simulation modelling. The related additional uncertainties are difficult to estimate, however the results of the previous calibration in 2013 have demonstrated that such uncertainties due to modelling are globally <= +/- 3%. It has been found that the difference between KN1 response to DD neutrons and that to DT neutrons is within the uncertainties in the derived responses. KN2 has been calibrated using the Nb-93(n,2n)Nb-92m and Al-27(n,a)Na-24 activation reactions (energy thresholds 10 MeV and 5 MeV respectively). The total uncertainty on the calibration factors is +/- 6% for Nb-93(n,2n)Nb-92m and +/- 8% Al-27(n,a)Na-24 (1 sigma). The calibration factors of the two independent systems KN1 and KN2 will be validated during DT operations. The experience gained and the lessons learnt are presented and discussed in particular with regard to the 14 MeV neutron calibrations in ITER.

  • 14. Batistoni, P.
    et al.
    Conroy, Sean
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Lilley, S.
    Naish, J.
    Obryk, B.
    Popovichev, S.
    Stamatelatos, I.
    Syme, B.
    Vasilopoulou, T.
    Benchmark experiments on neutron streaming through JET Torus Hall penetrations2015Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 55, nr 5, artikel-id 053028Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Neutronics experiments are performed at JET for validating in a real fusion environment the neutronics codes and nuclear data applied in ITER nuclear analyses. In particular, the neutron fluence through the penetrations of the JET torus hall is measured and compared with calculations to assess the capability of state-of-art numerical tools to correctly predict the radiation streaming in the ITER biological shield penetrations up to large distances from the neutron source, in large and complex geometries. Neutron streaming experiments started in 2012 when several hundreds of very sensitive thermo-luminescence detectors (TLDs), enriched to different levels in (LiF)-Li-6/(LiF)-Li-7, were used to measure the neutron and gamma dose separately. Lessons learnt from this first experiment led to significant improvements in the experimental arrangements to reduce the effects due to directional neutron source and self-shielding of TLDs. Here we report the results of measurements performed during the 2013-2014 JET campaign. Data from new positions, at further locations in the South West labyrinth and down to the Torus Hall basement through the air duct chimney, were obtained up to about a 40m distance from the plasma neutron source. In order to avoid interference between TLDs due to self-shielding effects, only TLDs containing natural Lithium and 99.97% Li-7 were used. All TLDs were located in the centre of large polyethylene (PE) moderators, with Li-nat and Li-7 crystals evenly arranged within two PE containers, one in horizontal and the other in vertical orientation, to investigate the shadowing effect in the directional neutron field. All TLDs were calibrated in the quantities of air kerma and neutron fluence. This improved experimental arrangement led to reduced statistical spread in the experimental data. The Monte Carlo N-Particle (MCNP) code was used to calculate the air kerma due to neutrons and the neutron fluence at detector positions, using a JET model validated up to the magnetic limbs. JET biological shield and penetrations, the PE moderators and TLDs were modelled in detail. Different tallying methods were used in the calculations, which are routinely used in ITER nuclear analyses: the mesh tally and the track length estimator with multiple steps calculations using the surface source write/read capability available in MCNP. In both cases, the calculated neutron fluence (C) was compared to the measured fluence (E) and hence C/E comparisons have been obtained and are discussed. These results provide a validation of neutronics numerical tools, codes and nuclear data, used for ITER design.

  • 15. Batistoni, P.
    et al.
    Popovichev, S.
    Ghani, Z.
    Cufar, A.
    Giacomelli, L.
    Hawkins, P.
    Keogh, K.
    Jednorog, S.
    Laszynska, E.
    Loreti, S.
    Peacock, A.
    Pillon, M.
    Price, R.
    Reed, A.
    Rigamonti, D.
    Stephens, J.
    Bielecki, J.
    Conroy, Sean
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Dankowski, J.
    Krasilnikov, V.
    14 MeV calibration of JET neutron detectors-phase 2: in-vessel calibration2018Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, nr 10, artikel-id 106016Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A new DT campaign (DTE2) is planned at JET in 2020 to minimize the risks of ITER operations. In view of DT operations, a calibration of the JET neutron monitors at 14 MeV neutron energy has been performed using a well calibrated 14 MeV neutron generator (NG) deployed, together with its power supply and control unit, inside the vacuum vessel by the JET remote handling system. The NG was equipped with two calibrated diamond detectors, which continuously monitored its neutron emission rate during the calibration, and activation foils which provided the time integrated yield. Cables embedded in the remote handling boom were used to power the neutron generator, the active detectors and pre-amplifier, and to transport the detectors' signal. The monitoring activation foils were retrieved at the end of each day for decay gamma-ray counting, and replaced by fresh ones. About 76 hours of irradiation, in 9 days, were needed with the neutron generator in 73 different poloidal and toroidal positions in order to calibrate the two neutron yield measuring systems available at JET, the U-235 fission chambers (KN1) and the inner activation system (KN2). The NG neutron emission rates provided by the monitoring detectors were in agreement within 3%. Neutronics calculations have been performed using MCNP code and a detailed model of JET to derive the response of the JET neutron detectors to DT plasma neutrons starting from the response to the NG neutrons, and taking into account the anisotropy of the neutron generator and all the calibration circumstances. These calculations have made use of a very detailed and validated geometrical description of the neutron generator and of the modified. MNCP neutron source subroutine producing neutron energy-angle distribution for the neutrons emitted by the NG. The KN1 calibration factor for a DT plasma has been determined with +/- 4.2%' experimental uncertainty. Corrections due to NG and remote handling effects and the plasma volume effect have been calculated by simulation modelling. The related additional uncertainties are difficult to estimate, however the results of the previous calibration in 2013 have demonstrated that such uncertainties due to modelling are globally <= +/- 3%. It has been found that the difference between KN1 response to DD neutrons and that to DT neutrons is within the uncertainties in the derived responses. KN2 has been calibrated using the Nb-93(n,2n)Nb-92m and Al-27(n,a)Na-24 activation reactions (energy thresholds 10 MeV and 5 MeV respectively). The total uncertainty on the calibration factors is +/- 6% for Nb-93(n,2n)Nb-92m and +/- 8% Al-27(n,a)Na-24 (1 sigma). The calibration factors of the two independent systems KN1 and KN2 will be validated during DT operations. The experience gained and the lessons learnt are presented and discussed in particular with regard to the 14 MeV neutron calibrations in ITER.

  • 16.
    Ben Yaala, M.
    et al.
    Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland..
    Moser, L.
    Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland..
    Steiner, R.
    Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland..
    Butoi, B.
    Natl Inst Laser Plasma & Radiat Phys, 409 Atomistilor St, Magurele 077125, Romania..
    Dinca, P.
    Natl Inst Laser Plasma & Radiat Phys, 409 Atomistilor St, Magurele 077125, Romania..
    Petersson, Per
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Fusionsplasmafysik.
    Marot, L.
    Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland..
    Meyer, E.
    Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland..
    Deuterium as a cleaning gas for ITER first mirrors: experimental study on beryllium deposits from laboratory and JET-ILW2019Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, nr 9, artikel-id 096027Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Cleaning techniques for metallic first mirrors are needed in more than 20 optical diagnostic systems from ITER to avoid reflectivity losses. Plasma sputtering is considered as one of the most promising techniques to remove deposits coming from the main wall (mainly beryllium and tungsten). Previous plasma cleaning studies were conducted on mirrors contaminated with beryllium and tungsten where argon and/or helium were employed as process gas, demonstrating removal of contamination and recovery of optical properties. Still, both abovementioned process gases have a non-negligible sputtering yield on mirrors. In this work, we explored the possibility to use a sputter gas having a small impact on mirrors while being efficient on Be deposits, e.g. deuterium. Two sputtering regimes were studied, on laboratory deposits as well as on mirrors exposed in .TET-ILW, namely physical sputtering (220eV ion energy) and chemically assisted physical sputtering (60 eV ion energy) using capacitively coupled plasma with radio frequency. The removal of Be and mixed Be/W contaminants, as well as the recovery of reflectivity, was achieved when deuterium was employed at 220eV while cleaning at 60eV was only fully efficient on laboratory beryllium deposits. On mirrors exposed in JET-ILW, the situation is more complex due to the presence of tungsten in the contaminant film, leading to the formation of a tungsten enriched surface that is not easily sputtered, especially at 60eV.

  • 17.
    Bergkvist, Tommy
    et al.
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Holmström, Kerstin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Non-linear dynamics of Alfvén eigenmodes excited by thermonulcear alpha particles in the presence of ion cyclotron resonance heating2007Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 47, nr 9, s. 1131-1141Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Alfvén eigenmodes (AEs) excited by thermonuclear α-particles can degrade the heating efficiency by spatial redistribution of the resonant α-particles. Changes of the orbit invariants in phase space by collisions and interactions with other waves, such as magnetosonic waves during ion cyclotron resonance heating (ICRH), lead to changes in the phase between the α-particles and AEs, causing a decorrelation of the interactions and stronger redistribution of the α-particles. Cyclotron interactions increase the decorrelation of the AE interactions with the high-energy ions and hence a stronger radial redistribution of the high-energy α-particles by the AEs. Renewal of the distribution function by thermonuclear reactions and losses of α-particles to the wall lead to a continuous drive of the AEs and a radial redistribution of the α-particles. The condition for excitation of AEs is shown to depend on the heating scenario where heating at the low field side creates a significant population of high-energy non-standard orbits which drive the modes. The redistribution results in a reduction in the averaged α-particle energy and a degradation of the heating efficiency. The effect on the distribution function in the presence of several unstable modes is not additive and the particle redistribution is found to saturate with an increasing number of modes.

  • 18.
    Bergkvist, Tommy
    et al.
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Johnson, T.
    Laxåback, Martin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Non-linear study of fast particle excitation of global Alfvén eigenmodes during ICRH2005Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 45, s. 485-493Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    High-power ion–cyclotron resonance heating (ICRH) can produce centrally peaked fast ion distributions with wide non-standard drift orbits exciting Alfvén eigenmodes (AEs). The dynamics of the AE excitation depends not only on the anisotropy and the peaking of the fast ion distribution but also on the decorrelation of the AE interactions and the renewal of the fast ions resonant with the AE by ion–cyclotron interactions. A method of self-consistently including the evolution of the distribution function of fast ions during excitation of AEs and ICRH has been developed and implemented in the SELFO code. Numerical simulations of the AE dynamics and ICRH give a variation of the AE amplitude consistent with the experimentally observed splitting of the mode frequency. The experimentally observed fast damping of the mode as the ICRH is switched off is also evident in the simulations.

  • 19. Bergsaker, H.
    et al.
    Possnert, Göran
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, För teknisk-naturvetenskapliga fakulteten gemensamma enheter, Tandemlaboratoriet.
    Bykov, I.
    Heinola, K.
    Petersson, P.
    Miettunen, J.
    Widdowson, A.
    Riccardo, V.
    Nunes, I.
    Stamp, M.
    Brezinsek, S.
    Groth, M.
    Kurki-Suonio, T.
    Likonen, J.
    Coad, J. P.
    Borodin, D.
    Kirschner, A.
    Schmid, K.
    Krieger, K.
    First results from the Be-10 marker experiment in JET with ITER-like wall2014Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 54, nr 8, s. 082004-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    When the ITER-like wall was installed in JET, one of the 218 Be inner wall guard limiter tiles had been enriched with Be-10 as a bulk isotopic marker. During the shutdown in 2012-2013, a set of tiles were sampled nondestructively to collect material for accelerator mass spectroscopy measurements of Be-10 concentration. The letter shows how the marker experiment was set up, presents first results and compares them to preliminary predictions of marker redistribution, made with the ASCOT numerical code. Finally an outline is shown of what experimental data are likely to become available later and the possibilities for comparison with modelling using the WallDYN, ERO and ASCOT codes are discussed.

  • 20.
    Bergsåker, Henric
    et al.
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Possnert, G.
    Bykov, Igor
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Heinola, K.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Miettunen, J.
    Widdowson, A.
    Riccardo, V.
    Nunes, I.
    Stamp, M.
    Brezinsek, S.
    Groth, M.
    Kurki-Suonio, T.
    Likonen, J.
    Coad, J. P.
    Borodin, D.
    Kirschner, A.
    Schmid, K.
    Krieger, K.
    First results from the Be-10 marker experiment in JET with ITER-like wall2014Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 54, nr 8, s. 082004-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    When the ITER-like wall was installed in JET, one of the 218 Be inner wall guard limiter tiles had been enriched with Be-10 as a bulk isotopic marker. During the shutdown in 2012-2013, a set of tiles were sampled nondestructively to collect material for accelerator mass spectroscopy measurements of Be-10 concentration. The letter shows how the marker experiment was set up, presents first results and compares them to preliminary predictions of marker redistribution, made with the ASCOT numerical code. Finally an outline is shown of what experimental data are likely to become available later and the possibilities for comparison with modelling using the WallDYN, ERO and ASCOT codes are discussed.

  • 21. Berk, H. L.
    et al.
    Boswell, C. J.
    Borba, D.
    Figueiredo, A. C. A.
    Johnson, Thomas J.
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Nave, M. F. F.
    Pinches, S. D.
    Sharapov, S. E.
    Explanation of the JET n=0 chirping mode2006Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 46, nr 10, s. S888-S897Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Persistent rapid up and down frequency chirping modes with a toroidal mode number of zero (n = 0) are observed in the JET tokamak when energetic ions, in the range of several hundred keV, are created by high field side ion cyclotron resonance frequency heating. Fokker-Planck calculations demonstrate that the heating method enables the formation of an energetically inverted ion distribution which supplies the free energy for the ions to excite a mode related to the geodesic acoustic mode. The large frequency shifts of this mode are attributed to the formation of phase space structures whose frequencies, which are locked to an ion orbit bounce resonance frequency, are forced to continually shift so that energetic particle energy can be released to counterbalance the energy dissipation present in the background plasma.

  • 22. Beurskens, M. N. A.
    et al.
    Arnoux, G.
    Brezinsek, A. S.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Atom- och molekylfysik.
    Saarelma, S.
    Solano, E.
    et al,
    Pedestal and ELM response to impurity seeding in JET advanced scenario plasmas2008Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 48, nr 9Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Advanced scenario plasmas must often be run at low densities and high power, leading to hot edge temperatures and consequent power handling issues at plasma - surface interaction zones. Experiments at JET are addressing this issue by exploring the use of extrinsic impurity seeding and D-2 puffing to reduce heat fluxes. The experiments presented in this paper continue the line of advanced tokamak ( AT) scenario studies at high triangularity in JET by concentrating on the characterization of the edge pedestal and the ELM behaviour with deuterium and/or light impurity fuelling (neon, nitrogen). Both injection of extrinsic impurities and D2 puffing are shown to have a significant impact on the edge pedestal in typical JET AT conditions. The ELM energy loss, Delta W-ELM/W-dia, can be reduced to below 3% and the maximum ELM penetration depth can be limited to r/a > 0.7, thus enhancing the possibility for sustainable internal transport barriers at large plasma radius. These conditions can be achieved in two separate domains, either at a radiated power fraction (F-rad) of 30% or at a fraction of > 50%. At the lower Frad the ELMs are type I and a high pedestal pressure is maintained, but the occasional large ELM may still occur. At F-rad > 50% the pedestal pressure is degraded by 30-50%, but the ELMs are degraded to type III. The intermediate regime at F-rad similar to 40% is unattractive for ITB scenarios because large type I ELMs occur intermittently during the predominantly type III ELM phases (compound type I/III). F-rad = 30% can be obtained with D-2 fuelling alone, whereas neon or nitrogen seeding is needed to achieve F-rad > 50%. Only a limited number of tests have been carried out with nitrogen seeding, with the preliminary conclusion that the plasma edge behaviour is similar to that with neon seeding once the radiated fraction is matched.

  • 23. Beurskens, M. N. A.
    et al.
    Dunne, M. G.
    Frassinetti, Lorenzo
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Bernert, M.
    Cavedon, M.
    Fischer, R.
    Järvinen, A.
    Kallenbach, A.
    Laggner, F. M.
    McDermott, R. M.
    Potzel, S.
    Schweinzer, J.
    Tardini, G.
    Viezzer, E.
    Wolfrum, E.
    The role of carbon and nitrogen on the H-mode confinement in ASDEX Upgrade with a metal wall2016Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 56, nr 5, artikel-id 056014Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Carbon (CD4) and nitrogen (N2) have been seeded in ASDEX Upgrade (AUG) with a tungsten wall and have both led to a 20-30% confinement improvement. The reference plasma is a standard target plasma with I p /B T = 1 MA/2.5 T, total input power P tot ∼ 12 MW and normalized pressure of β N ∼ 1.8. Carbon and nitrogen are almost perfectly exchangeable for the core, pedestal and divertor plasma in this experiment where impurity concentrations of C and N of 2% are achieved and Z eff only mildly increases from ∼1.3 to ∼1.7. As the radiation potentials of C and N are similar and peak well below 100 eV, both impurities act as divertor radiators and radiate well outside the pedestal region. The outer divertor is purposely kept in an attached state when C and N are seeded to avoid confinement degradation by detachment. As reported in earlier publications for nitrogen, carbon is also seen to reduce the high field side high density (the so-called HFSHD) in the scrape off layer above the inner divertor strike point by about 50%. This is accompanied by a confinement improvement for both low (δ ∼ 0.25) and high (δ ∼ 0.4) triangularity configurations for both seeding gases, due to an increase of pedestal temperature and stiff core temperature profiles. The electron density profiles show no apparent change due to the seeding. As an orthogonal effect, increasing the triangularity leads to an additionally increased pedestal density, independent of the impurity seeding. This experiment further closes the gap in understanding the confinement differences observed in carbon and metal wall devices; the absence of carbon can be substituted by nitrogen which leads to a similar confinement benefit. So far, no definite physics explanation for the confinement enhancement has been obtained, but the experimental observations in this paper provide input for further model development.

  • 24. Beurskens, M. N. A.
    et al.
    Frassinetti, Lorenzo
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Challis, C.
    Giroud, C.
    Saarelma, S.
    Alper, B.
    Angioni, C.
    Bilkova, P.
    Bourdelle, C.
    Brezinsek, S.
    Buratti, P.
    Calabro, G.
    Eich, T.
    Flanagan, J.
    Giovannozzi, E.
    Groth, M.
    Hobirk, J.
    Joffrin, E.
    Leyland, M. J.
    Lomas, P.
    de la Luna, E.
    Kempenaars, M.
    Maddison, G.
    Maggi, C.
    Mantica, P.
    Maslov, M.
    Matthews, G.
    Mayoral, M-L
    Neu, R.
    Nunes, I.
    Osborne, T.
    Rimini, F.
    Scannell, R.
    Solano, E. R.
    Snyder, P. B.
    Voitsekhovitch, I.
    de Vries, Peter
    Global and pedestal confinement in JET with a Be/W metallic wall2014Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 54, nr 4, s. 043001-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Type I ELMy H-mode operation in JET with the ITER-like Be/W wall (JET-ILW) generally occurs at lower pedestal pressures compared to those with the full carbon wall (JET-C). The pedestal density is similar but the pedestal temperature where type I ELMs occur is reduced and below to the so-called critical type I-type III transition temperature reported in JET-C experiments. Furthermore, the confinement factor H-98(y,H- 2) in type I ELMy H-mode baseline plasmas is generally lower in JET-ILWcompared to JET-C at low power fractions Ploss/P-thr,(08)< 2 (where P-loss is (P-in-dW/dt), and P-thr,(08) the L-H power threshold from Martin et al 2008 (J. Phys. Conf. Ser. 123 012033)). Higher power fractions have thus far not been achieved in the baseline plasmas. At Ploss/P-thr,P- 08 > 2, the confinement in JET-ILW hybrid plasmas is similar to that in JET-C. A reduction in pedestal pressure is the main reason for the reduced confinement in JET-ILW baseline ELMy H-mode plasmas where typically H-98((y, 2)) = 0.8 is obtained, compared to H-98((y, 2)) = 1.0 in JET-C. In JET-ILW hybrid plasmas a similarly reduced pedestal pressure is compensated by an increased peaking of the core pressure profile resulting in H-98((y, 2)) <= 1.25. The pedestal stability has significantly changed in high triangularity baseline plasmas where the confinement loss is also most apparent. Applying the same stability analysis for JET-C and JET-ILW, the measured pedestal in JET-ILW is stable with respect to the calculated peeling-ballooning stability limit and the ELM collapse time has increased to 2ms from typically 200 mu s in JET-C. This indicates that changes in the pedestal stability may have contributed to the reduced pedestal confinement in JET-ILW plasmas. A comparison of EPED1 pedestal pressure prediction with JET-ILW experimental data in over 500 JET-C and JET-ILW baseline and hybrid plasmas shows a good agreement with 0.8 < (measured p(ped))/(predicted p(ped), EPED) < 1.2, but that the role of triangularity is generally weaker in the JET-ILW experimental data than in the model predictions.

  • 25. Beurskens, M. N. A.
    et al.
    Frassinetti, Lorenzo
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Challis, C.
    Osborne, T.
    Snyder, P. B.
    Alper, B.
    Angioni, C.
    Bourdelle, C.
    Buratti, P.
    Crisanti, F.
    Giovannozzi, E.
    Giroud, C.
    Groebner, R.
    Hobirk, J.
    Jenkins, I.
    Joffrin, E.
    Leyland, M. J.
    Lomas, P.
    Mantica, P.
    McDonald, D.
    Nunes, I.
    Rimini, F.
    Saarelma, S.
    Voitsekhovitch, I.
    De Vries, P.
    Zarzoso, D.
    Comparison of hybrid and baseline ELMy H-mode confinement in JET with the carbon wall2013Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 53, nr 1, s. 013001-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The confinement in JET baseline type I ELMy H-mode plasmas is compared to that in so-called hybrid H-modes in a database study of 112 plasmas in JET with the carbon fibre composite (CFC) wall. The baseline plasmas typically have βN ∼ 1.5-2, H98 ∼ 1, whereas the hybrid plasmas have βN ∼ 2.5-3, H98 &lt; 1.5. The database study contains both low- (δ ∼ 0.2-0.25) and high-triangularity (δ ∼ 0.4) hybrid and baseline H-mode plasmas from the last JET operational campaigns in the CFC wall from the period 2008-2009. Based on a detailed confinement study of the global as well as the pedestal and core confinement, there is no evidence that the hybrid and baseline plasmas form separate confinement groups; it emerges that the transition between the two scenarios is of a gradual kind rather than demonstrating a bifurcation in the confinement. The elevated confinement enhancement factor H98 in the hybrid plasmas may possibly be explained by the density dependence in the τ98 scaling as n0.41 and the fact that the hybrid plasmas operate at low plasma density compared to the baseline ELMy H-mode plasmas. A separate regression on the confinement data in this study shows a reduction in the density dependence as n0.09±0.08. Furthermore, inclusion of the plasma toroidal rotation in the confinement regression provides a scaling with the toroidal Alfvén Mach number as and again a reduced density dependence as n0.15±0.08. The differences in pedestal confinement can be explained on the basis of linear MHD stability through a coupling of the total and pedestal poloidal pressure and the pedestal performance can be improved through plasma shaping as well as high β operation. This has been confirmed in a comparison with the EPED1 predictive pedestal code which shows a good agreement between the predicted and measured pedestal pressure within 20-30% for a wide range of βN ∼ 1.5-3.5. The core profiles show a strong degree of pressure profile consistency. No beneficial effect of core density peaking on confinement could be identified for the majority of the plasmas presented here as the density peaking is compensated by a temperature de-peaking resulting in no or only a weak variation in the pressure peaking. The core confinement could only be optimized in case the ions and electrons are decoupled, in which case the ion temperature profile peaking can be enhanced, which benefits confinement. In this study, the latter has only been achieved in the low-triangularity hybrid plasmas, and can be attributed to low-density operation. Plasma rotation has been found to reduce core profile stiffness, and can explain an increase in profile peaking at small radius ρtor = 0.3.

  • 26. Blanken, T. C.
    et al.
    Cecconello, Marco
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Klimek, Iwona
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Wodniak, I
    Yadykin, Dimitry
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi.
    Dori, V
    Real-time plasma state monitoring and supervisory control on TCV2019Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, nr 2, artikel-id 026017Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In ITER and DEMO, various control objectives related to plasma control must be simultaneously achieved by the plasma control system (PCS), in both normal operation as well as off-normal conditions. The PCS must act on off-normal events and deviations from the target scenario, since certain sequences (chains) of events can precede disruptions. It is important that these decisions are made while maintaining a coherent prioritization between the real-time control tasks to ensure high-performance operation. In this paper, a generic architecture for task-based integrated plasma control is proposed. The architecture is characterized by the separation of state estimation, event detection, decisions and task execution among different algorithms, with standardized signal interfaces. Central to the architecture are a plasma state monitor and supervisory controller. In the plasma state monitor, discrete events in the continuous-valued plasma state arc modeled using finite state machines. This provides a high-level representation of the plasma state. The supervisory controller coordinates the execution of multiple plasma control tasks by assigning task priorities, based on the finite states of the plasma and the pulse schedule. These algorithms were implemented on the TCV digital control system and integrated with actuator resource management and existing state estimation algorithms and controllers. The plasma state monitor on TCV can track a multitude of plasma events, related to plasma current, rotating and locked neoclassical tearing modes, and position displacements. In TCV experiments on simultaneous control of plasma pressure, safety factor profile and NTMs using electron cyclotron heating (ECI I) and current drive (ECCD), the supervisory controller assigns priorities to the relevant control tasks. The tasks are then executed by feedback controllers and actuator allocation management. This work forms a significant step forward in the ongoing integration of control capabilities in experiments on TCV, in support of tokamak reactor operation.

    Ladda ner fulltext (pdf)
    fulltext
  • 27.
    Blanken, T. C.
    et al.
    Eindhoven Univ Technol, Control Syst Technol Grp, Dept Mech Engn, POB 513, NL-5600 MB Eindhoven, Netherlands.;Eindhoven Univ Technol, POB 513, NL-5600 MB Eindhoven, Netherlands..
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Fusionsplasmafysik.
    Fridström, Richard
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Fusionsplasmafysik.
    Jonsson, T.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Fusionsplasmafysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Fusionsplasmafysik.
    Vallejos, Pablo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Fusionsplasmafysik.
    Vignitchouk, Ladislas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Fusionsplasmafysik.
    Dori, V
    Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, R Boskovica 32, Split 21000, Croatia..
    Real-time plasma state monitoring and supervisory control on TCV2019Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, nr 2, artikel-id 026017Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In ITER and DEMO, various control objectives related to plasma control must be simultaneously achieved by the plasma control system (PCS), in both normal operation as well as off-normal conditions. The PCS must act on off-normal events and deviations from the target scenario, since certain sequences (chains) of events can precede disruptions. It is important that these decisions are made while maintaining a coherent prioritization between the real-time control tasks to ensure high-performance operation. In this paper, a generic architecture for task-based integrated plasma control is proposed. The architecture is characterized by the separation of state estimation, event detection, decisions and task execution among different algorithms, with standardized signal interfaces. Central to the architecture are a plasma state monitor and supervisory controller. In the plasma state monitor, discrete events in the continuous-valued plasma state arc modeled using finite state machines. This provides a high-level representation of the plasma state. The supervisory controller coordinates the execution of multiple plasma control tasks by assigning task priorities, based on the finite states of the plasma and the pulse schedule. These algorithms were implemented on the TCV digital control system and integrated with actuator resource management and existing state estimation algorithms and controllers. The plasma state monitor on TCV can track a multitude of plasma events, related to plasma current, rotating and locked neoclassical tearing modes, and position displacements. In TCV experiments on simultaneous control of plasma pressure, safety factor profile and NTMs using electron cyclotron heating (ECI I) and current drive (ECCD), the supervisory controller assigns priorities to the relevant control tasks. The tasks are then executed by feedback controllers and actuator allocation management. This work forms a significant step forward in the ongoing integration of control capabilities in experiments on TCV, in support of tokamak reactor operation.

  • 28. Bolshakova, I.
    et al.
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia Carrasco, Alvaro
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Jonsson, Thomas
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Atom- och molekylfysik.
    Rubel, Marek
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Simon
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    et al.,
    Experimental evaluation of stable long term operation of semiconductor magnetic sensors at ITER relevant environment2015Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 55, nr 8, artikel-id 083006Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The paper deals with radiation resistant sensors and their associated measuring instrumentation developed in the course of R and D activities carried out in the framework of an international collaboration. The first trial tests of three-dimensional (3D) probes with Hall sensors have been performed in European tokamaks TORE SUPRA (2004) and JET (2005). Later in 2009 six sets of 3D probes were installed in JET and now continue to operate. The statistical analysis performed in 2014 on the basis of the JET database have demonstrated stable long term operation of all 18 sensors of 3D probes. The results of measurements conducted at the neutron fluxes of nuclear reactors have demonstrated the operability of the sensors up to high neutron fluences of F > 10(18)n , cm(-2) that exceeds the maximum one for the locations of steady state sensors in ITER over its total lifetime.

  • 29.
    Bonanomi, N.
    et al.
    Univ Milano Bicocca, Milan, Italy; CNR, Inst Plasma Phys P Caldirola, Milan, Italy.
    Andersson Sundén, Erik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Binda, Federico
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Cecconello, Marco
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Conroy, Sean
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Dzysiuk, Nataliia
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Ericsson, Göran
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Eriksson, Jacob
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Hellesen, Carl
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Hjalmarsson, Anders
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Possnert, Göran
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Sjöstrand, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Skiba, Mateusz
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Skiba, Mateusz
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Zychor, I.
    Natl Ctr Nucl Res, Otwock, Poland.
    Effects of nitrogen seeding on core ion thermal transport in JET ILW L-mode plasmas2018Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, nr 2, artikel-id 026028Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A set of experiments was carried out in JET ILW (Joint European Torus with ITER-Like Wall) L-mode plasmas in order to study the effects of light impurities on core ion thermal transport. N was puffed into some discharges and its profile was measured by active Charge Exchange diagnostics, while ICRH power was deposited on- and off-axis in (He-3) - D minority scheme in order to have a scan of local heat flux at constant total power with and without N injection. Experimentally, the ion temperature profiles are more peaked for similar heat fluxes when N is injected in the plasma. Gyro-kinetic simulations using the GENE code indicate that a stabilization of Ion Temperature Gradient driven turbulent transport due to main ion dilution and to changes in T-e/T-i and s/q is responsible of the enhanced peaking. The quasi-linear models TGLF and QuaLiKiz are tested against the experimental and the gyro-kinetic results.

  • 30.
    Bonanomi, N.
    et al.
    University of Milano­Bicocca, Milano, Italy; CNR­ Institute of Plasma Physics, Milano, Italy.
    Andersson Sundén, Erik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Binda, Federico
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Cecconello, Marco
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Conroy, Sean
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Dzysiuk, Nataliia
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Ericsson, Göran
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Eriksson, Jacob
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Hellesen, Carl
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Hjalmarsson, Anders
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Possnert, Göran
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Sjöstrand, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Skiba, Mateusz
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Weiszflog, Matthias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Zychor, I.
    Natl Ctr Nucl Res, Otwock, Poland.
    Light impurity transport in JET ILW L-mode plasmas2018Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, nr 3, artikel-id 036009Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A series of experimental observations of light impurity profiles was carried out in JET (Joint European Torus) ITER-like wall (ILW) L-mode plasmas in order to investigate their transport mechanisms. These discharges feature the presence of He-3, Be, C, N, Ne, whose profiles measured by active Charge Exchange diagnostics are compared with quasi-linear and non-linear gyro-kinetic simulations. The peaking of He-3 density follows the electron density peaking, Be and Ne are also peaked, while the density profiles of C and N are flat in the mid plasma region. Gyro-kinetic simulations predict peaked density profiles for all the light impurities studied and at all the radial positions considered, and fail predicting the flat or hollow profiles observed for C and N at mid radius in our cases.

  • 31. Bonanomi, N.
    et al.
    Andersson Sundén, Erik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Binda, Federico
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Cecconello, Marco
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Conroy, Sean
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Ericsson, Göran
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Eriksson, Jacob
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Hellesen, Carl
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Hjalmarsson, Anders
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Possnert, Göran
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Primetzhofer, Daniel
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Sahlberg, Arne
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Sjöstrand, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Skiba, Mateusz
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Weiszflog, Matthias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Zychor, I
    Role of fast ion pressure in the isotope effect in JET L-mode plasmas2019Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, nr 9, artikel-id 096030Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This paper presents results of JET ITER-like wall L-mode experiments in hydrogen and deuterium (D) plasmas, dedicated to the study of the isotope dependence of ion heat transport by determination of the ion critical gradient and stiffness by varying the ion cyclotron resonance heating power deposition. When no strong role of fast ions in the plasma core is expected, the main difference between the two isotope plasmas is determined by the plasma edge and the core behavior is consistent with a gyro-Bohm scaling. When the heating power (and the fast ion pressure) is increased, in addition to the difference in the edge region, also the plasma core shows substantial changes. The stabilization of ion heat transport by fast ions, clearly visible in D plasmas, appears to be weaker in H plasmas, resulting in a higher ion heat flux in H with apparent anti-gyro-Bohm mass scaling. The difference is found to be caused by the different fast ion pressure between H and D plasmas, related to the heating power settings and to the different fast ion slowing down time, and is completely accounted for in non-linear gyrokinetic simulations. The application of the TGLF quasi-linear model to this set of data is also discussed.

  • 32.
    Bonanomi, N.
    et al.
    Ist Fis Plasma CNR, I-20125 Milan, Italy. Culham Sci Ctr, JET, EUROfus Consortium, Abingdon OX14 3DB, Oxon, England.;Ist Fis Plasma CNR, I-20125 Milan, Italy.;Univ Milano Bicocca, I-20126 Milan, Italy..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    et al.,
    Trapped electron mode driven electron heat transport in JET: experimental investigation and gyro-kinetic theory validation2015Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 55, nr 11, artikel-id 113016Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The main purpose of this work is to study the dependence of trapped electron modes (TEM) threshold and of electron stiffness on the most relevant plasma parameters. Dedicated transport experiments based on heat flux scans and T-e modulation have been performed in JET in TEM dominated plasmas with pure ICRH electron heating and a numerical study using gyrokinetic simulations has been performed with the code GKW. Using multilinear regressions on the experimental data, the stabilizing effect of magnetic shear predicted by theory for our plasma parameters is confirmed while no significant effect of safety factor was found. Good quantitative agreement is found between the TEM thresholds found in the experiments and calculated with linear GKW simulations. Non-linear simulations have given further confirmation of the threshold values and allowed comparison with the values of stiffness found experimentally. Perturbative studies using RF power modulation indicate the existence of an inward convective term for the electron heat flux. Adding NBI power, ion temperature gradient (ITG) modes become dominant and a reduction of vertical bar del T-e vertical bar/T-e with respect to pure ICRH, TEM dominant discharges has been experimentally observed, in spite of increased total electron power. Possible explanations are discussed.

  • 33.
    Bonanomi, N.
    et al.
    EUROfus Consortium, Culham Sci Ctr, JET, Abingdon OX14 3DB, Oxon, England.;Univ Milano Bicocca, Milan, Italy.;CNR, Ist Fis Plasma P Caldirola, Milan, Italy.;Max Planck Inst Plasma Phys, Boltzmannstr 2, D-85748 Garching, Germany.;Univ Milano Bicocca, Piazza Sci 3, I-20126 Milan, Italy..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    Impact of electron-scale turbulence and multi-scale interactions in the JET tokamak2018Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, nr 12, artikel-id 124003Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Experimental observations in JET tokamak plasmas and gyrokinetic simulations point to an important role, for electron heat transport, of electron-scale instabilities and of their interaction with ion-scale instabilities. Since these effects are maximized for strong electron heating and ion-scale modes close to marginal stability, these findings are of high relevance for ITER plasmas, featuring both conditions. Gyrokinetic and quasi-linear transport models accounting for multi-scale effects are assessed against JET experimental results.

  • 34.
    Bonanomi, N.
    et al.
    -.
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zychor, I.
    et al.,
    Effects of nitrogen seeding on core ion thermal transport in JET ILW L-mode plasmas2018Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, nr 2, artikel-id 026028Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A set of experiments was carried out in JET ILW (Joint European Torus with ITER-Like Wall) L-mode plasmas in order to study the effects of light impurities on core ion thermal transport. N was puffed into some discharges and its profile was measured by active Charge Exchange diagnostics, while ICRH power was deposited on- and off-axis in (He-3) - D minority scheme in order to have a scan of local heat flux at constant total power with and without N injection. Experimentally, the ion temperature profiles are more peaked for similar heat fluxes when N is injected in the plasma. Gyro-kinetic simulations using the GENE code indicate that a stabilization of Ion Temperature Gradient driven turbulent transport due to main ion dilution and to changes in T-e/T-i and s/q is responsible of the enhanced peaking. The quasi-linear models TGLF and QuaLiKiz are tested against the experimental and the gyro-kinetic results.

  • 35. Bonanomi, N.
    et al.
    Bergsåker, Henrik
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Fridström, Richard
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Moon, Sunwoo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, P
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Stefániková, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zhou, Y
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I
    et al,
    Role of fast ion pressure in the isotope effect in JET L-mode plasmas2019Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, nr 9, artikel-id 096030Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This paper presents results of JET ITER-like wall L-mode experiments in hydrogen and deuterium (D) plasmas, dedicated to the study of the isotope dependence of ion heat transport by determination of the ion critical gradient and stiffness by varying the ion cyclotron resonance heating power deposition. When no strong role of fast ions in the plasma core is expected, the main difference between the two isotope plasmas is determined by the plasma edge and the core behavior is consistent with a gyro-Bohm scaling. When the heating power (and the fast ion pressure) is increased, in addition to the difference in the edge region, also the plasma core shows substantial changes. The stabilization of ion heat transport by fast ions, clearly visible in D plasmas, appears to be weaker in H plasmas, resulting in a higher ion heat flux in H with apparent anti-gyro-Bohm mass scaling. The difference is found to be caused by the different fast ion pressure between H and D plasmas, related to the heating power settings and to the different fast ion slowing down time, and is completely accounted for in non-linear gyrokinetic simulations. The application of the TGLF quasi-linear model to this set of data is also discussed.

  • 36. Bonanomi, N.
    et al.
    Mantica, P.
    Di Siena, A.
    Delabie, E.
    Giroud, C.
    Johnson, Thomas
    KTH.
    Lerche, E.
    Menmuir, S.
    Tsalas, M.
    Van Eester, D.
    Turbulent transport stabilization by ICRH minority fast ions in low rotating JET ILW L-mode plasmas2018Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, nr 5, artikel-id 056025Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The first experimental demonstration that fast ion induced stabilization of thermal turbulent transport takes place also at low values of plasma toroidal rotation has been obtained in JET ILW (ITER-like wall) L-mode plasmas with high (He-3)-D ICRH (ion cyclotron resonance heating) power. A reduction of the gyro-Bohm normalized ion heat flux and higher values of the normalized ion temperature gradient have been observed at high ICRH power and low NBI (neutral beam injection) power and plasma rotation. Gyrokinetic simulations indicate that ITG (ion temperature gradient) turbulence stabilization induced by the presence of high-energetic He-3 ions is the key mechanism in order to explain the experimental observations. Two main mechanisms have been identified to be responsible for the turbulence stabilization: a linear electrostatic wave-fast particle resonance mechanism and a nonlinear electromagnetic mechanism. The dependence of the stabilization on the He-3 distribution function has also been studied.

  • 37.
    Bonanomi, N.
    et al.
    EUROfus Consortium, Culham Sci Ctr, JET, Abingdon OX14 3DB, Oxon, England.;Univ Milano Bicocca, Milan, Italy.;CNR, Inst Plasma Phys P Caldirola, Milan, Italy.;Univ Milano Bicocca, Piazza Sci 3, I-20126 Milan, Italy..
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Light impurity transport in JET ILW L-mode plasmas2018Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, nr 3, artikel-id 036009Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A series of experimental observations of light impurity profiles was carried out in JET (Joint European Torus) ITER-like wall (ILW) L-mode plasmas in order to investigate their transport mechanisms. These discharges feature the presence of He-3, Be, C, N, Ne, whose profiles measured by active Charge Exchange diagnostics are compared with quasi-linear and non-linear gyro-kinetic simulations. The peaking of He-3 density follows the electron density peaking, Be and Ne are also peaked, while the density profiles of C and N are flat in the mid plasma region. Gyro-kinetic simulations predict peaked density profiles for all the light impurities studied and at all the radial positions considered, and fail predicting the flat or hollow profiles observed for C and N at mid radius in our cases.

  • 38. Bonelli, F.
    et al.
    Andersson Sundén, Erik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Binda, Federico
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Cecconello, Marco
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Conroy, Sean
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Dzysiuk, Natalia
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Ericsson, Göran
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Eriksson, Jacob
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Hellesen, Carl
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Hjalmarsson, Anders
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Possnert, Göran
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Sjöstrand, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Skiba, Mateusz
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Weiszflog, Matthias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Zychor, I.
    Self-consistent coupling of DSMC method and SOLPS code for modeling tokamak particle exhaust2017Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 57, nr 6, artikel-id 066037Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this work, an investigation of the neutral gas flow in the JET sub-divertor area is presented, with respect to the interaction between the plasma side and the pumping side. The edge plasma side is simulated with the SOLPS code, while the sub-divertor area is modeled by means of the direct simulation Monte Carlo (DSMC) method, which in the last few years has proved well able to describe rarefied, collisional flows in tokamak sub-divertor structures. Four different plasma scenarios have been selected, and for each of them a user-defined, iterative procedure between SOLPS and DSMC has been established, using the neutral flux as the key communication term between the two codes. The goal is to understand and quantify the mutual influence between the two regions in a self-consistent manner, that is to say, how the particle exhaust pumping system controls the upstream plasma conditions. Parametric studies of the flow conditions in the sub-divertor, including additional flow outlets and variations of the cryopump capture coefficient, have been performed as well, in order to understand their overall impact on the flow field. The DSMC analyses resulted in the calculation of both the macroscopic quantities-i.e. temperature, number density and pressure-and the recirculation fluxes towards the plasma chamber. The consistent values for the recirculation rates were found to be smaller than those according to the initial standard assumption made by SOLPS.

  • 39.
    Bonelli, F.
    et al.
    KIT, Inst Tech Phys, Vacuum Dept, Karlsruhe, Germany.;Karlsruhe Inst Technol, POB 3640, D-76021 Karlsruhe, Germany..
    Varoutis, S.
    KIT, Inst Tech Phys, Vacuum Dept, Karlsruhe, Germany.;Karlsruhe Inst Technol, POB 3640, D-76021 Karlsruhe, Germany..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Self-consistent coupling of DSMC method and SOLPS code for modeling tokamak particle exhaust2017Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 57, nr 6, artikel-id 066037Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this work, an investigation of the neutral gas flow in the JET sub-divertor area is presented, with respect to the interaction between the plasma side and the pumping side. The edge plasma side is simulated with the SOLPS code, while the sub-divertor area is modeled by means of the direct simulation Monte Carlo (DSMC) method, which in the last few years has proved well able to describe rarefied, collisional flows in tokamak sub-divertor structures. Four different plasma scenarios have been selected, and for each of them a user-defined, iterative procedure between SOLPS and DSMC has been established, using the neutral flux as the key communication term between the two codes. The goal is to understand and quantify the mutual influence between the two regions in a self-consistent manner, that is to say, how the particle exhaust pumping system controls the upstream plasma conditions. Parametric studies of the flow conditions in the sub-divertor, including additional flow outlets and variations of the cryopump capture coefficient, have been performed as well, in order to understand their overall impact on the flow field. The DSMC analyses resulted in the calculation of both the macroscopic quantities-i.e. temperature, number density and pressure-and the recirculation fluxes towards the plasma chamber. The consistent values for the recirculation rates were found to be smaller than those according to the initial standard assumption made by SOLPS.

  • 40. Bonheure, G
    et al.
    Popovichev, S
    Bertalot, L
    Murari, A
    Conroy, Sean
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för neutronforskning, Tillämpad kärnfysik.
    Mlynar, J
    Voitsekhovitch, I
    Neutron pofiles and fuel ratio nT/nD measurements in JET ELMy H-mode plasmas with tritium puff2006Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 46, nr 7, s. 725-740Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Two-dimensional (2D) spatial profile and the temporal evolution of the 14 and 2.5 MeV neutron emissivities from D–D and D–T fusion reactions were studied using the measurements of the upgraded neutron profile monitor during the last trace tritium experiments in JET. The JET neutron profile monitor provides unique capability for 2.5 and 14 MeV neutrons line-integrated measurements simultaneously. A systematic comparison of D–D and D–T neutron emissivity was performed. The tritium concentration or fuel ratio (nT/nD) was analysed for a set of 34 ELMy-H mode discharges with tritium puff. Tritium concentration is deduced with a method based on the ratio of D–T 14 MeV and D–D 2.5 MeV neutron emissivities in order to exploit the maximum information available from neutron data. With the help of a tomography algorithm recently developed at JET, 2D spatial profiles of the tritium concentration in the plasma were obtained. These profiles can be used to perform transport studies. Tritium core confinement is clearly seen to increase with plasma density for the set of discharges studied. Differences in the shape of these profiles are also found between low and high density plasmas. Shortly after tritium puffing, 2D spatial profiles of the tritium concentration exhibit typical hollow profiles and in some cases transient poloidal asymmetric features have been observed in 2D images.

  • 41. Bourdelle, C.
    et al.
    Andersson Sundén, Erik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Binda, F.
    Cecconello, Marco
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Conroy, Sean
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Dzysiuk, N.
    Ericsson, G.
    Eriksson, Jacob
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Hellesen, C.
    Hjalmarsson, Anders
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Possnert, Göran
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Geovetenskapliga sektionen, Institutionen för geovetenskaper, Paleobiologi. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Sjöstrand, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Skiba, Mateusz
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Weiszflog, Matthias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Zychor, I.
    Fast H isotope and impurity mixing in ion-temperature-gradient turbulence2018Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, nr 7, artikel-id 076028Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In ion-temperature-gradient (ITG) driven turbulence, the resonance condition leads to ion particle turbulent transport coefficients significantly larger than electron particle turbulent transport coefficients. This is shown in nonlinear gyrokinetic simulations and explained by an analytical quasilinear model. It is then illustrated by JETTO-QuaLiKiz integrated modelling. Large ion particle transport coefficients implies that the ion density profiles are uncorrelated to the corresponding ion source, allowing peaked isotope density profiles even in the absence of core source. This also implies no strong core accumulation of He ash. Furthermore, the relaxation time of the individual ion profiles in a multi-species plasma can be significantly faster than the total density profile relaxation time which is constrained by the electrons. This leads to fast isotope mixing and fast impurity transport in FM regimes. In trapped-electron- mode (TEM) turbulence, in presence of electron heating about twice the ion heating, the situation is the inverse: ion particle turbulent transport coefficients are smaller than their electron counterpart.

  • 42.
    Bourdelle, C.
    et al.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia Carrasco, Alvaro
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Jonsson, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Atom- och molekylfysik.
    Rubel, Marek
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Simon
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    et al.,
    L to H mode transition: parametric dependencies of the temperature threshold2015Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 55, nr 7, artikel-id 073015Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The L to H mode transition occurs at a critical power which depends on various parameters, such as the magnetic field, the density, etc. Experimental evidence on various tokamaks (JET, ASDEX-Upgrade, DIII-D, Alcator C-Mod) points towards the existence of a critical temperature characterizing the transition. This criterion for the L-H transition is local and is therefore easier to be compared to theoretical approaches. In order to shed light on the mechanisms of the transition, simple theoretical ideas are used to derive a temperature threshold (T-th). They are based on the stabilization of the underlying turbulence by a mean radial electric field shear. The nature of the turbulence varies as the collisionality decreases, from resistive ballooning modes to ion temperature gradient and trapped electron modes. The obtained parametric dependencies of the derived T-th are tested versus magnetic field, density, effective charge. Various robust experimental observations are reproduced, in particular T-th increases with magnetic field B and increases with density below the density roll-over observed on the power threshold.

  • 43.
    Bourdelle, C.
    et al.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia Carrasco, Alvaro
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Jonsson, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Atom- och molekylfysik.
    Rubel, Marek
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Simon
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    et al.,
    WEST Physics Basis2015Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 55, nr 6, artikel-id 063017Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    With WEST (Tungsten Environment in Steady State Tokamak) (Bucalossi et al 2014 Fusion Eng. Des. 89 907-12), the Tore Supra facility and team expertise (Dumont et al 2014 Plasma Phys. Control. Fusion 56 075020) is used to pave the way towards ITER divertor procurement and operation. It consists in implementing a divertor configuration and installing ITER-like actively cooled tungsten monoblocks in the Tore Supra tokamak, taking full benefit of its unique long-pulse capability. WEST is a user facility platform, open to all ITER partners. This paper describes the physics basis of WEST: the estimated heat flux on the divertor target, the planned heating schemes, the expected behaviour of the L-H threshold and of the pedestal and the potential W sources. A series of operating scenarios has been modelled, showing that ITER-relevant heat fluxes on the divertor can be achieved in WEST long pulse H-mode plasmas.

  • 44.
    Bourdelle, C.
    et al.
    CEA, IRFM, F-13108 St Paul Les Durance, France.;CEA, IRFM, F-13108 St Paul Les Durance, France..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Fast H isotope and impurity mixing in ion-temperature-gradient turbulence2018Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, nr 7, artikel-id 076028Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In ion-temperature-gradient (ITG) driven turbulence, the resonance condition leads to ion particle turbulent transport coefficients significantly larger than electron particle turbulent transport coefficients. This is shown in nonlinear gyrokinetic simulations and explained by an analytical quasilinear model. It is then illustrated by JETTO-QuaLiKiz integrated modelling. Large ion particle transport coefficients implies that the ion density profiles are uncorrelated to the corresponding ion source, allowing peaked isotope density profiles even in the absence of core source. This also implies no strong core accumulation of He ash. Furthermore, the relaxation time of the individual ion profiles in a multi-species plasma can be significantly faster than the total density profile relaxation time which is constrained by the electrons. This leads to fast isotope mixing and fast impurity transport in FM regimes. In trapped-electron- mode (TEM) turbulence, in presence of electron heating about twice the ion heating, the situation is the inverse: ion particle turbulent transport coefficients are smaller than their electron counterpart.

  • 45.
    Bowman, C.
    et al.
    Univ York, York Plasma Inst, Dept Phys, York, N Yorkshire, England.
    Andersson Sundén, Erik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Binda, Federico
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Cecconello, Marco
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Conroy, Sean
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Dzysiuk, Nataliia
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Ericsson, Göran
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Eriksson, Jacob
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Hellesen, Carl
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Hjalmarsson, Anders
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Possnert, Göran
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Sjöstrand, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Skiba, Mateusz
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Weiszflog, Matthias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Zychor, I.
    Natl Ctr Nucl Res, Otwock, Poland.
    Pedestal evolution physics in low triangularity JET tokamak discharges with ITER-like wall2018Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, nr 1, artikel-id 016021Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The pressure gradient of the high confinement pedestal region at the edge of tokamak plasmas rapidly collapses during plasma eruptions called edge localised modes (ELMs), and then re-builds over a longer time scale before the next ELM. The physics that controls the evolution of the JET pedestal between ELMs is analysed for 1.4 MA, 1.7 T, low triangularity, delta = 0.2, discharges with the ITER-like wall, finding that the pressure gradient typically tracks the ideal magneto-hydrodynamic ballooning limit, consistent with a role for the kinetic ballooning mode. Furthermore, the pedestal width is often influenced by the region of plasma that has second stability access to the ballooning mode, which can explain its sometimes complex evolution between ELMs. A local gyrokinetic analysis of a second stable flux surface reveals stability to kinetic ballooning modes; global effects are expected to provide a destabilising mechanism and need to be retained in such second stable situations. As well as an electronscale electron temperature gradient mode, ion scale instabilities associated with this flux surface include an electro-magnetic trapped electron branch and two electrostatic branches propagating in the ion direction, one with high radial wavenumber. In these second stability situations, the ELM is triggered by a peeling-ballooning mode; otherwise the pedestal is somewhat below the peeling-ballooning mode marginal stability boundary at ELM onset. In this latter situation, there is evidence that higher frequency ELMs are paced by an oscillation in the plasma, causing a crash in the pedestal before the peeling-ballooning boundary is reached. A model is proposed in which the oscillation is associated with hot plasma filaments that are pushed out towards the plasma edge by a ballooning mode, draining their free energy into the cooler plasma there, and then relaxing back to repeat the process. The results suggest that avoiding the oscillation and maximising the region of plasma that has second stability access will lead to the highest pedestal heights and, therefore, best confinement-a key result for optimising the fusion performance of JET and future tokamaks, such as ITER.

  • 46. Bowman, C.
    et al.
    Dickinson, D.
    Horvath, L.
    Lunniss, A. E.
    Wilson, H. R.
    Cziegler, I.
    Frassinetti, Lorenzo
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik. KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Gibson, K.
    Kirk, A.
    Lipschultz, B.
    Maggi, C. F.
    Roach, C. M.
    Saarelma, S.
    Snyder, P. B.
    Thornton, A.
    Wynn, A.
    Pedestal evolution physics in low triangularity JET tokamak discharges with ITER-like wall2018Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, nr 1, artikel-id 016021Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The pressure gradient of the high confinement pedestal region at the edge of tokamak plasmas rapidly collapses during plasma eruptions called edge localised modes (ELMs), and then re-builds over a longer time scale before the next ELM. The physics that controls the evolution of the JET pedestal between ELMs is analysed for 1.4 MA, 1.7 T, low triangularity, delta = 0.2, discharges with the ITER-like wall, finding that the pressure gradient typically tracks the ideal magneto-hydrodynamic ballooning limit, consistent with a role for the kinetic ballooning mode. Furthermore, the pedestal width is often influenced by the region of plasma that has second stability access to the ballooning mode, which can explain its sometimes complex evolution between ELMs. A local gyrokinetic analysis of a second stable flux surface reveals stability to kinetic ballooning modes; global effects are expected to provide a destabilising mechanism and need to be retained in such second stable situations. As well as an electronscale electron temperature gradient mode, ion scale instabilities associated with this flux surface include an electro-magnetic trapped electron branch and two electrostatic branches propagating in the ion direction, one with high radial wavenumber. In these second stability situations, the ELM is triggered by a peeling-ballooning mode; otherwise the pedestal is somewhat below the peeling-ballooning mode marginal stability boundary at ELM onset. In this latter situation, there is evidence that higher frequency ELMs are paced by an oscillation in the plasma, causing a crash in the pedestal before the peeling-ballooning boundary is reached. A model is proposed in which the oscillation is associated with hot plasma filaments that are pushed out towards the plasma edge by a ballooning mode, draining their free energy into the cooler plasma there, and then relaxing back to repeat the process. The results suggest that avoiding the oscillation and maximising the region of plasma that has second stability access will lead to the highest pedestal heights and, therefore, best confinement-a key result for optimising the fusion performance of JET and future tokamaks, such as ITER.

  • 47. Breton, S.
    et al.
    Andersson Sundén, Erik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Binda, F.
    Cecconello, Marco
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Conroy, Sean
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Dzysiuk, N.
    Ericsson, Göran
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Eriksson, Jacob
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Hellesen, C.
    Hjalmarsson, Anders
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Possnert, Göran
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Sjöstrand, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Skiba, M.
    Weiszflog, Matthias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Zychor, I.
    First principle integrated modeling of multi-channel transport including Tungsten in JET2018Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, nr 9, artikel-id 096003Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    For the first time, over five confinement times, the self-consistent flux driven time evolution of heat, momentum transport and particle fluxes of electrons and multiple ions including Tungsten (W) is modeled within the integrated modeling platform JFTTO (Romanelli et al 2014 Plasma Fusion Res. 9 1-4), using first principle-based codes: namely, QuaLiKiz (Bourdelle et al 2016 Plasma Phys. Control. Fusion 58 014036) for turbulent transport and NEO (Belli and Candy 2008 Plasma Phys. Control. Fusion 50 95010) for neoclassical transport. For a JET-ILW pulse, the evolution of measured temperatures, rotation and density profiles are successfully predicted and the observed W central core accumulation is obtained. The poloidal asymmetries of the W density modifying its neoclassical and turbulent transport are accounted for. Actuators of the W core accumulation are studied: removing the central particle source annihilates the central W accumulation whereas the suppression of the torque reduces significantly the W central accumulation. Finally, the presence of W slightly reduces main ion heat turbulent transport through complex nonlinear interplays involving radiation, effective charge impact on ITG and collisionality.

  • 48.
    Breton, S.
    et al.
    JET, Culham Sci Ctr, EUROfus Consortium, Abingdon OX14 3DB, Oxon, England.;CEA, IRFM, F-13108 St Paul Les Durance, France.;CEA, IRFM, F-13108 St Paul Les Durance, France..
    Bourdelle, C.
    JET, Culham Sci Ctr, EUROfus Consortium, Abingdon OX14 3DB, Oxon, England.;CEA, IRFM, F-13108 St Paul Les Durance, France.;CEA, IRFM, F-13108 St Paul Les Durance, France..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    First principle integrated modeling of multi-channel transport including Tungsten in JET2018Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, nr 9, artikel-id 096003Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    For the first time, over five confinement times, the self-consistent flux driven time evolution of heat, momentum transport and particle fluxes of electrons and multiple ions including Tungsten (W) is modeled within the integrated modeling platform JFTTO (Romanelli et al 2014 Plasma Fusion Res. 9 1-4), using first principle-based codes: namely, QuaLiKiz (Bourdelle et al 2016 Plasma Phys. Control. Fusion 58 014036) for turbulent transport and NEO (Belli and Candy 2008 Plasma Phys. Control. Fusion 50 95010) for neoclassical transport. For a JET-ILW pulse, the evolution of measured temperatures, rotation and density profiles are successfully predicted and the observed W central core accumulation is obtained. The poloidal asymmetries of the W density modifying its neoclassical and turbulent transport are accounted for. Actuators of the W core accumulation are studied: removing the central particle source annihilates the central W accumulation whereas the suppression of the torque reduces significantly the W central accumulation. Finally, the presence of W slightly reduces main ion heat turbulent transport through complex nonlinear interplays involving radiation, effective charge impact on ITG and collisionality.

  • 49. Brezinsek, S.
    et al.
    Andersson Sundén, Erik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Binda, Federico
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Cecconello, Marco
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Conroy, Sean
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Dzysiuk, Nataliia
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Ericsson, Göran
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Eriksson, Jacob
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Hellesen, Carl
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Hjalmarsson, Anders
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Possnert, Göran
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Sjöstrand, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Skiba, Mateusz
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Weiszflog, Matthias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Zychor, I.
    Erosion, screening, and migration of tungsten in the JET divertor2019Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, nr 9, artikel-id 096035Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The erosion of tungsten (W), induced by the bombardment of plasma and impurity particles, determines the lifetime of plasma-facing components as well as impacting on plasma performance by the influx of W into the confined region. The screening of W by the divertor and the transport of W in the plasma determines largely the W content in the plasma core, but the W source strength itself has a vital impact on this process. The JET tokamak experiment provides access to a large set of W erosion-determining parameters and permits a detailed description of the W source in the divertor closest to the ITER one: (i) effective sputtering yields and fluxes as function of impact energy of intrinsic (Be, C) and extrinsic (Ne, N) impurities as well as hydrogenic isotopes (H, D) are determined and predictions for the tritium (T) isotope are made. This includes the quantification of intra- and inter-edge localised mode (ELM) contributions to the total W source in H-mode plasmas which vary owing to the complex flux compositions and energy distributions in the corresponding phases. The sputtering threshold behaviour and the spectroscopic composition analysis provides an insight in the dominating species and plasma phases causing W erosion. (ii) The interplay between the net and gross W erosion source is discussed considering (prompt) re-deposition, thus, the immediate return of W ions back to the surface due to their large Larmor radius, and surface roughness, thus, the difference between smooth bulk-W and rough W-coating components used in the JET divertor. Both effects impact on the balance equation of local W erosion and deposition. (iii) Post-mortem analysis reveals the net erosion/deposition pattern and the W migration paths over long periods of plasma operation identifying the net W transport to remote areas. This W transport is related to the divertor plasma regime, e.g. attached operation with high impact energies of impinging particles or detached operation, as well as to the applied magnetic configuration in the divertor, e.g. close divertor with good geometrical screening of W or open divertor configuration with poor screening. JET equipped with the ITER-like wall (ILW) provided unique access to the net W erosion rate within a series of 151 subsequent H-mode discharges (magnetic field: B-t = 2.0 T, plasma current: I-p = 2.0 MA, auxiliary power P-aux = 12 MW) in one magnetic configuration accumulating 900 s of plasma with particle fluences in the range of 5-6 x 10(26) D+ m(-2) in the semi-detached inner and attached outer divertor leg. The comparison of W spectroscopy in the intra-ELM and inter-ELM phases with post-mortem analysis of W marker tiles provides a set of gross and net W erosion values at the outer target plate. ERO code simulations are applied to both divertor leg conditions and reproduce the erosion/deposition pattern as well as confirm the high experimentally observed prompt W re-deposition factors of more than 95% in the intra- and inter-ELM phase of the unseeded deuterium H-mode plasma. Conclusions to the expected divertor conditions in ITER as well as to the JET operation in the DT plasma mixture are drawn on basis of this unique benchmark experiment.

  • 50.
    Brezinsek, S.
    et al.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, TEC, D-52425 Julich, Germany..
    Kirschner, A.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, TEC, D-52425 Julich, Germany..
    Mayer, M.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Baron-Wiechec, A.
    CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Borodkina, I
    Czech Acad Sci, Inst Plasma Phys, Prague 18200, Czech Republic..
    Borodin, D.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, TEC, D-52425 Julich, Germany..
    Coffey, I
    CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Coenen, J.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, TEC, D-52425 Julich, Germany..
    den Harder, N.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Eksaeva, A.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, TEC, D-52425 Julich, Germany..
    Guillemaut, C.
    Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal..
    Heinola, K.
    IAEA, POB 100, A-1400 Vienna, Austria.;Univ Helsinki, Dept Phys, POB 64, FIN-00014 Helsinki, Finland..
    Huber, A.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, TEC, D-52425 Julich, Germany..
    Huber, V
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, TEC, D-52425 Julich, Germany..
    Imrisek, M.
    Czech Acad Sci, Inst Plasma Phys, Prague 18200, Czech Republic..
    Jachmich, S.
    Ecole Royale Mil, LPP, Koninkllijke Mil Sch, B-1000 Brussels, Belgium..
    Pawelec, E.
    Opole Univ, Inst Phys, Oleska 48, PL-45052 Opole, Poland..
    Rubel, Marek
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Krat, S.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Sergienko, G.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, TEC, D-52425 Julich, Germany..
    Matthews, G. F.
    CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Meigs, A. G.
    CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Wiesen, S.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, TEC, D-52425 Julich, Germany..
    Widdowson, A.
    CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Erosion, screening, and migration of tungsten in the JET divertor2019Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, nr 9, artikel-id 096035Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The erosion of tungsten (W), induced by the bombardment of plasma and impurity particles, determines the lifetime of plasma-facing components as well as impacting on plasma performance by the influx of W into the confined region. The screening of W by the divertor and the transport of W in the plasma determines largely the W content in the plasma core, but the W source strength itself has a vital impact on this process. The JET tokamak experiment provides access to a large set of W erosion-determining parameters and permits a detailed description of the W source in the divertor closest to the ITER one: (i) effective sputtering yields and fluxes as function of impact energy of intrinsic (Be, C) and extrinsic (Ne, N) impurities as well as hydrogenic isotopes (H, D) are determined and predictions for the tritium (T) isotope are made. This includes the quantification of intra- and inter-edge localised mode (ELM) contributions to the total W source in H-mode plasmas which vary owing to the complex flux compositions and energy distributions in the corresponding phases. The sputtering threshold behaviour and the spectroscopic composition analysis provides an insight in the dominating species and plasma phases causing W erosion. (ii) The interplay between the net and gross W erosion source is discussed considering (prompt) re-deposition, thus, the immediate return of W ions back to the surface due to their large Larmor radius, and surface roughness, thus, the difference between smooth bulk-W and rough W-coating components used in the JET divertor. Both effects impact on the balance equation of local W erosion and deposition. (iii) Post-mortem analysis reveals the net erosion/deposition pattern and the W migration paths over long periods of plasma operation identifying the net W transport to remote areas. This W transport is related to the divertor plasma regime, e.g. attached operation with high impact energies of impinging particles or detached operation, as well as to the applied magnetic configuration in the divertor, e.g. close divertor with good geometrical screening of W or open divertor configuration with poor screening. JET equipped with the ITER-like wall (ILW) provided unique access to the net W erosion rate within a series of 151 subsequent H-mode discharges (magnetic field: B-t = 2.0 T, plasma current: I-p = 2.0 MA, auxiliary power P-aux = 12 MW) in one magnetic configuration accumulating 900 s of plasma with particle fluences in the range of 5-6 x 10(26) D(+ )m(-2) in the semi-detached inner and attached outer divertor leg. The comparison of W spectroscopy in the intra-ELM and inter-ELM phases with post-mortem analysis of W marker tiles provides a set of gross and net W erosion values at the outer target plate. ERO code simulations are applied to both divertor leg conditions and reproduce the erosion/deposition pattern as well as confirm the high experimentally observed prompt W re-deposition factors of more than 95% in the intra- and inter-ELM phase of the unseeded deuterium H-mode plasma. Conclusions to the expected divertor conditions in ITER as well as to the JET operation in the DT plasma mixture are drawn on basis of this unique benchmark experiment.

1234567 1 - 50 av 478
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf