Change search
Refine search result
123 1 - 50 of 106
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Adamo, Nasrat
    et al.
    LTU team.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Mosul Dam Full Story: Safety Evaluations of Mosul Dam2016In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 6, no 3, p. 185-212Article in journal (Refereed)
    Abstract [en]

    Mosul Dam is the second biggest dam in the Middle East due to the capacity of its reservoir. Since the operation of this dam in 1986, it is suffering from seepage problems in the foundation of the dam due to the dissolution of gypsum and anhydrite layers under the foundation. This phenomenon has raised concern about the safety of the dam. Studies done during the recent years showed that grouting works can only be considered as a temporary solution at its best. It is clear now that while grouting must be continued search for long term solution must be sought if dam failure consequences are to be avoided. This must be done as soon as possible as the dam is showing more and more signs of weakness. It is further considered that the suggestions and recommendations forwarded by the team of Lulea University of Technology and the Panel of Experts in the Stockholm Workshop 24-25 May, 2016 give the most practical and suitable solutions for this problem.

  • 2.
    Adamo, Nasrat
    et al.
    LTU team.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Mosul Dam Full Story: What If The Dam Fails?2016In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 6, no 3, p. 245-269Article in journal (Refereed)
    Abstract [en]

    Dams are very important infrastructure to any country where they serve for different purposes. Unfortunately, they represent risks to life and property due to their potential to fail and cause catastrophic flooding. Recent studies indicate the possibility of Mosul Dam failure. For this reason different failure models were used to estimate the consequences of such failure. Almost all models applied gave similar results. It is assumed that in case the water level in Mosul Dam reservoir is at its maximum operational level the effected population will reach 6,248,000 (about one million will lose their life) and the inundated area will be 7202 square kilometer. This catastrophe requires prudent emergency evacuation planning to minimize loses.

  • 3.
    Adamo, Nasrat
    et al.
    LTU team.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Mosul Dam the Full Story: Engineering Problems2016In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 6, no 3, p. 213-244Article in journal (Refereed)
    Abstract [en]

    The idea of building of Mosul Dam project started in 1950 and it was referred to as Aski Mosul Dam. Since that time, number of companies worked on the site selection and design of the dam. All the above companies suggested that the dam should be Earth-fill type with compressed clay core but there were different views about the exact location of the dam, spillway and electricity generating station. Grouting was suggested to be performed under the dam, spillway and the electricity generating station. In addition, they suggested that detailed geological investigation should be performed before any construction activities. In 1978, the Swiss Consultants Consortium was asked to be the consultants for Mosul Dam project. The consultants suggested that the operational water level at the dam to be 330 m (a.s.l.) while the flood and normal water levels to be 338 and 335 m (a.s.l.), respectively. The work started on 25th January, 1981 and finished 24th July, 1986. The foundation of the dam is built on alternating beds of limestone and gysum. Seepages due to the dissolution of gypsum were noticed and after impounding in 1986, new seepage locations were recognized. Grouting operations continued and various studies were conducted to find suitable grout or technique to overcome this problem. The seepage due to the dissolution of gypsum and anhydrite beds raised a big concern about the safety of the dam and its possible failure. It is believed that grouting will not solve this problem permanently

  • 4.
    Adamo, Nasrat
    et al.
    LTU team.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Issa, Issa
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Sissakian, Varoujan
    Consultant Geologist, Erbil.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Mystery of Mosul Dam the Most Dangerous Dam in the World: Experts Proposals and Ideas on Mosul Dam2015In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 5, no 3, p. 79-93Article in journal (Refereed)
    Abstract [en]

    During and after the construction of Mosul Dam, in Iraq, all the studies expressed a clear concern on the fact that the region of the dam suffers from extensive presence of soluble rock formations that might undermine the safety of the dam with its large reservoir. Most of the studies dealt with foundation treatment and safety hazards due to the dissolution of gypsum and anhydrite. To overcome the problem, grouting operations were performed. The seepage of water continued and this highlighted the possibility of the dam failure. Different grouting techniques and methods were suggested but the results were the same. Finally, it was decided to limit the maximum operation water level to EL. 319 m (a.s.l.) instead of EL.330 m (a.s.l.). This recommendation has remained in force up to now with the loss of sizable storage of irrigation water and power potential

  • 5.
    Adamo, Nasrat
    et al.
    LTU team.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Issa, Issa
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Sissakian, Varoujan
    Consultant Geologist, Erbil.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Mystery of Mosul Dam the most Dangerous Dam in the World: Foundation Treatment during Construction2015In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 5, no 3, p. 59-69Article in journal (Refereed)
    Abstract [en]

    Mosul dam was constructed on the beds of Fatha Formation (Middle Miocene). The beds of the formation are about 250 m thick composed of Marls, chalky limestone; gypsum, anhydrite, and limestone form a layered sequence. They are highly karstified. As a consequence, plenty of grouting operations were carried out to fill all the cavities, fractures, joints and to stop the seepage under the foundation of the dam. The main grouting operations were Blanket grouting and deep grout curtain. It was necessary to perform an extensive maintenance program to control the seepage process within the grouted zone to stop dissolution of gypsum and protect the safety of the dam.

  • 6.
    Adamo, Nasrat
    et al.
    LTU team.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Issa, Issa
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Sissakian, Varoujan
    Consultant Geologist, Erbil.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Mystery of Mosul Dam the Most Dangerous Dam in the World: Maintenance Grouting2015In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 5, no 3, p. 71-77Article in journal (Refereed)
    Abstract [en]

    Dissolution of gypsum and anhydrite at the foundation of Mosul Dam continued after its construction since 1986 onwards. After impounding, acceptable residual permeability could not be reached and new areas of high grout takes appeared in some other locations. New grout mixes were tested and even methods of delivering and injecting large grout quantities were developed. Sandy mixes were developed by adding certain weight of sand to the cement mix. In addition, pouring gravel after completion of grouting in large takes' zones was performed. As a result of gravel addition, it was concluded that it was not effective and very difficult to pour. Massive grouting was used where bentonite was added to the mix. Piezometric observation was used for checking the conditions of the grout curtain and the detection of problematic areas where additional treatment was required. Massive grouting, however, did not stop the dissolution processes altogether and it seems that it is not likely to do so in the future. The continuation of this program year after year does not preclude some bad implications. More research work is required to improve massive grout durability by adding chemicals which may interact with gypsum beds and hinder dissolution. This can help to improve gypsum resistance and increase its stability. Mathematical models might also be used to understand the mechanism of cavities formation and collapsing.

  • 7.
    Adamo, Nasrat
    et al.
    LTU team.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Issa, Issa
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Sissakian, Varoujan
    Consultant Geologist, Erbil.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Mystery of Mosul Dam the most Dangerous Dam in the World: Problems Encountered During and after Impounding the Reservoir2015In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 5, no 3, p. 47-58Article in journal (Refereed)
    Abstract [en]

    Mosul dam was built on the River Tigris northern part of Iraq during the period 25th January, 1981 and finished on 24th July, 1986. The foundation of the dam lies on the Fatha Formation. This formation is composed of alternating beds of marls, limestone, gypsum and clay. The beds of this formation are highly karstified. After impounding, several sinkholes developed within the vicinity of the dam site. The surface expression of the sinkholes suggests that they are caused by underground collapse.The appearance of the downstream sinkholes is most likely related to fluctuations in the tail water level of the main dam during operation of the dam and the downstream regulating reservoir. In addition, water seepage also was noticed in various areas indicating the dissolution of gypsum and anhydrite from the foundation. During the period February-August, 1986 the dissolution intensity ranged from 42 to 80 t /day.

  • 8.
    Adamo, Nasrat
    et al.
    LTU team.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Sissakian, Varoujan K.
    University of Kurdistan, Howler, KRG, Iraq and Private Consultant Geologist, Erbil, Iraq .
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Laue, Jan
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Climate Change: Consequences on Iraq’s Environment2018In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 8, no 3, p. 43-58Article in journal (Refereed)
    Abstract [en]

    Iraq as a country is now suffering from Climate Change Impacts in similar or even worse ways than many other countries of the world. The manifestations of these climate changes are being felt in global warming, changes to weather driving elements and sea level rise. Increasing temperatures, declining precipitation rates and changed distribution patterns together with increasing evaporation are causing water stress in Iraq. However, they trigger other changes in a sort of chain reaction; such as droughts, desertification and sand storms. Iraq is not even safe from the consequences of sea level rise where the southern part of the Tigris- Euphrates delta is threatened by inundation and Iraq’s ports and sea coast line are endangered by such projected rise. So far the agricultural sector in Iraq has been hit very badly by the reduced water availability for arable lands; whether rain fed lands as in the northern part, or irrigated lands using the declining discharges of the Tigris and Euphrates Rivers as in the southern and middle parts. These discharges have already been additionally strained by the unfair sharing practiced by Turkey from which most of the two rivers’ water resources originate. The present negative climate change trends seem to be continuing in the future as it is obvious from all projections and studies being performed so far. Loss of cultivable land to desertification, recurrent droughts and sand storms and declining agriculture are the pattern of change in Iraq’s already fragile environment; and this will result inevitably in much more distress for the population in the future and will lead to social unrest. These will add to the great pressures facing all future governments unless the government takes protective planning and solutions.

  • 9.
    Adamo, Nasrat
    et al.
    LTU team.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Sissakian, Varoujan
    University of Kurdistan, Howler, KRG.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Laue, Jan
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Climate Change: The Uncertain Future of Tigris River Tributaries’ Basins2018In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 8, no 3, p. 75-93Article in journal (Refereed)
    Abstract [en]

    Global warming is hitting all parts of the world for the last fifty years due to Global Climate Change and it is expected to continue in the future in an increasing trend unless the present mode of CO2 emission is limited or reversed. This is manifested in the rising temperature over land and the changes induced in the general weather circulation patterns over land and oceans. The Tigris River catchment as most of other parts in the world is suffering from increased temperatures and reduced precipitation contributing to reduced water resources elements all over it and reduction of the river stream flow itself. Studies using the soil and water assessment tool SWAT were performed on the five Tigris River tributaries basins in Iraq in order to assess these impacts. This paper summarizes the results of those studies, the characteristics of each of the five basins, and illustrates the application of SWAT as a tool for future predictions. Moreover, it explains in more details the work done on one of the basins as an example, summarizes the results of the five studies and then analyzes these results and discusses the expected future outcomes. The final conclusion which can be drawn is that severe shortage in all water resources elements will occur over the five basins and the Tigris River stream flow will suffer a considerable decline. This situation demands that policy makers in Iraq should take steps immediately to improve water and soil management practices to try and reduce as much as possible the expected damage that will hit all water using sectors.

  • 10.
    Adamo, Nasrat
    et al.
    LTU team.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Sissakian, Varoujan
    University of Kurdistan, Howler, KRG.
    Laue, Jan
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    The Future of the Tigris and Euphrates Water Resources in view of Climate Change2018In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 8, no 3, p. 59-74Article in journal (Refereed)
    Abstract [en]

    Climate Change which results from global warming is affecting the Tigris and Euphrates River basins in similar ways to all other parts of the Middle East and the East Mediterranean region. This contains also what is historically known as the “Fertile Crescent”, which is threatened in the same way as the other parts and may disappear altogether. The climate change is manifested in increased temperatures, reduced precipitation in addition to erratic weather patterns and decreased annual stream flow of the two rivers. These phenomena have been markedly noticed during the last decades of the last century. Studies show that these changes are linked also to the variations of North Atlantic Pressure Oscillation (NAO) induced by Global Climate Change. Modeling studies on the future trends, in trying to define the magnitude of the changes to be anticipated, reveal clearly that these negative impacts are continuous in the future. But, the widely ranging projections and interpretations of different sources depict an uncertain future for the basin’s climatic conditions and indicate theneed for further modeling studies to reach more definitive conclusions. These studies show however, a drastic decline of the Euphrates and Tigris water resources at the end of this century by something like (30 to 70) %; as compared to their resources in the last three decades of the previous century. The wide variations in the projections emphasize the need of further future work on this matter. All in all, these studies should bring alarm to all responsible governments in the region to resort to long range planning by adopting rational policies in soils and water resources management to mitigate the adverse impacts that could hit human societies in these events.

  • 11. Adamo, Nasrat
    et al.
    Sissakian, Varoujan K.
    University of Kurdistan, Howler, KRG. Private Consultant Geologist, Erbil, Iraq.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Elagely, Malik
    Private consultant, Baghdad, Iraq.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Laue, Jan
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Comparative Study of Mosul and Haditha Dams in Iraq: Different Construction Materials Contribute to Different designs2018In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 8, no 2, p. 71-89Article in journal (Refereed)
    Abstract [en]

    Mosul and Haditha Dams are built on relatively weak foundations. Both of these foundations suffer from extensive karsts which had demanded intensive foundation treatment works among other design precautions. The karst forms; however, are of different origins, activities, nature and shapes. The foundation treatment in both dams was done mainly by constructing deep grout curtains along with other secondary grouting works. Reducing uplift pressure under the dam and cutting down on seepage losses were the major considerations in these works. An additional important requirement in Mosul Dam was to reduce the permeability of the rock formation in the foundations to such a low limit that it can stop the dissolution of gypsum beds present there. This objective; unfortunately, failed due to the lithological composition of this foundation and the presence of many brecciated gypsum beds, which could not be treated successfully. This had resulted in a comprehensive grouting maintenance program which continuous up to date with the everlasting danger of dam failure. On the other hand, in Haditha dam no such complication occurs as the dam had its foundations mainly in limestone. Proper investigation and good planning and performance of the grouting works in this dam contributed highly to its success. Selecting the deep grout curtain as anti-seepage measure in Mosul Dam was not a very wise decision and constructing a positive cutoff in the form of diaphragm wall could have been the proper choice. Good and deep understanding of all geological data can contribute to the success of a dam design or, otherwise it may lead to unsafe one.

  • 12. Adamo, Nasrat
    et al.
    Sissakian, Varoujan K.
    University of Kurdistan, Hewler, KRG. Private Consultant Geologist, Erbil, Iraq.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Laue, Jan
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Badush Dam: Controversy and Future Possibilities2018In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 8, no 2, p. 17-33Article in journal (Refereed)
    Abstract [en]

    Badush Dam is believed to be the first dam in the world which is designed to protect from the flood wave which could result from the collapse of another dam; in this case Mosul Dam.  Badush Dam construction was started in 1988 but it was stopped two years later due to unexpected reasons. From that time on many attempts were made to resume construction without success. Its value was stressed in a multitude of studies and technical reports amid conflict of opinions on how to do this.  The original design of the dam as a protection dam was intended to have a large part of the reservoir empty to accommodate the volume of the expected flood wave for only a few months during which time it’s content are released in a controlled and safe way to the downstream. The lower part of Badush Dam which has a limited height continues before and after this event to act as a low head power generation facility. Among the later studies on the dam, there were suggestions to introduce changes to the design of the unfinished dam which covered the foundation treatment and also asked for constructing a diaphragm in the dam. A long controversy is still going on with many possibilities but with no hope to reach a final solution soon. Any rational solution must consider both Badush Dam and Mosul Dam together as the safety issue involves both of them. This paper may be seen in six paragraphs. The first three describe in brief the history, the outline design and foundation treatment of the dam, therefore, setting the background to follow the conflicting views over its purpose and future which is discussed in the following two paragraphs. The final paragraph is devoted to discussion and our conclusions.

  • 13. Adamo, Nasrat
    et al.
    Sissakian, Varoujan K.
    University of Kurdistan, Hewler. Private Consultant Geologist, Erbil, Iraq.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Laue, Jan
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Elagely, Malik
    Private consultant, Baghdad, Iraq.
    Comparative Study of Mosul and Haditha Dams, Iraq: Foundation Treatments in the Two Dams2018In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 8, no 2, p. 53-70Article in journal (Refereed)
    Abstract [en]

    Mosul and Haditha Dams are built on relatively weak foundations. Both of these foundations suffer from extensive karsts which had demanded intensive foundation treatment works among other design precautions. The karst forms; however, are of different origins, activities, nature and shapes. The foundation treatment in both dams was done mainly by constructing deep grout curtains along with other secondary grouting works. Reducing uplift pressure under the dam and cutting down on seepage losses were the major considerations in these works. An additional important requirement in Mosul Dam was to reduce the permeability of the rock formation in the foundations to such a low limit that it can stop the dissolution of gypsum beds present there. This objective; unfortunately, failed due to the lithological composition of this foundation and the presence of many brecciated gypsum beds, which could not be treated successfully. This had resulted in a comprehensive grouting maintenance program which continuous up to date with the everlasting danger of dam failure. On the other hand, in Haditha dam no such complication occurs as the dam had its foundations mainly in limestone. Proper investigation and good planning and performance of the grouting works in this dam contributed highly to its success. Selecting the deep grout curtain as anti-seepage measure in Mosul Dam was not a very wise decision and constructing a positive cutoff in the form of diaphragm wall could have been the proper choice. Good and deep understanding of all geological data can contribute to the success of a dam design or, otherwise it may lead to unsafe one.

  • 14.
    Alanbari, Mohammad A.
    et al.
    Babylon University.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Altaee, S.A.
    Babylon University.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Application of Simapro7 on Karbala Wastewater Treatment Plant, Iraq2014In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 4, no 2, p. 55-68Article in journal (Refereed)
    Abstract [en]

    The use of treated wastewater is becoming more popular especially in countries suffering from water shortages despite the fact that wastewater plants have some environmental implications. For this reason there are various software designed to do the assessment. Among these is SimaPro software package designed to make a valuable contribution. It is a powerful tool for analyzing the environmental impact to products during their whole life cycle. A huge amount of knowledge about the environment is built into the program and database, enabling to analyze a product with a minimum of specialized knowledge. In this study, Simapro was used to analyze and evaluate the impacts that result from Karbala Wastewater treatment plant. The results of Life Cycle Assessment (LCA) show that Karbala WWTP has an impact and damage on the environment of the order of 171 point for each 1 cubic meter of wastewater. The most environmental impacts potential were global warming, respiratory inorganics and non-renewable energy. The study also showed that most of the effects were as a result of the phase of construction more than of the operational phase.

  • 15.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Locating landfills in arid environment2013In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 3, no 3, p. 11-24Article in journal (Refereed)
    Abstract [en]

    Protection of the environment from solid waste hazards is becoming a serious problem. Different laws and legislations had been put into practice for this purpose. The effect of solid waste in developing countries with limited financial and natural resources and high population growth rate is more severe. To overcome these difficulties, prudent management system for solid waste is required. Furthermore, solid waste disposal site should be selected using scientific criteria to prevent any harmful effect on local communities and the environment.Criteria for solid waste disposal dump site for arid and semi-arid regions should be selected in accordance with well-known international requirements that suit the local conditions. These criteria can be used to select the best suitable solid waste dump site using remote sensing and geographic information system techniques. The selected sites are harmless to human life, natural resources and the environment. The same can be achieved when dumping hazardous solid waste. In all cases however, priorities of the site selection criteria should meet the existing geological, meteorological and environmental conditions.

  • 16.
    Al-Ansari, Nadhir
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Adamo, Nasrat
    LTU team.
    Issa, Issa
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Sissakian, Varoujan
    Consultant Geologist, Erbil.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Mystery of Mosul Dam the Most Dangerous Dam in the World: Dam Failure and its Consequences2015In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 5, no 3, p. 95-111Article in journal (Refereed)
    Abstract [en]

    Worries concerning the possibility of the dam failure due to the seepages under the foundation of Mosul Dam during its construction and operation phases enhanced the application of several dam failure models on Mosul Dam case. All the applied models gave similar results. It was noticed through the models that the wave in case of the dam failure will have a height of 54m and the discharge will be of the order of 551000 m3/sec. This wave will reach the capital city of Iraq “Baghdad” after about 38 hours. The discharge of the River Tigris at Baghdad will be 46000m3/sec and the height of the wave will reach 4m. The propagation of the wave along this distance will cause a catastrophe. About 500000 civilians will die in addition to the unbelievable damage that will be caused to the infrastructure of the country.

  • 17.
    Al-Ansari, Nadhir
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Adamo, Nasrat
    LTU team.
    Issa, Issa
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Sissakian, Varoujan
    Consultant Geologist, Erbil.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Mystery of Mosul Dam the Most Dangerous Dam in the World: Karstification and Sinkholes2015In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 5, no 3, p. 33-45Article in journal (Refereed)
    Abstract [en]

    The Fatha (ex-Lower Fars) Formation (Middle Miocene) is the predominant stratigraphic unit in the Mosul Dam area. It is about 250 meters thick near Mosul. Marls, chalky limestone, gypsum, anhydrite, and limestone form a layered sequence of rocks under the foundation of the dam. The foundation of the dam is mainly resting on the Fatha Formation (Middle Miocene) which is highly karstified. Karstic limestone and the development of solution cavities within the gypsum and anhydrite layers are the main geological features under the foundation of the dam. The right (west) abutment is located in the steeply dipping Fatha Formation within Butmah East anticline with SE plunge being in the reservoir north of the dam, whereas the left (east) abutment is located on gently dipping beds of the Fatha Formation, which is overlain by fine clastics of the Injana Formation. These differences in lithology as well the dip amount and direction along both abutments as well upstream and downstream of the dam have certainly affected on the hydraulic pressure and increased the dissolution ability of the gypsum and limestone beds, along the abutments and the foundations, which are already karstified in nearby areas. Consequently, more gypsum, anhydrite and limestone beds are dissolved and karst openings are continuously increasing, as the exerted hydraulic pressure is continuous.First appearance of sinkholes on the right bank down-stream was not until approximately six years after the filling of the reservoir began. The surface expression of the sinkholes suggests that they are caused by an under-ground collapse. Concentric tension cracks appear to have developed around the central void as the sinkholes have developed progressively. Karstification and formation of sinkholes are the most dangerous features threatening the safety of Mosul dam.

  • 18.
    Al-Ansari, Nadhir
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Adamo, Nasrat
    LTU team.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Laue, Jan
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Geopolitics of the Tigris and Euphrates Basins2018In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 8, no 3, p. 187-222Article in journal (Refereed)
    Abstract [en]

    Euphrates and Tigris Rivers are the longest Rivers in southwest Asia. The main utilizers of the water of these rivers and tributaries are Turkey, Syria, Iran and Iraq. The two rivers rise in Turkey, which makes it the riparian hegemon. Some of the tributaries of the Tigris and Shat Al-Arab Rivers rise in Iran, which makes it the riparian hegemon for these rivers. Iraq and Syria are the lower countries in the basin and for this reason, they always to ensure the quantity of water required to satisfy their requirements. All these countries are in the Middle East, which characterized by its shortage of water resources. Since the 1970s conflict between riparian counties were noticed due to population growth rates, food security, energy needs, economic and technological development, political fragmentation, international water laws, water and management availability and public awareness. These caused tensions, which sometimes escalated to the verge of war. To solve this conflict a mediator is required that has the capability to bring all countries concerned to the negotiation table. Syria and Iraq are to give Turkey and Iran some incentives to cooperate. Furthermore, all counties are to adopt prudent strategic plan based on comprehensive resources development to ensure good water management and minimum water loses and waste. This due to the fact that modeling studies of the future suggest that water shortage problem will intensify.

  • 19.
    Al-Ansari, Nadhir
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Adamo, Nasrat
    LTU Team.
    Sissakian, Varoujan
    University of Kurdistan, Howler, KRG.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Laue, Jan
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Water Resources of the Euphrates River Catchment2018In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 8, no 3, p. 1-20Article in journal (Refereed)
    Abstract [en]

    The River Euphrates is the longest River in southwest Asia. Its length reaches 2786 km and drains an area of about 440000 km2, which is occupied by 23 million inhabitants. The Euphrates basin is shared by 5 countries (Iraq 47%, Turkey 28%, Syria 22%, Saudi Arabia 2.97%, Jordan 0.03%) where the first three countries are the main riparian. Climate change and construction of dams in the upper parts of the basin has reduced the flow downstream with time. The flow was about 30.6 BCM in Hit (Iraq) before 1974, and now it is about 4 BCM. Syria and Iraq are facing water shortage and quality deterioration problems, which require national, regional and international cooperation to overcome these problems.

  • 20.
    Al-Ansari, Nadhir
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Adamo, Nasrat
    Luleå University of Technology.
    Sissakian, Varoujan
    University of Kurdistan, Howler, KRG.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Laue, Jan
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Water Resources of the Tigris River Catchment2018In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 8, no 3, p. 21-42Article in journal (Refereed)
    Abstract [en]

    The Tigris River is one of the longest rivers in western Asia. Its length is about 1800 km. It drains a catchment area of 473103 km2 divided in 4 countries (Turkey, Syria, Iran and Iraq). About 23 million people live within this catchment. The flow of the River Tigris is decreasing with time due to the construction of dams and climate change. The discharge of the Tigris River at Baghdad was 1,207 m3/s for the period 1931-1960 and since 2000 onward it is 522m3/s. Riparian countries (mainly Iraq and Iran) are facing water shortage problems. This requires prudent regional and national cooperation and management to overcome this problem.

  • 21.
    Al-Ansari, Nadhir
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Al-Hanbaly, Mariam
    Al al-Bayt University.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Hydrology of the most ancient water harvesting schemes2013In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 3, no 1, p. 15-25Article in journal (Refereed)
    Abstract [en]

    The Middle East area and in particular Jordan suffer from water shortages. It is believed that water harvesting techniques can solve part of the problem. Jawa and Umm El-Jimal water harvesting schemes were established 6000 and 2000 years ago respectively. They are considered as the most ancient water harvesting scheme. The engineering design and techniques used in those schemes are very unique.The adaptation of the engineering techniques used in the ancient schemes in the newly established schemes will help to save energy and minimize the evaporation losses. In addition, harvested water can be used for ground water recharge.

  • 22.
    Al-Ansari, Nadhir
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    AlJawad, Sadeq
    Expert and Consultant Hydrogeologists, Baghdad, Iraq .
    Adamo, Nasrat
    LTU team.
    Sissakian, Varoujan K.
    University of Kurdistan, Howler, KRG, Iraq and Private Con sultant Geologist, Erbil, Iraq.
    Laue, Jan
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Water Quality within the Tigris and Euphrates Catchments2018In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 8, no 3, p. 95-121Article in journal (Refereed)
    Abstract [en]

    Euphrates and Tigris Rivers are the longest two rivers in southwest Asia. The Basins of these rivers cover an area of 917 103 km2 which is occupied by about 46 million inhabitants. Four countries (Turkey, Iran, Iraq and Syria) share the basin area of the Tigris River and the other four (Turkey, Syria, Iraq and Saudi Arabia) share the catchment area of the Euphrates River. The flow of the two rivers is decreasing with time due to construction of dams in the upstream part of the basins and climate change. This has impacted the water quality of the two rivers. Iraq is highly affected followed by Syria. The salinity of Tigris Rivers has become alarming downstream Baghdad while the Euphrates water quality deteriorates before entering the Iraqi border. To overcome water quality deterioration, international, regional and national cooperation is required to reach prudent planning for water resources management of the two basins.

  • 23.
    Al-Ansari, Nadhir
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Alroubai, Ali
    Basrah University.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Bathymetry and sediment survey for two old water harvesting schemes, Jordan2012In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 2, no 2, p. 13-23Article in journal (Refereed)
    Abstract [en]

    Jordan is among the least countries in its water resources and about 85% of its area is desertic. Due to this reason the inhabitants of the Badia region used centuries ago water harvesting techniques to augment water for human and animal use. Two ancient water harvesting schemes (Burqu and Dier Al-Kahf) were investigated. Bathymetric survey was conducted and both bottom and water samples were collected to study the nature of sediments in these schemes. The calculated volume of Burqu and Deir Al-Kahf reservoirs were 629505 and 12071m³ respectively. Sediments entering these reservoirs are mainly fine sand derived from the main and side valleys entering the reservoirs during rain events. The sediments at Burqu reservoir have a mean grain size of 0.1 mm, very poorly sorted and negatively skewed. The sand: silt: clay ratios were 70:17:13 respectively. At Deir Al-Kahf reservoir, the sediment mean grain size was 0.11mm and they were very poorly sorted and they were finely skewed. The sand: silt: clay ratios were 69: 23: 8 respectively. Annual rates of sediments deposited in these reservoirs were 29016 m3 for Burqu and 29016 m3 for Deir Al-Kahaf.

  • 24.
    Al-Ansari, Nadhir
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Issa, Issa
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Sissakian, Varoujan
    Consultant Geologist, Erbil.
    Adamo, Nasrat
    LTU team.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Mystery of Mosul Dam the most Dangerous Dam in the World: The project2015In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 5, no 3, p. 15-31Article in journal (Refereed)
    Abstract [en]

    Mosul Dam is an earthfill multipurpose dam. It is located on the River Tigris in northwestern Iraq. The dam is 3.65 km long and its crest elevation is at 341 m above sea level. The storage capacity at normal operation level (330 m above sea level) is 11.11km3. The work to build the dam started on 25thJanuary, 1981 and finished on 24thJuly, 1986. The total cost of the development was estimated at 2.6 billion US$.The foundation of the dam lies on the Fatha Formation. This formation is composed of alternating beds of marls, limestone, gypsum and claystone. It is highly karstified, which has which created a lot of problems during the construction, impounding and operation phases.

  • 25.
    Al-Ansari, Nadhir
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Reduction of the storage capacity of two small reservoirs in Jordan2012In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 2, no 1, p. 17-27Article in journal (Refereed)
    Abstract [en]

    Scarcity of water resources in the Middle East represents a prime factor in the stability of the region and its economic development and prosperity. Accordingly, augmenting water is considered very important. Therefore, building of dams is an important mean to achieve such a goal. Despite the fact that number of dams had been built but maintenance operations and reduction of siltation rates are still not up the standards. Two small reservoirs north west Jordan were investigated. Sad Wadi Alarab reservoir constructed in 1986 (storage capacity of 20x106 m3). The second, Alghadeer Alabyadh, was constructed 1966(storage capacity 7 x105 m3). The actual storage capacities of these reservoirs were calculated using echo-sounding traverses. Data obtained were used in special computer software to construct the bathymetric maps and calculate the existing storage volume. The results showed that the reservoir storage capacities were reduced at an average annual rate of 0.3 x106 and 1.7 x104 m3 respectively. This implies that Sad Wadi Alarab reservoir will be filled with sediment within 38 years, while Alghadeer Alabyadh reservoir is already filled with sediment now. Bottom sediments of the reservoirs were collected and analyzed. In all the cases, sand, silt and clay were the dominant sediment components.

  • 26.
    Al-Ansari, Nadhir
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Ali, Ammar
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Restoring the Garden of Eden, Iraq2012In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 2, no 1, p. 53-88Article in journal (Refereed)
    Abstract [en]

    The Iraqi marsh lands, which are known as the Garden of Eden, cover an area about 15-20 103. km2 in the lower part of the Mesopotamian basin where the Tigris and Euphrates Rivers flow. The area had played a prominent part in the history of man kind and was inhabited since the dawn of civilization. The area was considered among the largest wetlands in the world and the greatest in west Asia. Saddam regime began to drain the marsh lands for military and political reasons. Accordingly, at 2000 less than 10% of the marshes remained. The consequences were that most of the marsh dwellers left their places and some animals and plants are eradicated now. After the fall of Saddam regime in 2003, the process of restoration and rehabilitation of Iraqi marshes started. There are number of difficulties encountered in the process. Some of them are land use changes, climatic variations and changes, soil and water salinity as well as ecological fragmentation where many species were affected as well as the marsh dwellers.In this research we would like to explore the possibilities of restoring the Iraqi marshes. It is believed that 70- 75% of the original areas of the marshes can be restored. This implies that 13 km3 water should be available to achieve this goal keeping the water quality as it is. To evaluate the water quality in the marshes, 154 samples were collected at 48 stations during summer, spring and winter. All the results indicate that the water quality was bad. To improve the water quality, then 18.86 km3 of water is required. This requires plenty of efforts and international cooperation to overcome the existing obstacles.

  • 27.
    Al-Ansari, Nadhir
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Sissakian, Varoujan
    Fouad, Saffa
    Deformational Style of the Soft Sediment (SEISMITES) within the Uppermost Part of the Euphrates Formation, Western Iraq2014In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 4, no 4, p. 71-86Article in journal (Refereed)
    Abstract [en]

    The Euphrates Formation (Early Miocene) is wide spread formations in central western part of Iraq. It consists of basal conglomerate, well bedded, grey, fossiliferous and hard limestones (Lower Member), chalky like dolomitic limestone, white and massive, green marl, and deformed, brecciated dolomitic limestone and well bedded undulated limestone (Upper Member). The thickness of the formation Iraq is 35-110 m.The uppermost part of the Euphrates Formation includes Brecciated Unit. The fragments (size 1 – 3 cm) are semi angular to semi rounded, consist of very finely crystalline, silicified limestone, arranged in systematic form, which is parallel to the deformations and undulations that are present in both the brecciated mass and the overlying Undulated Limestone Unit. These characteristics of the fragments indicate that the breccia is not formed due to break in sedimentation, but it is syn-sedimentary breccia.The genesis and deformation style of the breccia is discussed in this study. The results indicate the seismic effect on the development of the breccia, during the deposition, which means syn-sedimentary origin of the breccia, most probably due to tectonic unrest, which has caused seismic shocks in the depositional area; such sediments are called "seismites".

  • 28.
    Al-Ansari, Nadhir
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Pusch, Roland
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Almuqdadi, Kadhim
    Arab Academy-Denmark.
    Isolation of radioactive military wastes in Iraq2013In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 3, no 3, p. 1-10Article in journal (Refereed)
    Abstract [en]

    Iraq has been subject to a series of wars for more than fifty years, the latest one leaving large amounts of wrecked tanks, vehicles, weapons and ammunition. A considerable part of the waste has the form of, or contains, depleted uranium (DU), that is concluded to have cancerogenic effects through its radioactivity and toxicity. The DU exists in significant concentrations in areas where combat took place, mostly in and around the cities of Bagdad and Basra, the total number of particularly encountered areas being about 15. The way of long-term isolation of DU that is proposed in this paper is to construct relatively simple landfills of sandwiched contaminated soil and clay or clayey soil, covered by sand/gravel and erosion-resistant coarser material on top. The very low annual precipitation and long draught in the deserts, implying significant evaporation, means that the system of tight soil interlayered with contaminated soil, embedding wrecked military objects, minimizes percolation and release of DU, keeping it adsorbed on the finest soil particles. The clay-based material must be composed in a way that, i/ desiccation fractures are not formed in periods of long draught and ii/ not swell uncontrolled and loose strength in wet periods. The DU-contaminated soil is proposed to be scraped off and transported in closed trucks to four desert sites where landfills of the sandwich-type are proposed to be constructed.

  • 29.
    Ali, Ammar A.
    et al.
    Water Resources, College of Engineering, University of Baghdad.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Al-Suhail, Qusay
    Earth Sciences, College of Science, University of Baghdad, Iraq.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Spatial Measurement of Bed Load Transport in Tigris River2017In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 7, no 4, p. 55-75Article in journal (Refereed)
    Abstract [en]

    Using Helley-Smith sampler, 288 bed load samples were collected from 16 cross sections along 18 km reach length of Tigris River within Baghdad. The spatial distribution of sampling along the reach took into consideration the variance of river topography where 7 meanders, 2 islands and several bank depositions characterize the geometry of the river. The implemented regulation schemes on Tigris River have reduced 44% of water discharges compared to previous period. The spatial variance in topography was effectively scattering the results of the applied twenty bed load formulas. The study results indicated that the complicated geometry of the river reach makes finding a unique representative bed load formula along the study reach rather difficult, and there is no grantee to have good agreement with measurements in the irregular cross sections (meanders, sand bars, etc.). The closest bed load prediction formulas were van Rijn1984. The annual transported quantities of bed load were estimated to be 30 thousand tons (minimum) in 2009 and 50 thousand tons (maximum) in 2013.

  • 30.
    Ali, Salahalddin
    et al.
    Department of Geology, School of Science, Faculty of Science and Science Education, University of Sulaimaniyah.
    Al-Umary, Foad
    Department of Geography, College of Education, University of Tikrit.
    Sarkawt, Salar
    Department of Geography, Faculty of Education/Kalar, University of Garmian.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Geomorphology of Garmiyan Area Using GIS Technique, Kurdistan Region, Iraq2016In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 6, no 1, p. 63-87Article in journal (Refereed)
    Abstract [en]

    The goals of the present study are to investigate, explore and assess the geomorphologic characteristics of a part of Garmiyan area through highlighting the forming and controlling factors of the geomorphology, mapping the landforms and reveal the geomorphologic processes that created them in Garmiyan area. Geographic information systems (GIS) and remote sensing through satellite images and Digital Elevation Model (DEM) have facilitated the investigation in this large area with more accuracy.The Garmiyan area is a part of Garmiyan area located about (62 Km) south of Sulaimani City and (104 km) east of Kirkuk city. It lies between longitudes (45o10- - 45o32-) E and latitude (34o40-- 35o02-) N. It is within unstable shelf where 3.9% of it lie within the High Folded Zone and 96.1 % within the Foothill Zone. The geologic formations are forming 57.93% and the Quaternary deposits are forming 42.07%. Clastic sedimentary rocks are forming nearly 99% of the total area, while non clastic sedimentary rocks are forming nearly 1%. The topography of the studied area is greatly influenced by lithologic characteristics of the geologic units. The factors, which influence the geomorphology of the studied area, are tectonics, lithology, climate, vegetation and humans. Hence the geomorphologic evolution is controlled by many geomorphologic processes. The main endogenic process is uplifting of the western and north western sides of the studied area which was the final stage of Zagros Fold Thrust Belt formation during the Arabia–Eurasia collision. The main exogenic processes include weathering, erosion, fluvial, hillslope processes, karstification and anthropogenic processes. The main geomorphologic landforms recognized in the studied area are structural, denudational, fluvial, solutional and anthropogenic landforms. Anthropogenic landforms produced by excavation by road cuttings, quarrying and farming. The geomorphic landforms indicate that deformation is propagating from northeast to southwest.

  • 31.
    Al-Jabban, Wathiq
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Laue, Jan
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Modification-Stabilization of Clayey Silt Soil Using Small Amounts of Cement2017In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 7, no 3, p. 77-96Article in journal (Refereed)
    Abstract [en]

    This paper presents the effects of using a small percentage of cement to stabilize clayey silt with a low organic content. Cement was added at percentages of 1, 2, 4 and 7% by dry weight. The physical and mechanical properties of the treated and untreated soil were evaluated by laboratory tests including tests of consistency limits, unconfined compressive strength, soil density, solidification and pH values. These tests have been conducted after 7, 14, 28, 60 and 90 days of curing time. Workability is defined as how easily the soil can be control or to handle physically. Results showed that the engineering properties of the clayey silt were improved. The soil exhibited better workability directly after treatment, and the workability increased with time. Soil density increased, while water content decreased, with increasing cement content and longer curing time. The pH value was immediately raised to 12 after adding 7% cement content, and then it gradually decreased as curing time increased. An increase of unconfined compressive strength and stiffness was observed, while strain at failure decreased. A gradual change in failure mode from ductile behavior to brittle failure was observed. The findings are useful when there is a need for modification and stabilization of clayey silt in order to increase the possibilities for different use which will reduce transportation and excavation.

  • 32.
    AlJawad, Sadeq
    et al.
    Expert and Consultant Hydrogeologists, Baghdad, Iraq.
    Al-Ansari, Nadhir
    Expert and Consultant Hydrogeologists, Baghdad, Iraq.
    Adamo, Nasrat
    LTU team.
    Sissakian, Varoujan K.
    University of Kurdistan, Howler, KRG, Iraq and Private Con sultant Geologist, Erbil, Iraq.
    Laue, Jan
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Groundwater Quality and Their Uses in Iraq2018In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 8, no 3, p. 123-144Article in journal (Refereed)
    Abstract [en]

    Aquifers are porous media with various physical criteria and hydraulic conditions that largely affect the quality of water they contain. When an aquifer is a sedimentary rock, its depositional environment draws along with its present recharge condition and the footprint of its groundwater quality. The geologic setting of Iraq consists of a sedimentary cover 4 – 13 km thick with a sequence of alternating pervious and impervious sedimentary rock beds of coarse clastics and fractured carbonates with fine clastics and hard rock carbonate. This succession has developed a successive multi aquifer systems. The present study has recognized the major formations that so far have been explored and sampled using available data to identify the probability of their water quality which might be obtained when drilling a well through any of the formations. From among tens of thousands of wells drilled to produce water from whatever horizons they encounter, only those wells which penetrate a single formation were considered. The results show that groundwater quality expressed as total dissolved solids in the explored 17 aquifers or aquifer systems are highly variable. Nevertheless, an indicative medium range value can be deduced for each. In principle, lower salinity values and carbonate water type associate with the unconfined aquifers that receive active contemporary recharge as in the case of the exposed aquifers in the High, and to less extend the Low Folded Zones. Even in the Stable Shelf where present recharge is limited, unconfined part of the aquifers is differentiated by their lower salinity and water type. On the other hand, a partial displacement of sea water in the marine deposit carbonates has as well occurred due to previous recharge periods. This was possible to the karstified carbonates of the Stable Shelf due to their high porosity. The finer marine deposits in the Mesopotamia Basin maintained their high groundwater salinity and marine water type. Water suitability for human drinking can be found in most of the aquifers especially aquifers in the High and Low Folded Zones. In the Stable Shelf, Al-Jazira, and even in the Mesopotamian Plain, recharge boundary conditions of the aquifer in the selected drilling spot should be carefully examined. The high variations of water quality in the aquifers in the latter zones requires an evaluation of water suitability well by well. However, most of the groundwater derived from the northern parts of the Stable Shelf and Al-Jazira Zones aquifers are suitable for agriculture, while that those of the southern parts and the Mesopotamian Plain are questionable or unsuitable.

  • 33.
    Almuqdadi, Kadhum
    et al.
    Arab Academy-Denmark.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Nature, size and contaminated areas of the waste of war in Iraq2013In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 3, no 3, p. 93-107Article in journal (Refereed)
    Abstract [en]

    In 1991, new weapons were used for the first time by the American and British troops in Iraq. These weapons proved to have high destructive capability against armored machinery and tanks. Later, there were many signs of being a weapon to destroy the human beings, animals and plants, which raised huge controversy and sharp criticism among scientists, doctors and environmentalists.Despite the opacity and deception, many of the secrets of depleted uranium ammunition were exposed, and confirmed the seriousness of use and serious repercussions on the environment and public health, which stepped up the international campaign against its manufacturing and use.However, the brilliant military success and profits of the military industry tempted the Pentagon and NATO to continue production and use of these weapons. Despite the high human and environment risks DU was used in various conflicts like Iraq, Bosnia, Kosovo and Serbia, Afghanistan, Gaza, Lebanon and recently in Libya.It is noteworthy to mention that the public and even some scientists, researchers and news media are ignorant of the effects and risks of the use of DU in military operations. This raises the point that there should be a large campaign to raise public awareness to prevent the risk of DU weapons.Based on scientific research and updates, we would like to high light the waste of wars in Iraq: Our paper shed the light on the size of depleted uranium(DU) weapons used in the wars on Iraq and the legacy of waste (their nature, size, and the contaminated regions), as high risks on humans and the environment. This is one of the leading environmental, health and social tragic problems in Iraq. This problem should be addressed immediately, seriously and effectively.

  • 34.
    Almuqdadi, Kadhum
    et al.
    Arab Academy-Denmark.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Risks of the military uses f depleted uranium on humans and the environment2013In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 3, no 3, p. 163-203Article in journal (Refereed)
    Abstract [en]

    Great Development in the military industry had been witnessed in the past two decades, especially in depleted uranium weapons. These weapons were first used by USA and its allies in 1991 in Iraq. Later they were used in Bosnia (1995), Kosovo and Serbia (1999) Afghanistan (2001) and finally Iraq (2003).The manufacturers and users of these weapons continued to blackout the nature of these weapons and deny the harm caused on the public health, animals and the environment.After a short period of time, facts were revealed by the investigations and research executed by large number of scientists and investigators.This paper highlights the important effects caused by the use of depleted uranium weapons on human health and environment.

  • 35.
    Al-Taie, Entidhar
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Bearing Capacity Affecting the Design of Shallow Foundation in Various Regions of Iraq Using SAP200 & SAFE softwares2014In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 4, no 4, p. 35-52Article in journal (Refereed)
    Abstract [en]

    Bearing pressure is the load per unit area along the foundation bottom. The value of bearing pressure can be obtained from soil exploration. In this research, three sites in Iraq were tested (Mosul at north, Baghdad at middle and Basrah at south) for the best type of foundation to be chosen. Seventy nine samples were taken from twenty three boreholes drilled to a depth ranging from 1to 24m, from various sites for the three sites. Samples were tested for their size; Atterberg limits; direct shear; unconfined compression; consolidation and SPT tests. The results showed that the nature of soil in Mosul was generally were silty clay to clay (in some areas silt or sand) with high to very high plasticity. In Baghdad, it was loam clay, silty clay, and in some areas silt. Its plasticity range was medium to high and non-plastic in few sites. For Basrah, the soil type was clay loam and in many places was sand or silt. The value of plasticity was medium. The average and the worst values of bearing capacity were: 177KN/m2 and 77KN/m2 for Mosul; 125 KN/m2 and 68 KN/m2 for Baghdad; and 84KN/m2 and 24 KN/m2 for Basrah. These values were used in a computer model (SAP2000 and SAFE softwares) to find the best suitable foundation in each site. The model suggests that spread or continuous and raft (if basement is used for building with many floors) are suitable for Mosul. For Baghdad, spread and raft type of foundations are suitable. While, for Basrah, raft foundation type are to be used in some areas where building should be less than three floors and for other areas, deep foundation (piles or pier) can only to be used.

  • 36.
    Altaie, Entidhar
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Materials and the style of buildings used in Iraq during the Islamic period2012In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 2, no 2, p. 69-97Article in journal (Refereed)
    Abstract [en]

    The Islamic period in Iraq lasted 1002 years (637-1639 AD). During this period big cities were constructed and old cities were reconstructed. There was development of the materials used and the design. Bricks, grill wage, plaster, gypsum and marble and stones were used. The environmental conditions were taken in the design of the buildings. The walls were thick and basements and badgur were established. This makes it easier to cool or heat the house. Tar was used to protect the buildings from moisture. New style of buildings was established using new engineering innovations. Well-designed arches and domes were noticed during this period. Islamic buildings had special features such as minarets, arches, domes, vaults, gilding, patterns and decorations.

  • 37.
    Altaie, Entidhar
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    The progress of buildings style and materials from the Ottoman and British occupations of Iraq2012In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 2, no 2, p. 41-51Article in journal (Refereed)
    Abstract [en]

    The period of ottoman occupation of Iraq was characterized by the same style of buildings and they used local materials as did their predecessors. At the beginning of ottoman occupation, governors were focusing on build mosques and religion schools (Tkaya). Houses were built in random styles depending on the experiences of the builders. For this reason, the houses became irregular and expanded randomly. This lead to the shrinkage of the areas of the roads where they became very narrow and used to referred to as “Drbuna”. At the end of the ottoman period the style of buildings changed and it was reflecting European renaissance influences such as the government campus known as “Qishla”. In 1917 the British army occupied Iraq. During this period the buildings were more inclined to the European style. New materials were used for the first time like cement and iron (Schliemann). The new materials and design destroyed the Iraqi heritage and cultural identity. It is believed that the new housing style did not take into consideration the Iraqi environment.

  • 38.
    Al-Taie, Laith
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Pusch, Roland
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Hazardous wastes problems in Iraq:a suggestion for an environmental solution2013In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 3, no 3, p. 81-91Article in journal (Refereed)
    Abstract [en]

    Iraq passed through many destructive wars where the country infrastructures have been destroyed. Consequently, various types of hazardous wastes generated from 1991 and 2003 wars are exposed in different parts of Iraq without any aspect of human and environment considerations. Contaminants are found in the form of contaminated rubble with depleted uranium (DU). Landfill disposal is still an economical and vital solution that should serve between 300-1000 years for confining hazardous wastes like DU. The longevity of a hazardous waste landfill is mainly controlled by clay based liners. There are many factors affecting the performance of clay liners. These factors were discussed. The main requirements of hazardous waste landfills were listed according to USEPA and German regulations. Finally, the main aspects of landfill siting criteria in Iraq were suggested.

  • 39.
    Al-Taie, Laith
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Pusch, Roland
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Hydraulic properties of smectite clays from Iraq with special respect to landfills of DU-contaminated waste2013In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 3, no 3, p. 109-125Article in journal (Refereed)
    Abstract [en]

    Landfills of material contaminated by depleted uranium and other low-level radioactive waste must be isolated from the biosphere for a sufficiently long time. This can be effectively made in desert climate by collecting contaminated waste in suitable areas confined by tight embankments and covering them with very tight clay liners protected from desiccation and erosion by suitably composed filters and coarse rock fill. Examples of design principles and construction are described in the paper. The clay liners are made of air-dry expanding clay that can be found in sufficient quantities in Iraq and that provide very good tightness at low cost. The construction technique is well known from various projects.

  • 40.
    Chabuk, Ali
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Hussein, Hussein M.
    Luleå University of Technology.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Pusch, Roland
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Laue, Jan
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Landfills Site Selection in Babylon, Iraq2017In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 7, no 4, p. 1-15Article in journal (Refereed)
    Abstract [en]

    Babylon Governorate is located in the middle of Iraq and includes five major districts called Qadhaa. It occupies an area of 5315 km2 with population of 2,092,998 in 2015. The process of selecting landfill site is considered complicated task related to many factors and regulations. Currently, there is no landfill site in Babylon Governorate that fulfils the scientific and environmental criteria. Therefore, in this study fifteen of suitable criteria were selected. These criteria are: groundwater depth, urban canters, rivers, villages, soil types, elevation, agriculture, roads lands use slope, land use, archaeological sites, power lines, gas pipelines, oil pipelines and railways. Then these criteria were used in the GIS (geographic information system), which has a high ability to manage and analyse various data. In addition, the AHP (analytical hierarchy process) method was used to derive the weightings of criteria through using a matrix of pair-wise comparison. After that the weighted linear combination (WLC) method was used to obtain the suitability index map for candidate landfill sites. Ten suitable candidate sites for landfill were selected (two for each District), where all these sites satisfied the scientific and environmental criteria which were adopted in this study. The areas of the selected sites were adequate to accommodate solid waste from 2020 until 2030.

  • 41.
    Elias, Ziyad
    et al.
    Geomorphic Researcher, Celle, Germany.
    Sissakian, Varoujan
    Kurdistan University, Hewler.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    New Tectonic Activity within Zagros – Taurus belt: A case study from north Iraq using Region Shuttle Radar Topography Mission (SRTM)2018In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 8, no 1, p. 51-63Article in journal (Refereed)
    Abstract [en]

    This work investigates fold growth and drainage evolution of the Duhok – Al-Qosh and Duhkan anticlines (Iraqi Kurdistan region) by means of structural and tectonic geomorphology using a geological map and SRTM remote sensing data (digital elevation model and satellite images). The implementation of geomorphic indicator will help understanding the mechanism between growth of fold and drainage pattern and also concluding the tectonic evolution in the study site. Fault has an impact on the width of the folds and also on the drainage basin in the study area. The Aspect ratio indicates that the folds in the study area are formed by thrust-cored or forced and buckling. The tributaries of the drainage basin are characterized by drainage parallel to the fold crest on the fold hinge, with less asymmetric and asymmetric forked networks. Perfect symmetry index (FSI) is represented by Al-Qosh fold. Higher value of front sinuosity can be in the first uplift fold and later exposed to erosion by stream basin on the limbs of folds for long time. The spacing ratio and basin shape show basin maturity.

  • 42.
    Huang, Yi
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Jia, Qi
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    The simulation of the dust grain movement by sediment transport model around mining area in northern Sweden2012In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 2, no 2, p. 1-11Article in journal (Refereed)
    Abstract [en]

    A simple sediment transport model has been utilized to simulate the dust grain movement in the area flow. The transport model can be used as a tool to estimate the dust grain transport situation in a mining area with consideration of the local topographical profile. The case study of the local dust characteristics survey proves the model works fairly well compared to the field calibration.

  • 43.
    Hussain, Hussain M.
    et al.
    Department of Geology, Faculty of Science, University of Kufa.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Groundwater Pollution Potential in Part of the Western Desert, Iraq2015In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 5, no 1, p. 1-17Article in journal (Refereed)
    Abstract [en]

    The growth of human population often corresponds with change in land use, including expansion of urban areas, which necessitates increasing the available amount of drinking water. As the surface water sources are more amenable to pollution, it has become necessary to use groundwater at an increasing rate. Groundwater is normally abundant in the alluvial region where the urban areas are often located. Such areas face a greater risk of pollution of groundwater due to several factors. Surface water resources are becoming more scares in Iraq which gave a tendency to use groundwater. In this research, groundwater vulnerability in part of the western desert had been studied. It was noticed that the area has low risk for the contamination of ground water.

  • 44.
    Jia, Qi
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Dust emission from unpaved roads in Luleå, Sweden2013In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 3, no 1, p. 1-13Article in journal (Refereed)
    Abstract [en]

    The dust emission from unpaved roads, if not controlled, can cause enormous problems. Though a few real-world measurements of road dust have been done by automated samplers in Sweden, measurement by BSNE (Big Spring Number Eight) and the estimation of total dust generation from vehicle driving is rare. This study measured and analyzed dust emission by BSNE at two unpaved roads in Luleå, Sweden, at the driving speed of 20, 30, 40, and 50 km/h different heights. Even though US EPA excluded vehicle speed as a parameter in estimating dust emission factors for unpaved roads, this study confirmed a strong dependence of dust emission on vehicle speed. This is in agreement with several recent studies which concluded dust emission increases with driving speed exponentially or linearly, however the power law is the best description for the data from this study. The comparison with estimated dust emission by US EPA’s equation showed the equation underestimates the dust emission more than 50 percent when vehicle speed and silt content is higher than 25.40km/h and 2.17 percent respectively. There might be some interrelationship between driving speed and silt content in road surface.Earlier researchers have reported increased dust emission with increasing silt content and this is confirmed by this study.

  • 45.
    Jia, Qi
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Huang, Yi
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Dust emissions from landfill deposition: a case study in Malmberget mine,Sweden2013In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 3, no 3, p. 25-34Article in journal (Refereed)
    Abstract [en]

    A great amount of industrial wastes are produced in Sweden every year. In 2008 there were 97.9 million tons of wasted generated, among which 93 million tons industrial waste were produced. 64.1% of industrial wastes were deposited in the landfill sites. Dust generation is one of the most important problems associated with industrial waste and landfills. The particulate dust emissions come from the industrial waste may contain heavy metal and produce environmental problems and potential health risks. Active and passive samplers, deposition pans are common equipment to collect dust samples. Real-time monitors use laser diffraction to recording continuous dust concentration. Dust emission from Malmberget mine in Sweden was analyzed as a case study. Dust was collected by NILU deposit gauge from 26 stations. Generally speaking the amount of dust fallout was decreasing with time because of implemented dust control methods. During the period August 2009 to August 2010, among all the measuring stations through the year, the maximum and the minimum value were 1284 g/100m2/30d and 9 g/100m2/30d. Two sources of dust generation were identified. The first was located close to the open pit, and the second near the current mining industrial center. The dust generation due to road construction was calculated.

  • 46.
    Johansson, Jens
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Edeskär, Tommy
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Modelling approaches considering impacts of water-level fluctuations on slope stability2014In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 4, no 4, p. 17-34Article in journal (Refereed)
    Abstract [en]

    Waterfront slopes are affected by water-level fluctuations originating from as well natural sources (e.g. tides and wind waves), as non-natural sources such as watercourse regulation involving daily or hourly recurring water-level fluctuations. Potentially instable slopes in populated areas means risks for as well property as human lives. In this study, three different approaches used for hydro-mechanical coupling in FEM-modelling of slope stability, have been evaluated. A fictive slope consisting of a till-like soil material has been modeled to be exposed to a series of water-level fluctuation cycles (WLFC’s). Modelling based on assuming fully saturated conditions, and with computations of flow and deformations separately run, has been put against two approaches being more sophisticated, with unsaturated-soil behavior considered and with computations of pore-pressures and deformations simultaneously run. Development of stability, vertical displacements, pore pressures, flow, and model-parameter influence, has been investigated for an increased number of WLFC’s. It was found that more advanced approaches did allow for capturing larger variations of flow and pore pressures. Classical modelling resulted in smaller vertical displacements, and smoother development of pore-pressure and flow. Flow patterns, changes of soil density (linked to volume changes governed by suction fluctuations), and changes of hydraulic conductivity, are all factors governing as well water-transport (e.g. efficiency of dissipation of excess pore pressures) as soil-material transport (i.e. susceptibility to internal erosion to be initiated and/or continued). Therefore, the results shown underline potential strengths of sophisticated modelling. Parameter influence was shown to change during water-level cycling.

  • 47.
    Karim, Kamal
    et al.
    Sulaimani University.
    Sissakian, Varoujan
    Consultant Geologist, Erbil.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Effect of the Sun Radiation on the Asymmetry of Valleys in Iraqi Zagros Mountain Belt (Kurdistan Region)2014In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 4, no 2, p. 23-32Article in journal (Refereed)
    Abstract [en]

    The geomorphological feature of the valley's asymmetry is described in the Western Zagros in Iraqi Kurdistan; in terms of facing of the valley sides relative to the position of the sun. The asymmetry is represented by steeper northwest facing valley sides; as compared to the southeast facing sides. This feature shows clear valley's asymmetry in cross section is a new geomorphological characteristic for the Western Zagros Mountain Belt. The asymmetry of valleys, in the present study, is proved to exist in different rock types and areas, which is developed by more chemical weathering of one facing sides relative to the other side. The weathering is attributed to the remaining of the moisture for longer time than the southeastern sides, which are stroke by sun radiation for longer time and are dried more rapidly. A simple method was established for indicating the steeper side of the valleys. The method consists of drawing two parallel lines across the photo of the valley, then connecting the bottom of the valley with the left and right deflection points on the inter-valleys ridges by lines. Finally the angles between the lower horiozontal line and inclined lines are measured, which indicates the asymmetry of the valleys.

  • 48.
    Knutsson, Roger
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Viklander, Peter
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Benefits of Advanced Constitutive Modeling when Estimating Deformations in a Tailings Dam2018In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 8, no 1, p. 1-19Article in journal (Refereed)
    Abstract [en]

    Behavior of tailings dams are often controlled in dam surveillance programs where horizontal deformation is one of the key aspects. When evaluating field data, there is a necessity for comparison with anticipated deformations in order to relate field behavior to dam stability. With numerical modeling, these predictions can be made. This paper presents a case where horizontal deformations in a tailings dam have been simulated for a six-year period, using two-dimensional finite element modeling. Yearly dam raises have been simulated as staged constructions according to activities at site. Tailings materials have been simulated with an elasto-plastic constitutive model with isotropic hardening, called Hardening Soil and the conventional linear-elastic, perfectly plastic Mohr-Coulomb model. Soil parameters used for input were calibrated to laboratory data. Results from simulations were compared with data obtained in situ by a slope inclinometer. Results obtained by the Hardening Soil model indicate good agreement with respect to field measurements. However, this was not reached with the Mohr-Coulomb model. The results presented indicate benefits by using an advanced constitutive model for tailings in order to estimate in situ deformations in a tailings dam. The methodology presented can be used for prediction of future deformations, in order to relate the dam behavior to its stability. This is important in dam safety assessment, and will lead to a better understanding of the dam safety, being of great importance for the dam owner and the society in general.

  • 49.
    Nakano, Masashi
    et al.
    University of Tokyo.
    Yong, Raymond N.
    McGill University.
    Pusch, Roland
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Cyclic water transfer in the top soil of a landfill2013In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 3, no 3, p. 53-67Article in journal (Refereed)
    Abstract [en]

    This paper describes the changes of water content and the kinetics of water flow under infiltration, redistribution, evaporation, transpiration and freeze and thaw of water in top soils of a landfill, which are needed for the assessment of contaminant transfer. The discussion focuses on (a) infiltration in layered soil and sloping layered soil, and one caused by water flow through channels in soils, (b) the changes of water content under evaporation, which occur in different water flow modes under different evaporation conditions, and (c) water depression due to transpiration, in which water flow originates from a deeper layer below the root zone of vegetation. It is concluded that the theoretical prediction of the changes of water content profiles requires (a) a full understanding of the characteristics of individual water flow in cyclic water transfer and (b) a careful setting of the boundary conditions specified at the soil surface since soil properties such as soil structure and especially unsaturated hydraulic conductivity at surface will easily change over the course of time.

  • 50.
    Nakano, Masashi
    et al.
    Agriculture and Life Science, University of Tokyo, Japan .
    Yong, Raymond N.
    Geoenvironmental Engineering, Canada .
    Pusch, Roland
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Mathematical Method Re-examined for Assessment of Ground Contaminated by Radioactive-Contaminated Groundwater2019In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 9, no 3, p. 227-235Article in journal (Refereed)
    Abstract [en]

    In this paper we re-examined the transfer equation of radioactive substances in the ground and offer a more realistic transfer equation and other equations available for assessment of the ground contamination from radioactive-contaminated groundwater. The transfer equation takes into account kinematic and hydrodynamic considerations on mass conservation of mobile radioactive substances in a porous medium that typifies the ground. The other equations available for contamination assessment are concerned with deposition in contaminated areas and discharge flow of contaminants to the areas contiguous to contaminated area. The equations are derived on the understanding that disintegration of the radioactive substances adhering onto solids in the ground porous medium occurs as a sink term during the transfer of mobile radioactive substances. Finally, it is noted that the discharge of groundwater due to advective flow will be predominant in comparison to the discharge by diffusion

123 1 - 50 of 106
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf