Endre søk
Begrens søket
1 - 34 of 34
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Abbas, Nahla
    et al.
    School of Engineering and Technology, Central Queensland University, Melbourne .
    Wasimi, Saleh A.
    School of Engineering and Technology, Central Queensland University, Melbourne .
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Climate Change Impacts on Water Resources of Greater Zab River, Iraq: Climate Change Impacts on Water Resources of Greater Zab River, Iraq2016Inngår i: Journal of Civil Engineering and Architecture, ISSN 1934-7359, E-ISSN 1934-7367, Vol. 10, nr 12, s. 1384-1402Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Greater Zab is the largest tributary of the Tigris River in Iraq where the catchment area is currently being plagued by water scarcity and pollution problems. Contemporary studies have revealed that blue and green waters of the basin have been manifesting increasing variability contributing to more severe droughts and floods apparently due to climate change. In order to gain greater appreciation of the impacts of climate change on water resources in the study area in near and distant future, SWAT (Soil and Water Assessment Tool) has been used. The model is first tested for its suitability in capturing the basin characteristics, and then, orecasts from six GCMs (general circulation models) with about half-a-century lead time to 2046~2064 and one-century lead time to 2080~2100 are incorporated to evaluate the impacts of climate change on water resources under three emission scenarios: A1B, A2 and

    B1. The results showed worsening water resources regime into the future.

  • 2.
    Abbas, Nahla
    et al.
    School of Engineering and Technology, Central Queensland University, Australia.
    Wasimi, Saleh A.
    School of Engineering and Technology, Central Queensland University, Australia.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser.
    Impacts of Climate Change on Water Resources in Diyala River Basin, Iraq2016Inngår i: Journal of Civil Engineering and Architecture, ISSN 1934-7359, E-ISSN 1934-7367, Vol. 10, nr 9, s. 1059-1074Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Diyala River is the third largest tributary of the Tigris River running 445 km length and draining an area of 32,600 km2. The river is the major source of water supply for Diyala City for municipal, domestic, agriculture and other purposes. Diyala River Basin currently is suffering from water scarcity and contamination problems. Up-to-date studies have shown that blue and green waters of a basin have been demonstrating increasing variability contributing to more severe droughts and floods seemingly due to climate change. To obtain better understanding of the impacts of climate change on water resources in Diyala River Basin in near 2046~2064 and distant future 2080~2100, SWAT (soil and water assessment tool) was used. The model is first examined for its capability of capturing the basin characteristics, and then, projections from six GCMs (general circulation models) are incorporated  to assess the impacts of climate change on water resources under three emission scenarios: A2, A1B and B1. The results showed deteriorating water resources regime into the future.

  • 3.
    Abbas, Nahla
    et al.
    School of Engineering and Technology, Central Queensland University, Melbourne.
    Wasimi, Saleh A.
    School of Engineering and Technology, Central Queensland University, Melbourne.
    Bhattarai, Surya
    School of Medical and Applied Sciences, Centra l Queensland University, Melbourne .
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    The Impacts of Climate Change on Fitzroy River Basin, Queensland, Australia: The Impacts of Climate Change on Fitzroy River Basin, Queensland, Australia2017Inngår i: Journal of Civil Engineering and Architecture, ISSN 1934-7359, E-ISSN 1934-7367, Vol. 11, nr 1, s. 38-47Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    An analysis of historical data of Fitzroy River, which lies in the east coast of Australia, reveals that there is an increasing

    trend in extreme floods and droughts apparently attributable to increased variability of blue and green waters which could be due to

    climate change. In order to get a better understanding of the impacts of climate change on the water resources of the study area for near

    future as well as distant future, SWAT (soil and water assessment tool) model was applied. The model is first tested for its suitability in

    capturing the basin characteristics with available data, and then, forecasts from six GCMs (general circulation model) with about

    half-a-century lead time to 2046~2064 and about one-century lead time to 2080~2100 are incorporated to evaluate the impacts of

    climate change under three marker emission scenarios: A2, A1B and B1. The results showed worsening water resources regime into the

    future.

  • 4.
    Abdullah, Twana
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi. Department of Geology, University of Sulaimani.
    Ali, Salahalddin S.
    University of Sulaimani, Kurdistan Region .
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Assessing the Vulnerability of Groundwater to Pollution Using DRASTIC and VLDA Modelsin Halabja Saidsadiq Basin, NE, Iraq2016Inngår i: Journal of Civil Engineering and Architecture, ISSN 1934-7359, E-ISSN 1934-7367, Vol. 10, nr 10, s. 1144-1159Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Groundwater plays important roles as one of the essential source of water supplies of the studied area. Consequently, it needs to be prevented from contamination. In this study, two methods have been examined, namely DRASTIC (depth to groundwater, net recharge, aquifer media, soil map, topography, impact of vadose zone and hydraulic conductivity) and VLDA (vadose zone lithology, land use patterns, depth to groundwater and aquifer media) to model a map of groundwater vulnerability for contamination of the basin. The standard DRASTIC vulnerability maps classified the basin of four vulnerability index zones: very low (34%), low (13%), moderate (48%) and high (5%). While the VLDA model classified the area into four categories as well: low (2%), moderate (44%), high(53%) and very high (1%). The results demonstrate that there is a significant dissimilarity in the rate of vulnerability. Validation of the constructed maps is required to confirm the validity of the theoretical sympathetic of current hydrogeological conditions. In this study, nitrate concentration analysis was selected as a contamination indicator to validate the result. The nitrate concentration of two different seasons (dry and wet) was analyzed from (30) watering wells, considerable variations in nitrate concentration from dry to wet seasons had been noted. Consequently, it points toward that groundwater in the HSB (Halabja Saidsadiq Basin) is capable to receive the contaminant due to suitability of overlies strata in terms of geological and hydrogeological conditions. Based on this confirmation, the result exemplifies that the degree and distribution of vulnerability level acquired using VLDA model is more sensible than that attained from the standard DRASTIC method .In addition, the DRASTIC models need to be modified based on the land use pattern, which clarifies the role of human activity on the vulnerability system.

  • 5.
    Adamo, Nasrat
    et al.
    LTU team.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Laue, Jan
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Sissakian, Varoujan
    Department of Geology, University of Kurdistan, Hewler.
    Risk Management Concepts in Dam Safety Evaluation:Mosul Dam as a Case Study2017Inngår i: Journal of Civil Engineering and Architecture, ISSN 1934-7359, E-ISSN 1934-7367, Vol. 11, nr 7, s. 635-652Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Gradual shift has been observed lately of dam safety procedures from the conventional technical based towards a widerscope of risk management procedure based on risk analysis. The new approach considers the likelihood level of occurrence of a multitude of hazards and the magnitude of the resulting possible consequences in case of failure using rational cause and effect arguments. Most dam owners are shifting towards the use of the new risk based procedures; and even governments themselves are moving towards formalizing the new trend. Legislations in the United States were promulgated [1] after serious dam failures and the adoption of stringent levels of scrutiny led such federal dam owners to pioneer in this field and in developing the concepts and methods required. The corner stone in risk analysis is the definition of the potential modes that may lead to failure and assessment of the likelihood levels of their occurrence and possible category of the consequences which, after thorough evaluation, will shape thedecision making. This type of analysis was applied to Mosul Dam as a case study and resulted in definite recommendations.

  • 6.
    Adamo, Nasrat
    et al.
    Private Consultant Engineering, Norrköping, Sweden.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Sissakian, Varoujan
    University of Kurdistan, Howler, KRG, Iraq. Private Consultant Geologist, Erbil, Iraq.
    Laue, Jan
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Mosul Dam: Geology and Safety Concerns2019Inngår i: Journal of Civil Engineering and Architecture, ISSN 1934-7359, E-ISSN 1934-7367, Vol. 13, nr 3, s. 151-177Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Mosul Dam is an earth fill dam located on the River Tigris northern part of Iraq. The capacity of its reservoir is 11.11 billion cubic meters which makes it the fourth biggest dam in the Middle East. From geological perspective, the dam is located on double plunging anticlines. The rocks of the site are mainly composed of highly jointed and karistified alternating beds of limestones, gysum and marls, since the impoundment of the reservoir seepage of water was recognized under the foundation of the dam. To stop or minimize the seepage, intensive grouting operations were conducted. Recent investigations and evaluation of the conditions of the dam indicate that it is in a critical situation. In this paper, consequences of the dam failure are discussed and possible solutions are given.

  • 7.
    Al Amli, Ali
    et al.
    Civil Engineering Department, AlMu stansiriyah Engineering College, ALMust ansiriyah University, Baghdad .
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Shejiri, Sabah Jasim Dahboosh
    Department of Civil Engin eering, AL-Farabi University College, Baghdad.
    Repairing of RC T-Section Beams with Opening by CFRP for Cracks and Ultimate Torque2018Inngår i: Journal of Civil Engineering and Architecture, ISSN 1934-7359, E-ISSN 1934-7367, Vol. 12, s. 83-90Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The repair of reinforced concrete (RC) beams with carbon fiber reinforced polymers (CFRP) is experimentally investigated in this study. The four T-section reinforced reactive powder concrete beams with many locations of circular opening were repaired by CFRP and investigated under pure torsion. The repairing beams were tested to obtain the effect of the amount of CFRP laminate on beams cracking and ultimate torque behavior, angle of twist and failure modes. The results obtained from the adopted repairing technique showed a significant effect of external high strength CFRP laminates on effectively restore of section solid of 85% of crack torsional strength effectively restored. In addition, the results show that effectively restoring of section opening by 82%-80% of crack torsional strength, and the adopted repairing technique gives a good strength to the beams.

  • 8.
    Alanbari, Mohammad
    et al.
    College of Engineering, Babylon University.
    Alazzawi, Hind
    College of Engineering, Babylon University.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Environmental Assessment of Al-Hilla City Wastewater Treatment Plants2015Inngår i: Journal of Civil Engineering and Architecture, ISSN 1934-7359, E-ISSN 1934-7367, Vol. 9, nr 6, s. 749-755Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Iraq is one of the countries that is suffering from water shortage problems and, for this reason, wastewater treatment plantsbecome a necessity to minimize this problem. In this study, the impact of Al-Hilla WWTP (wastewater treatment plant) on theenvironment has been studied. This was achieved using SimaPro software package. This software is a powerful tool for analyzing theenvironmental impact on products during their whole life cycle. A huge amount of knowledge about the environment is built into theprogram and database, enabling to analyze a product with a minimum of specialized knowledge. The results of LCA (life cycleassessment) showed that the impact and damage on the environment by Al-Hilla WWTP was 41 bad points for each 1 m3 of treatedwastewater. The most environmental impacts potentially were global warming, respiratory inorganics and non-renewable energy. Thestudy also showed that most of the effects were the result of the use of cement, steel and electricity consumption

  • 9.
    Al-Anbari, Mohammad
    et al.
    Babylon University, Collage of Engineering.
    Thameer, Muhannad
    Babylon University, Collage of Engineering.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Landfill Site Selection in Al-Najaf Governorate, Iraq2016Inngår i: Journal of Civil Engineering and Architecture, ISSN 1934-7359, E-ISSN 1934-7367, Vol. 10, nr 6, s. 651-660Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Solid waste management aspect is one of the most important challenges facing the local administration in the Governorate of Najaf. Therefore, this study aims to provide for solid waste management problem by choosing the best locations for the establishment of sanitary landfills in the governorate. In this study, GIS (geographic information system) and MCDA (multi-criteria decision analysis) were used based on 17 environmental, economic and geological criteria converted to input digital map layers. These were urban centres, cemetery, airports, electrical power lines, oil pipes, railways, roads, slope, historical sites, main rivers,industrial areas, religion sites, wells, military area, electrical power plants, nature reserves and national borders to select most importance sites in the governorate. AHP (analytic hierarchy process) method was used in weighting the criteria used. All layers’ maps were graded from 0 (not suitable) to 5 (most suitable) using spatial information scale then SAW (simple additive weighting)method was integrated in GIS used to calculate the suitability index for the studied area. The results indicated that 4.4% of the study region is suitable for land¿ll siting with grading values greater than 4.0. This included five sites distributed in three qadhaas of governorate.

  • 10.
    Al-Anbari, Mohammad
    et al.
    College of Engineering, Babylon University.
    Thameer, Muhannad
    College of Engineering, Babylon University.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Ranking Landfill Sites in Najaf Governorate, Iraq Using AHP and Fuzzy TOPSIS Methods2016Inngår i: Journal of Civil Engineering and Architecture, ISSN 1934-7359, E-ISSN 1934-7367, Vol. 10, nr 8, s. 815-821Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In Najaf Governorate, Iraq, there are five landfill sites. This study aims to rank these sites based on their criteria which are site capacity, land elevation and land price. AHP (analytic hierarchy process) method was used to weight the criteria and the technique for order preference by similarity to ideal solution. Fuzzy TOPSIS (technique for order of preference by similarity to ideal solution) method was used to rank these sites from best to worst. Based on AHP method, the site capacity criterion was the most important than land price and land elevation.

  • 11.
    Al-Ansari, Nadhir
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Abdellatif, Mawada
    Liverpool JM University.
    Ezz-Aldeen, Mohammad
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Ali, Salahalddin S.
    Sulaimani University.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Climate change and future long term trends of rainfall at north-east Part of Iraq2014Inngår i: Journal of Civil Engineering and Architecture, ISSN 1934-7359, E-ISSN 1934-7367, Vol. 8, nr 6, s. 790-805Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Iraq is facing water shortage problem despite the presence of the Tigris and Euphrates Rivers. In this research, long rainfall trends up to the year 2099 were studied in Sulaimani city northeast Iraq to give an idea about future prospects. Two emission scenarios used by the Intergovernmental Panel on Climate Change (A2 & B2) were employed. The results indicates that the average annual rainfall show a significant downward trend for both A2 and B2 scenarios. In addition, winter projects some increase/decrease in the daily rainfall statistics of wet days, the spring season show very slight drop and no change for both scenarios. However both summer and autumn show a significant reduction in maximum rainfall value especially in 2080s while the other statistics remain nearly the same. The extremes events are to decrease slightly in 2080s with highest decrease associated with A2 scenario. This because the rainfall under scenario A2 is more significant than under scenario B2 and temperature can be very hot and worse with increase in emission scenario which causes the moist air to be evaporated before going up and cause the rainfall. The return period of a certain rainfall will increase in the future when a present storm of 20 year could occur once every 43 year in the 2080s. An increase in the frequency of extreme rainfall depends on the return period, season of the year, the future period considered and the emission scenario under which it will occur

  • 12.
    Al-Hashimi, Shaymaa A.M.
    et al.
    Department of Civil Engineering, Al-Mustansiriayah University, Baghdad 1001, Iraq.
    Madhloom, Huda M.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi. Department of Civil Engineering, Al-Mustansiriayah University, Baghdad 1001, Iraq.
    Khalaf, Rasul M.
    Department of Civil Engineering, Al-Mustansiriayah University, Baghdad 1001, Iraq.
    Nahi, Thameen N.
    Department of Civil Engineering, Al-Mustansiriayah University, Baghdad 1001, Iraq.
    Al-Ansari, Nadhir A.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Flow over Broad Crested Weirs: Comparison of 2D and 3D Models2017Inngår i: Journal of Civil Engineering and Architecture, ISSN 1934-7359, E-ISSN 1934-7367, Vol. 11, nr 8, s. 769-779Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The flow over broad-crested weirs was simulated by computational fluid dynamic model. The water surface profile over broad crested weir was measured in a laboratory model and validated using two and three dimensional Fluent programs. The Reynolds Averaged Navier-Stokes equations coupled with the turbulent standard (k-ε) model and volume of fluid method were applied to estimate the water surface profile. The results of numerical model were compared with experimental results to evaluate the ability of model in describing the behaviour of water surface profile over the weir. The results indicated that the 3D required more time in comparison with 2D results and the flow over weir changed from subcritical flow at the upstream (U/S) face of weir to critical flow over the crest and to supercritical flow at downstream (D/S). A reasonable agreement was noticed between numerical results and experimental observations with mean error less than 2 %.

  • 13.
    Ali, Ammar
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi. College of Engineering, Unive rsity of Baghdad.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Al-Suhail, Qusay
    College of Science, University of Baghdad.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Three-Dimensional Morphodynamic Modelling of TigrisRiver in Baghdad2017Inngår i: Journal of Civil Engineering and Architecture, ISSN 1934-7359, E-ISSN 1934-7367, Vol. 11, nr 6, s. 571-594Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Bathymetric and land surveys were conducted for the northern Tigris River reach (18 km length) in Baghdad, producing 180cross sections. A river bed topography map was constructed from these cross sections. The velocity profiles and the water discharges were measured using ADCP (Acoustic Doppler Current Profiler) at 16 cross sections, where intensive number of sediment samples was collected to determine riverbed characteristics and sediment transport rate. The three-dimensional morphodynamic model (SSIIM (simulation of sediment movements in water intakes with multiblock option)) was used to simulate the velocity field and the water surface profile along the river reach. The model was calibrated for the water levels, the velocity profiles and the sediment concentration profiles using different combinations of parameters and algorithms. The calibration and the validation results showed good agreement with field measurements, and the model was used to predict the future changes in river hydro-morphology for a period of 14 months. The results of the future predictions showed the Tigris River which behaved like an under-fit river, increases in depositions on the shallow part of the cross section having lower velocity, and the river deepens the incised route to fit its current hydrologic condition leaving the former wide section as a floodplain for the newer river. The net deposition/erosion rate was 67.44 kg/s in average and the total deposition quantity was 2.12 million ton annually. An expansion in the size of current islands was predicted. An indication of thepotential threats of the river banks’ collapse and the bridge piers’ instability was given by high erosion along the thalweg line.

  • 14.
    Ali, Salahalddin
    et al.
    Department of Geology, School of Science, Faculty of Science and Science Education, University of Sulaimaniyah.
    Al-Umary, Foad A.
    Department of Geography, College of Education, University of Tikrit.
    Salar, Sarkawt G.
    Department of Geography, Faculty of Education/Kalar, University of Garmian.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    GIS Based Soil Erosion Estimation Using EPM Method, Garmiyan Area, Kurdistan Region, Iraq2016Inngår i: Journal of Civil Engineering and Architecture, ISSN 1934-7359, E-ISSN 1934-7367, Vol. 10, s. 291-308Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Using empirical model is one of the approaches of evaluating sediment yield. This research is aimed at predicting erosion and sedimentation in Garmiyan area at Kurdistan Region, Iraq used EPM (erosion potential model) incorporating into GIS (geographic information system) software. This basin area is about 1,620 km2. It has a range of vegetation, slope, geological, soil texture and land use types. The spatial distribution of gully erosion shows three main zones in the studied area (slight to moderate gully, high gully and sever fluvial erosion). They form about 10%, 89% and 1% of gully erosion in the studied area respectively. The results of the EPM model show that the values of the coefficient of erosion Z are classified as moderate to high erosion intensity. They increase northward due to increasing of slope, elevation and rate of precipitation that generate Hortonian overland flow, which is due to high discharge and huge fluvial erosion power that cause ground surface erosion to produce large quantity of sediment. The results of GSP (spatial sediment rate) are increasing northward similar to Z due the same reasons, while the value of total sediment rate, shows different values for each watershed because they are mainly affected by the total watershed area.

  • 15.
    Al-Rawabdeh, bdullaabdulala
    et al.
    University of Calgary, Department of Geomatics Engineering.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Attya, Hussain
    University of Calgary, Department of Geomatics Engineering.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    GIS Applications for Building 3D Campus, Utilities and Implementation Mapping Aspects for University Planning Purposes2014Inngår i: Journal of Civil Engineering and Architecture, ISSN 1934-7359, E-ISSN 1934-7367, Vol. 8, nr 1, s. 19-28Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In city planning managing the third dimension is becoming a necessity. Using 3D GIS modeling within a GIS environment offers a flexible interactive system for providing the best visual interpretation because it aids the planning and decision-process. Previous 3D virtual models did not have to be completely accurate. It did need to be a relatively accurate representation of the true simulation of reality. Every point in 3D GIS models has their true coordinates, so they can express terrain features in an intuitive way which enhances the management and analysis of a proposed project through 3D visualization.A university campus is a complex infrastructure. New students and first- time visitors have a hard time orientating themselves and finding places. This paper discusses the concept of 3D GIS modeling techniques using the following simple procedure to generate a university campus as a real 3D GIS model which will show the effectiveness of the 3D GIS modeling approach. The 3D GIS model provides access to mapping data to support planning, design, and data management. Intelligent GIS models and GIS tools help community planning and apply regional and discipline-specific standards. Integration of GIS spatial data with campus organization helps to improve quality, productivity, and asset management. The following study built 3D GIS map and all utility information for Al al-Bayt University campus as a case study. The primary objective is to establish a 3D GIS for the Al al-Bayt university campus, Jordan to improved data management (e.g., maps, plans, usage of facilities, services) and to develop methods using 3D spatial analysis for specific applications.

  • 16.
    Al-Taie, Entidhar
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Saaed, Tarek Edrees
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och -produktion.
    Foundation assessment in different parts of Iraq using STAAD Pro v8i2013Inngår i: Journal of Civil Engineering and Architecture, ISSN 1934-7359, E-ISSN 1934-7367, Vol. 7, nr 3, s. 273-281Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Foundation is considered as one of the main parts of any structure such as buildings, railways, bridges, etc. The type of foundation used is highly dependent on the type and properties of soil. The design of foundations requires many factors that should be defined such as the load that the foundation is going to hold, geological conditions of the soil under the foundation, type of soil and the local building code criteria.There are number of differences in the geological and soil conditions in Iraq. As a consequence, these differences are reflected on the type of foundation to be used. Despite these differences, same materials and style of buildings are used all over Iraq. The main problems of Iraqi soil are high gypsum content, salinity and shallow water table depth. These factors that influence the foundations are the soil properties and the amount of loads that transmitted by the superstructure.The situation had been analysed through a case study which illustrated the link between soil and foundation types in three different parts of Iraq (Mosul, Baghdad and Basra). One building was analysed using STAAD. Pro software in these regions. It is evident that Iraqi designers and engineers require local code to define all the loads, materials and design of the foundation to be used. The use of local materials might be very effective from both engineering and economic perspectives.

  • 17.
    Cervantes, Michel
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Strömningslära och experimentell mekanik.
    Cupillard, Samuel
    Hydro-Québec Research’s Institute.
    Bance, Kevin
    National Institute for Applied Science.
    Kokkolaras, Michael
    McGill University.
    Shape optimization of a 3D slider with dimples2012Inngår i: Journal of Civil Engineering and Architecture, ISSN 1934-7359, E-ISSN 1934-7367, Vol. 6, nr 12, s. 1599-1607Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Sliding contacts in laminar flow regimes have been investigated extensively in recent years. The results indicate the possibility to increase load carrying capacity in a slider bearing for more than 10% with the addition of dimples. Parametric studies have been performed to determine optimal size and position, with emphasis in the optimal shape and position of the dimple for an operating condition. In this article, the numerical analysis of a 2D textured slider bearing with a dimple is initially considered with an isothermal laminar fluid. Position, depth, width and convergence ratio are optimized, the results demonstrate the importance of the width and convergence ratio to increase load. Then, the numerical analysis of a 3D textured slider bearing with fore-region and extended channels at the outlet and on the sides of a pad is considered. The simulations are also carried out for a laminar isothermal flow. Three dimples are considered and their depth is optimized.

  • 18.
    Chabuk, Ali
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Hussain, Hussain M.
    Department of Geology, Faculty of Science, University of Kufa.
    Kamaleddin, Suhair
    Iraqi Ministry of Housing & Construction, National Center for Construction Laboratories and Research Babylon, Baghdad.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Pusch, Roland
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Laue, Jan
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Soil Characteristics in Selected Landfill Sites in theBabylon Governorate, Iraq2017Inngår i: Journal of Civil Engineering and Architecture, ISSN 1934-7359, E-ISSN 1934-7367, Vol. 11, nr 4, s. 348-363Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The Babylon Governorate is situated in the middle of Iraq. It covers an area of 5,315 km

    2 and has 2,092,998 inhabitants distributed throughout its five major cities (Qadhaa). Presently, there is no landfill site in the governorate that meets the environmental criteria for the disposal of municipal and industrial waste. Consequently, GIS (geographic information system) and methods of multi-criteria decision making were used here to select the best sites in each city in the Babylon Governorate that would fulfil the environmental requirements. Two sites were chosen in each city. As the groundwater is very shallow in this area, the design should ensure against groundwater pollution by leachate from these sites. To avoid this problem, soil investigation was conducted at these sites so that the most suitable landfill design could be accomplished. The results of soil investigation in these sites include the soil profile, groundwater depth, chemical properties, allowable bearing capacity, Atterberg limits test results and material characteristics of the soil strata. From the research, it is believed that the best design is one that puts the landfill above ground.

  • 19.
    Chabuk, Ali
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Hussain, Hussain Musa
    Department of Geology, Faculty of Science, University of Kufa.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Pusch, Roland
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Landfill Siting Using GIS and AHP (Analytical Hierarchy Process): A Case Study Al-Qasim Qadhaa, Babylon, Iraq2016Inngår i: Journal of Civil Engineering and Architecture, ISSN 1934-7359, E-ISSN 1934-7367, Vol. 5, s. 530-543Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The selection of a landfill site is considered as a complicated task because this process is based on many factors and restrictions. For Al-Qasim Qadhaa, which is situated in the southern part of the Babylon Governorate, Iraq, there is no landfill site in that area that conforms to the scientific criteria for selecting sites for landfill. For this reason, 15 criteria were adopted in this study (groundwater depth, rivers, soil types, agriculture lands use, land use, elevation, slope, gas pipelines, oil pipelines, power lines, roads, railways, urban centers, villages and archaeological sites) using GIS (geographic information system), which has a large ability to manage input data. In addition, the AHP (analytical hierarchy process) method was used to derive the relative weightings for each criterion using pair-wise comparison. To obtain the suitability index for candidate landfill sites, a weighted linear combination method was used. After combining these methods, two suitable candidate landfill sites, with areas of 2.766 km2 and 2.055 km2, respectively, were found to satisfy the scientific and environmental requirements. The area of these sites can accommodate solid waste from 2020 until 2030 based on the required area, which was 0.702 km2.

  • 20.
    Chabuk, Ali
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Laue, Jan
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Alkaradaghi, Karwan
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi. Kurdistan Institution for Strategic Studies and Scientific Research, Sulaimaniyah, Iraq.
    Hussain, Hussain M.
    Remote Sensing Center, University of Kufa, Department of Geology, Faculty of Science, University of Kufa, Iraq.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Application of the HELP Model for Landfill Design in AridAreas: Case Study Babylon Governorate, Iraq2018Inngår i: Journal of Civil Engineering and Architecture, ISSN 1934-7359, E-ISSN 1934-7367, Vol. 12, nr 12, s. 848-879Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The landfill design is necessary to be implemented in various regions to protect public human health and the factors ofenvironment. The suggested design of landfill was performed in the arid areas, where that Babylon Governorate, Iraq was selected as a case study. Babylon overnorate is located in the middle of Iraq. The suggested design for the selected sites for landfill in the arid areas was consisted of the base liner and final cover systems. The HELP 3.95D model was applied on both systems to check if there is any leakage by leachate from the suggested soil layers of landfill base on the water balance in Babylon Governorate for the years 2005-2016. The suggested design of final cover system was implemented based on weather parameters in the arid areas through storing water that coming from the surface within upper layers that have fine particles and over the top barrier without leakage into the waste body, thereby preventing leachate generation. This is  allowing to the stored water to evaporate from the surface of soil or transpire through vegetation due to the high temperature during the most months in the study area. The results showed there was no percolation of leachate through the base liner system. The design of final cover system was acted to reduce the runoff on the surface and increase theactual evaporation.

  • 21.
    Ezz-Aldeen, Mohammad
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Runoff and sediment load from the right bank valleys of Mosul dam reservoir2012Inngår i: Journal of Civil Engineering and Architecture, ISSN 1934-7359, E-ISSN 1934-7367, Vol. 6, nr 10, s. 1414-1419Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Mosul Dam is a Multipurpose Project on the River Tigris in Iraq with 11.11 billion m3 storage capacity.. It is used to store the water for irrigation, hydropower generation, and flood control. As in other dams in the world, this dam also have sedimentation problem. Sediment accumulation in its reservoir can effect the dam operation (pumping station, hydropower plants, and bottom outlets) and it will definitely shorten the life span of the dam. In this study, the SWAT (soil and water assessment tool) under GIS (Geographical Information System) was applied to simulate the yearly surface runoff and sediment load for the main three valleys on the right bank of Mosul Dam Reservoir. The simulation considered for the twenty one years begin from the dam operation in 1988 to 2008. The resultant values of the average annual sediment load are 35.6x103, 4.9x103, and 2.2x103 ton, while the average values of sediment concentration are 1.73, 1.65, and 2.73 kg/m3 for the considered valleys one, two and three respectively. This implies that significant sediment load enters the reservoir from these valleys. To minimize the sediment load entering the reservoir, a check dam is to be constructed in suitable sites especially for valley one. The check dam can store the runoff water and trap the sediment load, and then the flow can be released to the reservoir.

  • 22.
    Fikrat, Hassan
    et al.
    University of Baghdad.
    Salman, Jasim
    Babylon University.
    Al-Azawey, Atheer
    Babylon University.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Quatlity, quantity and origin of polycyclic aromatic hydrocarbons (PAHs) in lotic ecosystem of AL-Hilla river, Iraq2014Inngår i: Journal of Civil Engineering and Architecture, ISSN 1934-7359, E-ISSN 1934-7367, Vol. 8, nr 8, s. 1026-1038Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The quality, quantity and the origin of Poly Aromatic Hydrocarbon (PAHs) were studied in the water and sediment of Al-Hilla river (branch of the Euphrates river inside Iraq). In addition, some physical and chemical properties were studied at six sites along the studied area, for the period March, 2010 to February, 2011. Sixteen Polycyclic Aromatic Hydrocarbons (PAHs) that are listed by USEPA as priority pollutants ( Naphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Pyrene, Benzo(a)Anthracene, Chrysene, Benzo(b) Fluoranthene, Benzo(k) Fluoranthene, Benzo(a) Pyrene, Dibenzo(a,h) Anthracene, Benzo(ghi) Perylene and Indeno (1,2,3-cd) Pyrene) were detected in Al-Hilla river. High concentrations of PAHs were detected in the sediment relative to that within the water. The present study revealed that the origin of PAHs in water and sediment might be the Pyrogenic origin.

  • 23.
    Hansson, Lars
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Träteknologi.
    Cherepanova, Ekaterina
    Determination of wood moisture properties using a CT-scanner in a controlled high-temperature environment2012Inngår i: Journal of Civil Engineering and Architecture, ISSN 1934-7359, E-ISSN 1934-7367, Vol. 6, nr 3, s. 372-378Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The aim of the present work was to analyze moisture flow and moisture content data for high-temperature drying by using an advanced image- processing algorithm.Since wood starts to shrink below the fibre saturation point during drying, the size and shape of wood will change. The dry wood image was thoroughly transformed to the shape of the wet wood image prior to calculating the dry weight moisture content. The use of the image- processing algorithm for the dry weight moisture content on density data from the CT-scanning during drying in a controlled high-temperature environment showed that this method is a powerful tool for analyzing the moisture flow inside the wood piece. Furthermore, the new CT-scanner together with the climate chamber gave unique results, as it has not been possible to study high-temperature drying with this method before.

  • 24.
    Hatem, Mohammed
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Pusch, Roland
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Emborg, Mats
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och -produktion.
    Nilsson, Martin
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och -produktion.
    Alireza, Pourbakhtiar
    Talc-based concrete for sealing borehole optimized by using particle packing theory2013Inngår i: Journal of Civil Engineering and Architecture, ISSN 1934-7359, E-ISSN 1934-7367, Vol. 7, nr 4, s. 440-455Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The paper describes assessment of the performance of cement-poor concreteson the basis of packing theory. The concretes are intended for sealing segments of deep boreholes and have a small amount of cement for minimizing the mutual chemical impact on the contacting clay seals. The composition is examined by application of packing theory with respect to the cement/aggregate ratio and the gradation of the aggregate material which is crushed quartzite for providing high internal friction after maturation, as well as to talc added for fluidity and to the small amount of cement. Low porosity and micro-structural stability must be guaranteed for very long periods of time. The study exemplifies how packing theory assist designers in selecting optimal proportions of the various components. Optimum particle packing implies minimizing the porosity and thereby reducing the amount of cement paste needed to fill the voids between the aggregate particles. The use of talc as inorganic super-plasticizer since ordinary organic additives for reaching high fluidity at casting are undesirable, and since talc reacts with cement and provides high strength in along-term perspective.

  • 25.
    Issa, Issa E.
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Khaleel, Moayad
    Mosul University.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Experimental Analysis of Sediment Deposition Due to Backwater Effect up-stream a Reservoir2014Inngår i: Journal of Civil Engineering and Architecture, ISSN 1934-7359, E-ISSN 1934-7367, Vol. 8, nr 9, s. 1185-1193Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The phenomenon of aggradation due to sediment accumulation upstream reservoirs had been studied in this research. For this purpose, group of experiments were conducted in a laboratory channel 25 m long, 0.80 m wide and 0.70 m deep. A block was built at the end of the channel to work as a dam to impound water. The channel was supplied with drainage pipes on both sides to release water out in a manner similar to what happens in reservoirs. The bed of the channel was filled with sand of 0.80 mm median sieve diameter and 0.72 geometric standard deviation. The slope was 0.0093 for all experiments. Two sizes of sand were used representing the sediment. The median diameter and geometric standard deviation of the first were 0.365 mm and 0.46 respectively. The second sample had 0.65 mm median diameter and 0.67 standard deviation. A total of seventy experiments were conducted in two groups to examine effect the sediment transport rate, particle size of sediment and flow velocity on aggradation characteristics. The results showed that there is a strong linear direct relationship between aggradation elements (length and depth) with the rate of sediment transport. Group of dimensionless parameters affecting the aggradation characteristics were used to develop empirical equations to predict the length, maximum depth of aggradation and predict transient bed profile. The results of empirical approach were compared with the measurement data and previous numerical method. The results indicated that the percentage error was –19 to 31% for length of aggradation and –21 to 26% for maximum depth of aggradation. The results also showed that the sediment material were deposited closer to the body of the dam when the released water from the dam is higher than the inflow.

  • 26.
    Issa, Issa E.
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Khaleel, Moayad
    Mosul University.
    Sediment delivered in the upper part of Mosul reservoir using physical model2012Inngår i: Journal of Civil Engineering and Architecture, ISSN 1934-7359, E-ISSN 1934-7367, Vol. 6, nr 11, s. 1544-1550Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Mosul dam is the biggest hydraulic structure in Iraq located on the River Tigris 60 km northwest of Mosul city. Its storage capacity is 11.11 × 109 m3 and it had been in operation since 1986. A physical distorted model with movable bed having a vertical scale 1:100 and a horizontal scale 1:1000 was used to conduct the experiments relating the water level at the reservoir and water discharge upstream the reservoir with the bed load transport rate. The model represents the first 15 km of most northern part of Mosul dam reservoir. The construction of the model was based on bathymetric survey conducted in 2009. Twenty-four experiments were executed using four different discharges (0.5, 1.0, 1.5, and 2.0 L/s) which represent the average discharges in the flood period of River Tigris. At each individual discharge six operations were assumed where the reservoir’s water level was 305, 307, 309, 310, 312, 315 meters above sea level respectively. In all the experiments conducted, bedload transport was measured in the physical model at section representing the River Tigris 1 km upstream the reservoir. The results showed that the bedload rate was decreasing when the water level within the reservoir was increasing. It was also evident that bedload transport rate dramatically decreased at level 310 meter above sea level onward. This is due to the fact that at this level represent the effect of backwater which was noticeable on the river cross section.

  • 27.
    Lindblad, Fredrik
    Linnéuniversitetet, Fakulteten för teknik (FTK), Institutionen för maskinteknik (MT).
    A review of Växjö Municipality’s operational and strategic development constraints related to the construction of wooden multi-family houses2019Inngår i: Journal of Civil Engineering and Architecture, ISSN 1934-7359, E-ISSN 1934-7367Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Sweden has a housing shortage, which the Swedish authorities expect to continue until 2025. Producers of wooden multi-family houses have a relatively small market share in comparison to traditional building materials. The limited capability to fulfil the increased building demand also restricts the possibilities for development towards innovation, bio-economy and sustainability. The municipalities in Sweden have responsible for planning of the building development in their region based on their projected requirements and strategies. Combining this with a desire to develop sustainable building solutions based on wood increases the complexity. Currently, public building developments are achieved through the public procurement act or the land allocation activity, dependent on their development strategy. This normally involves the development of local strategies regarding, e.g. design, material choice and geographical development. By identifying market drivers enables improved market entry activities related to public building initiatives using wood-based solutions. Hence, by improving transparency in the land allocation activity generate enhanced possibilities for the companies to respond successfully to the requests submitted by the municipalities. This knowledge is used to better understand the required strategic development for the companies, the government and the municipalities to increase the use of sustainable building materials in Swedish multi-family housing projects.

  • 28.
    Nasrin Baby, Sultana
    et al.
    School of Mathematical and Geospatial Sciences, Royal Melbourne Institute of Technology, Australia.
    Arrowsmith, Colin
    School of Mathematical and Geospatial Sciences, Royal Melbourne Institute of Technology, Australia.
    Abbas, Nahla
    School of Engineering and Technology, Central Queensland, University, Australia.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Climate Change Impacts on Water Resources of AryCreek, Inverloch, Victoria2018Inngår i: Journal of Civil Engineering and Architecture, ISSN 1934-7359, E-ISSN 1934-7367, Vol. 12, nr 10, s. 727-740Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Understanding urban wetland ecosystem services structure allows managers to base restoration efforts on multiple user end-benefits. Ary Creek can provide the coupled function of improving water quality and mitigating floods through delayed stormwater flow. It is fundamental to identify areas surrounded by water for the safety of individual should in case the water level raise beyond areasonable doubt and might cause a flood. For many years, the Ary Creek catchment in Inverloch has been flooding and causing great problems for the inhabitants as well as the environment. The procedure is to develop models of the area around the catchment or watershed using Victorian Coastal LiDAR and other input data from the GIS (geographic information system). This study uses the real-time simulation in ArcSWAT—ArcGIS 10.3 and 3D in ArcScene 10.3, and the variables obtained from the soil and water assessment tool ArcSWAT such as the land use, soil and slope are the parameters measured to induce the flood. When certain portions of the Hydrologic response unit HRU, land use, soil or slope is changed due to temporal adjustment and climate change, then the model can predict zones of low, moderate and high flood risk. The 3D simulations appear to produce a visual model for decision-making, planning, management, and mitigation. The simulation helps in determining the extent of the flood by using animation.

  • 29.
    O. Abdullah, Twana
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi. Groundwater Directorate of Sulaimani, Kurdistan Region, Iraq.
    S. Ali, Salahalddin
    Department of Geology, University of Sulaimani, Kurdistan Region, Iraq;Komar University of Science and Technology, Sulaimani, Iraqi Kurdistan Region, Iraq.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Assessment of Groundwater Vulnerability to Pollution Using VLDA and COP Models in Halabja Saidsadiq Basin, Iraq2018Inngår i: Journal of Civil Engineering and Architecture, ISSN 1934-7359, E-ISSN 1934-7367, Vol. 12, nr 11, s. 798-809, artikkel-id 003Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Groundwater aquifer in the Halabja and Saidsadiq Basin considered being one of the most important aquifers in terms of water supplying in Kurdistan Region, NE of Iraq. The growing of economics, irrigation and agricultural activities inside the basin makes it of the main essentials to the region. Therefore, pollution of groundwater is of specific worry as groundwater resources are the principal source of water for drinking, agriculture, irrigation and industrial activities. Thus, the best and practical arrangement is to keep the pollution of groundwater through. The current study aims the evaluation of the vulnerability of groundwater aquifers of the study area. Two models were applied, to be specific VLDA and COP to develop maps of groundwater vulnerability for contamination. The VLDA model classified the area into four classes of vulnerability with each covered area: low (2%), moderate (44%), high (53%) and very high (1%). While four vulnerability classes were accomplished dependent on COP model including very low, low, moderate and high vulnerability classes with coverage areas of (1%, 37%, 2% and 60%) respectively. To confirm the suitability of each map for assessment of groundwater vulnerability in the area, it required to be validated of the theoretical sympathetic of current hydrogeological conditions. In this study, groundwater age evaluated utilizing tritium isotopes investigation and applied it to validate the vulnerability results. Based on this validation, the outcome exhibits that the vulnerability classes acquired utilizing VLDA model are more predictable contrasted with the COP model.

  • 30.
    Pusch, Roland
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Ramqvist, Gunnar
    Eltekno AB, Oscarshamn, Sweden.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Hatem, Mohammed
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och -produktion.
    Medium-deep or very deep disposal of highly radioactive waste?2013Inngår i: Journal of Civil Engineering and Architecture, ISSN 1934-7359, E-ISSN 1934-7367, Vol. 7, nr 12, s. 1548-1565Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Several of the commonly proposed concepts for disposal of highly radioactive waste (HLW) imply construction at medium depth (400-600 m) in granitic rock, which is excellent for constructing a stable repository since it provides effective mechanical protection of the waste. A drawback is that major water-bearing fracture zones are frequent and must be avoided in the site selection process since they can undergo large deformations caused by seismic and tectonic events and cause failure of waste containers located in or near them. The effect of such events can be minimized by surrounding them with ductile “buffer” clay that retards groundwater-driven adflow. An alternative concept is placement of HLW in very deep boreholes (VDH) where the rock is much less permeable and where the very salt, heavy groundwater is stagnant. The boreholes are proposed to be 4 km deep and grouped in a small number of sites. The upper 2 km parts, with temperatures lower than about 100oC, are sealed by being filled with perforated supercontainers with dense clay blocks, while the lower part contains supercontainers with waste canisters and dense clay blocks, raising the temperature between 2 and 4 km to 100-150oC. The holes are kept filled with clay mud into which the supercontainers are inserted where the rock contains few fractures, while concrete is cast where the rock is fracture-rich. In the upper part clay migrates through the perforated supercontainers and consolidates the mud. In the lower part clay the same process takes place where the clay block in each supercontainer is located, while the rest of the mud retains its original low density but undergoes stiffening. In the upper, sealed part of the hole, the consolidated clay will be much tighter than the surrounding rock, while in the lower part the mud will be more permeable but still capable of limiting water circulation within the hole. The paper compares the two repository principles and recommends closer examination of the very deep hole concept, which has obvious advantages respecting both performance and cost.

  • 31. Sissakian, Varoujan
    et al.
    AbdulJabbar, Mawahib
    State Company of Geological Survey and Mining, Baghdad.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    The Origin of Tar Al-Say’ed and Tar Al-Najaf, Karbala-Najaf Vicinity, Central Iraq2015Inngår i: Journal of Civil Engineering and Architecture, ISSN 1934-7359, E-ISSN 1934-7367, Vol. 9, nr 4, s. 446-459Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In central part of Iraq within the vicinity of Karbala-Najaf, two cliffs called “Tar Al-Say’ed” and “Tar Al-Najaf” form conspicuous geomorphological forms between the Mesopotamia Plain and the Western and Southern Deserts. The top surface between the two cliffs (tars) is covered by alluvial fan sediments, laid down by Al-Khir Valley when merging in a large depression due to the drop in the gradient of the valley. Consequently, the depression was divided into two parts, to the left is called Al-Razzazah Depression, whereas to the right is called Bahir Al-Najaf. This affected the course of the River Euphrates. The deposition stopped due to an uplift movement which caused the elevation of the two cliffs which are covered by alluvial fansediments. The two cliffs had and are still suffering from retreating, due to lateral erosion by wave actions in Al-RazzazahDepression. Springs located along a straight line, sag pond, deflected drainage, shutter ridges and pressure ridges can be noticed in the area. The age of both cliffs is estimated to be upper Late Pleistocene—early Holocene.

  • 32. Sissakian, Varoujan
    et al.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Age Estimation of Qash Qooly Valley in Dokan Vicinity, North Iraq Using Exposure Age Determination Method2015Inngår i: Journal of Civil Engineering and Architecture, ISSN 1934-7359, E-ISSN 1934-7367, Vol. 9, s. 90-103Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Qash Qooly valley runs parallel to Pera Magroon, Sara and Surdash anticlines, almost in SE-NW trend, and merges withthe Lesser Zab River 9 km southeast to Dokan town. Before its development, it was a large basin with width ranges between 2~3 km,which was filled during Pleistocene or may be Late Pliocene by different types of sediments. The presence of the calcrete on the topindicates a wet period that has lasted for a long time as indicated from the thickness of the calcrete and alluvial fan sediments. Theage of Qash Qooly valley was estimated using the exposure age determination method. The type of the sediments, their thicknesses,and erosion intensity and sediments’ dens dissection by rills were the main features used. This study concluded that the age of thebasin is Pliocene—Late

  • 33.
    Solat Yavari, Majid
    et al.
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Byggvetenskap, Bro- och stålbyggnad.
    Pacoste-Calmanovici, Costin
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Byggvetenskap, Bro- och stålbyggnad.
    Karoumi, Raid
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Byggvetenskap, Bro- och stålbyggnad.
    Structural Optimization of Concrete Slab Frame Bridges Considering Investment Cost2016Inngår i: Journal of Civil Engineering and Architecture, ISSN 1934-7359, E-ISSN 1934-7367, Vol. 10, s. 982-994Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The present study investigates computer-automated design and structural optimization of concrete slab frame bridges considering investment cost based on a complete 3D model. Thus, a computer code with several modules has been developed to produce parametric models of slab frame bridges. Design loads and load combinations are based on the Eurocode design standard and the Swedish design standard for bridges. The necessary reinforcement diagrams to satisfy the ultimate and serviceability limit states, including fatigue checks for the whole bridge, are calculated according to the aforementioned standards. Optimization techniques based on the genetic algorithm and the pattern search method are applied. A case study is presented to highlight the efficiency of the applied optimization algorithms. This methodology has been applied in the design process for the time-effective, material-efficient, and optimal design of concrete slab frame bridges

  • 34.
    Zakaria, Saleh
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Knutsson, Sven
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Historical and future climatic change scenarios for temperature and rainfall for Iraq2013Inngår i: Journal of Civil Engineering and Architecture, ISSN 1934-7359, E-ISSN 1934-7367, Vol. 7, nr 12, s. 1574-1594Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The world is facing a big challenge of climatic change, mainly due to increasing concentrations of greenhouse gases (GHGs) in the atmosphere. Many researches indicated that the climate change occurred disproportionately on developing countries such as Middle East and North Africa (MENA) countries.The climatic model CGCM3.1 (T47) 2 is used in this research to explain the changes in average temperatures and the rainfall on MMENA region with special emphases on Iraq. Historical records (1900-2009) and future (2020-2099) were studied and compared, each period was divided to four sub-periods of thirty years. The results showed that the average monthly temperature for the four historical periods fluctuated between the lowest and highest value as follows: 9.2-32.9, 10.3-32.7, 9.3-32.8, and 8.6-33.9 (Cº).The rainfall for historical periods kept on the same distribution during the past 109 years, and fluctuated between the lowest and highest value of 21.3 and 37.6 mm with an average that reached up to 26.51 mm. For the future period, the maximum average monthly temperature reached up to 37.41 (Cº) during June and minimum average monthly temperature reached up to 4.24 (Cº) during January. The average monthly temperature fluctuated giving a clear impression that the future portends a higher temperature. The average monthly of rainfall, for the future period, fluctuated between the lowest and highest value of 12.91 and 20.63 mm with an average that reached 16.84 mm which represent a reduction percentage of about 36.47% relative to the historical record of rainfall for the same months.

1 - 34 of 34
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf