Change search
Refine search result
1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Alizadeh, Mahmoud
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Electrical Engineering, Mathematics and Science, Electronics. KTH, Teknisk informationsvetenskap.
    Händel, Peter
    KTH, Teknisk informationsvetenskap.
    Rönnow, Daniel
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Electrical Engineering, Mathematics and Science, Electronics.
    Behavioral modeling and digital pre-distortion techniques for RF PAs in a 3 × 3 MIMO system2019In: International journal of microwave and wireless technologies, ISSN 1759-0795, E-ISSN 1759-0787Article in journal (Refereed)
    Abstract [en]

    Modern telecommunications are moving towards (massive) multi-input multi-output systems in 5th generation (5G) technology, increasing the dimensionality of the system dramatically. In this paper, the impairments of radio frequency (RF)power amplifiers (PAs) in a 3x3 MIMO system are compensated in both time and frequency domains. A three-dimensional(3D) time-domain memory polynomial-type model is proposed as an extension of conventional 2D models. Furthermore, a 3D frequency-domain technique is formulated based on the proposed time-domain model to reduce the dimensionality of the model, while preserving the performance in terms of model errors. In the 3D frequency-domain technique, the bandwidth of a system is split into several narrow sub-bands, and the parameters of the system are estimated for each subband. This approach requires less computational complexity, and also the procedure of the parameters estimation for each sub-band can be implemented independently. The device-under-test (DUT) consists of three RF PAs including input and output cross-talk channels. The proposed techniques are evaluated in both behavioural modelling and digital pre-distortion(DPD) perspectives. The results show that the proposed DPD technique can compensate the errors of non-linearity and memory effects by about 23.5 dB and 7 dB in terms of the normalized mean square error and adjacent channel leakage ratio, respectively.

  • 2.
    Alizadeh, Mahmoud
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Information Science and Engineering. University of Gävle.
    Händel, Peter
    KTH, School of Electrical Engineering and Computer Science (EECS), Information Science and Engineering.
    Rönnow, Daniel
    University of Gävle.
    Behavioural modelling and digital pre-distortion techniques for RF PAs in a 3x3 MIMO system2018In: International journal of microwave and wireless technologies, ISSN 1759-0795, E-ISSN 1759-0787Article in journal (Refereed)
    Abstract [en]

    Modern telecommunications are moving towards (massive) multi-input multi-output systems in 5th generation (5G) technology, increasing the dimensionality of the system dramatically. In this paper, the impairments of radio frequency (RF)power amplifiers (PAs) in a 3x3 MIMO system are compensated in both time and frequency domains. A three-dimensional(3D) time-domain memory polynomial-type model is proposed as an extension of conventional 2D models. Furthermore, a 3D frequency-domain technique is formulated based on the proposed time-domain model to reduce the dimensionality of the model, while preserving the performance in terms of model errors. In the 3D frequency-domain technique, the bandwidth of a system is split into several narrow sub-bands, and the parameters of the system are estimated for each subband. This approach requires less computational complexity, and also the procedure of the parameters estimation for each sub-band can be implemented independently. The device-under-test (DUT) consists of three RF PAs including input and output cross-talk channels. The proposed techniques are evaluated in both behavioural modelling and digital pre-distortion(DPD) perspectives. The results show that the proposed DPD technique can compensate the errors of non-linearity and memory effects by about 23.5 dB and 7 dB in terms of the normalized mean square error and adjacent channel leakage ratio, respectively.

  • 3.
    Amin, Shoaib
    et al.
    KTH, School of Electrical Engineering (EES), Signal Processing.
    Ladin, Per N.
    ATM, University of Gävle.
    Händel, Peter
    KTH, School of Electrical Engineering (EES), Signal Processing.
    Rönnow, Daniel
    ATM, University of Gävle.
    2D Extended Envelope Memory Polynomial Model forConcurrent Dual-band RF Transmitters2016In: International journal of microwave and wireless technologies, ISSN 1759-0795, E-ISSN 1759-0787Article in journal (Refereed)
    Abstract [en]

    The paper presents a 2D extended envelope memory polynomial (2D-EEMP) model for concurrent dual-band radio frequency (RF) power amplifiers (PAs). The model is derived based on the physical knowledge of a dual-band RF PA. The derived model contains cross-modulation terms not included in previously published models; these terms are found to be of importance for both behavioral modeling and digital pre-distortion (DPD). The performance of the derived model is evaluated both as the behavioral model and DPD, and the performance is compared with state-of-the-art2D-DPD and dual-band generalized memory polynomial (DB-GMP) models. Experimental result shows that the proposed model resulted in normalized mean square error (NMSE) of -51.7/-51.6dB and adjacent channel error power ratio (ACEPR) of -63.1/-63.4 dB, for channel 1/2, whereas the 2D-DPD resulted in the largest model error and DB-GMP resulted in model parameters that are 3 times more than those resulted with the proposed model with the same performance. As pre-distorter, the proposed model resulted in adjacent channel power ratio (ACPR) of -55.8/ -54.6 dB for channel 1/2 and is 7-10 dB lower than those resulted with the 2D-DPD model and2-4 dB lower compared to the DB-GMP model.

  • 4.
    Amin, Shoaib
    et al.
    KTH, School of Electrical Engineering (EES), Signal Processing. University of Gävle, Sweden.
    Landin, Per N.
    Händel, Peter
    KTH, School of Electrical Engineering (EES), Signal Processing.
    Rönnow, Daniel
    2D Extended envelope memory polynomial model for concurrent dual-band RF transmitters2017In: International journal of microwave and wireless technologies, ISSN 1759-0795, E-ISSN 1759-0787, Vol. 9, no 8, p. 1619-1627Article in journal (Refereed)
    Abstract [en]

    The paper presents a two-dimensional (2D) extended envelope memory polynomial model for concurrent dual-band radio frequency (RF) power amplifiers (PAs). The model is derived based on the physical knowledge of a dual-band RF PA. The derived model contains cross-modulation terms not included in previously published models; these terms are found to be of importance for both behavioral modeling and digital predistortion (DPD). The performance of the derived model is evaluated both as the behavioral model and DPD, and the performance is compared with state-of-the-art 2D-DPD and dual-band generalized memory polynomial (DB-GMP) models. Experimental result shows that the proposed model resulted in normalized mean square error of -51.7/-51.6 dB and adjacent channel error power ratio of -63.1/-63.4 dB, for channel 1/2, whereas the 2D-DPD resulted in the largest model error and DB-GMP resulted in model parameters that are three times more than those resulted with the proposed model with the same performance. As pre-distorter, the proposed model resulted in adjacent channel power ratio of -55.8/-54.6 dB for channel 1/2 and is 7-10 dB lower than those resulted with the 2D-DPD model and 2-4 dB lower compared with the DB-GMP model.

  • 5.
    Amin, Shoaib
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Electronics, Mathematics and Natural Sciences, Electronics. KTH, Signalbehandling.
    Landin, Per N.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Electronics, Mathematics and Natural Sciences, Electronics.
    Händel, Peter
    KTH, Signalbehandling.
    Rönnow, Daniel
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Electronics, Mathematics and Natural Sciences, Electronics.
    2D Extended envelope memory polynomial model for concurrent dual-band RF transmitters2017In: International journal of microwave and wireless technologies, ISSN 1759-0795, E-ISSN 1759-0787, Vol. 9, no 8, p. 1619-1627Article in journal (Refereed)
    Abstract [en]

    The paper presents a 2D extended envelope memory polynomial (2D-EEMP) model for concurrent dual-band radio frequency (RF) power amplifiers (PAs). The model is derived based on the physical knowledge of a dual-band RF PA. The derived model contains cross-modulation terms not included in previously published models; these terms are found to be of importance for both behavioral modeling and digital pre-distortion (DPD). The performance of the derived model is evaluated both as the behavioral model and DPD, and the performance is compared with state-of-the-art2D-DPD and dual-band generalized memory polynomial (DB-GMP) models. Experimental result shows that the proposed model resulted in normalized mean square error (NMSE) of -51.7/-51.6dB and adjacent channel error power ratio (ACEPR) of -63.1/-63.4 dB, for channel 1/2, whereas the 2D-DPD resulted in the largest model error and DB-GMP resulted in model parameters that are 3 times more than those resulted with the proposed model with the same performance. As pre-distorter, the proposed model resulted in adjacent channel power ratio (ACPR) of -55.8/ -54.6 dB for channel 1/2 and is 7-10 dB lower than those resulted with the 2D-DPD model and2-4 dB lower compared to the DB-GMP model.

  • 6.
    Landin, Per N.
    et al.
    KTH, School of Electrical Engineering (EES), Signal Processing. University of Gävle, Sweden; Chalmers University of Technology, Sweden; Vrije Universiteit Brussel, Belgium .
    Barbe, Kurt
    Van Moer, Wendy
    Isaksson, Magnus
    Händel, Peter
    KTH, School of Electrical Engineering (EES), Signal Processing.
    Two novel memory polynomial models for modeling of RF power amplifiers2015In: International journal of microwave and wireless technologies, ISSN 1759-0795, E-ISSN 1759-0787, Vol. 7, no 1, p. 19-29Article in journal (Refereed)
    Abstract [en]

    Two novel memory polynomial models are derived based on physical knowledge of a general power amplifier (PA). The derivations are given in detail to facilitate derivations of other model structures. The model error in terms of normalized mean square error (NMSE) and adjacent channel error power ratio (ACEPR) of the novel model structures are compared to that of established models based on the number of parameters using data measured on two different amplifiers, one high-power base-station PA and one low-power general purpose amplifier. The novel models show both lower NMSE and ACEPR for any chosen number of parameters compared to the established models. The low model errors make the novel models suitable candidates for both modeling and digital predistortion.

  • 7.
    Landin, Per N.
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Electronics, Mathematics and Natural Sciences, Electronics. Chalmers University of Technology, Göteborg, Sweden; KTH Royal Institute of Technology, Stockholm, Sweden; Vrije Universiteit Brussel, Belgium.
    Barbé, Kurt
    Vrije Universiteit Brussel, Belgium.
    Van Moer, Wendy
    Vrije Universiteit Brussel, Belgium.
    Isaksson, Magnus
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Electronics, Mathematics and Natural Sciences, Electronics.
    Händel, Peter
    KTH Royal Institute of Technology, Stockholm, Sweden.
    Two novel memory polynomial models for modeling of RF power amplifiers2015In: International journal of microwave and wireless technologies, ISSN 1759-0795, E-ISSN 1759-0787, Vol. 7, no 1, p. 19-29Article in journal (Refereed)
    Abstract [en]

    Two novel memory polynomial models are derived based on physical knowledge of a general power amplifier (PA). The derivations are given in detail to facilitate derivations of other model structures. The model error in terms of normalized mean square error (NMSE) and adjacent channel error power ratio (ACEPR) of the novel model structures are compared to that of established models based on the number of parameters using data measured on two different amplifiers, one high-power base-station PA and one low-power general purpose amplifier. The novel models show both lower NMSE and ACEPR for any chosen number of parameters compared to the established models. The low model errors make the novel models suitable candidates for both modeling and digital predistortion.

  • 8.
    Lotfi, Sara
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Bengtsson, Olof
    Ferdinand-Braun Institut.
    Olsson, Jörgen
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Power Performance of 65 nm CMOS Integrated LDMOS Transistors at WLAN and X-band Frequencies2016In: International journal of microwave and wireless technologies, ISSN 1759-0795, E-ISSN 1759-0787, Vol. 8, no 2, p. 135-141Article in journal (Refereed)
    Abstract [en]

    Laterally diffused metal oxide semiconductor (LDMOS) transistors with 10V breakdown voltage have been implemented in a 65nm Complementary metal oxide semiconductor (CMOS) process without extra masks or process steps. Radio frequency (RF) performance for Wireless local area network (WLAN) frequencies and in X-band at 8GHz is investigated by load-pull measurements in class AB operation for both 3.3 and 5V supply voltage. Results at 2.45GHz showed 290mW/mm output power density with 17dB linear gain and over 45% power added efficiency (PAE) at 4dB compression at a supply voltage of 5V. Furthermore, results in X-band at 8GHz show 8dB linear gain, 320mW/mm output power density and over 22% PAE at 4dB compression. Third-order intermodulation measurements at 8GHz revealed OIP3 of 18.9 and 21.9dBm at 3.3 and 5V, respectively. The transistors were also tested for reliability which showed no drift in quiescent current after 26h of DC stress while high-power RF stress showed only small extrapolated drift at 10 years in output power density. This is to the authors' knowledge the first time high output power density in X-band is demonstrated for integrated LDMOS transistors manufactured in a 65nm CMOS process without extra process steps.

  • 9. Rahiminejad, Sofia
    et al.
    Pucci, Elena
    Haasl, Sjoerd
    KTH, School of Technology and Health (STH).
    Enoksson, Peter
    SU8 ridge-gap waveguide resonator2014In: International journal of microwave and wireless technologies, ISSN 1759-0795, E-ISSN 1759-0787, Vol. 6, no 5, p. 459-465Article in journal (Refereed)
    Abstract [en]

    In this paper, we present the first ridge-gap waveguide resonator made with a polymer base. It is designed for the frequency range 220-325 GHz, and is fabricated solely using a Au coated two-layer SU8-based process. The design is based on previous work done with Si. The new process has advantages such as fewer and cheaper process steps. The SU8 ridge-gap waveguide resonator is made in order to obtain attenuation characteristics via the measured Q-factor of the resonator. The ridge-gap waveguide resonator has the same dimensions as the previous one fabricated in Si, and the same thickness of the Au coating. The SU8-based resonator shows an attenuation loss of 0.41 dB/mm at 282.2 GHz compared to the Si-based resonator with an attenuation loss of 0.043 dB/mm at 283.5 GHz. This makes the SU8 process a more cost-effective alternative to the Si process

  • 10. Valenta, Vaclav
    et al.
    Spreng, Thomas
    Yuan, Shuai
    Winkler, Wolfgang
    Ziegler, Volker
    Dancila, Dragos
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Rydberg, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Schumacher, Hermann
    Design and experimental evaluation of compensated bondwire interconnects above 100 GHz2015In: International journal of microwave and wireless technologies, ISSN 1759-0795, E-ISSN 1759-0787, Vol. 7, no 3-4, p. 261-270Article in journal (Refereed)
    Abstract [en]

    Different types of bondwire interconnect for differential chip-to-antenna and single-ended chip-to-chip interfaces are investigated. Two differential compensation structures for various lengths of interconnects are designed and experimentally evaluated using dedicated transmit and receive radar modules operating across a 110-156 GHz band. Measurement results demonstrate that a fractional bandwidth of 7.5% and a minimum insertion loss of 0.2 dB can be achieved for differential interconnects as long as 0.8 mm. Design and measurement results of an extremely wideband low-loss single-ended chip-to-chip bondwire interconnect that features 1.5 dB bandwidth from DC to 170 GHz and insertion loss of less than 1 dB at 140 GHz are presented as well. The results show that the well-established wire-bonding techniques are still an attractive solution even beyond 100 GHz. Reproducibility and scalability of the proposed solutions are assessed as well.

1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf