Change search
Refine search result
1234 1 - 50 of 160
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Agostinelli, Marta
    et al.
    Cleary, Michelle
    Martin, Juan A.
    Albrectsen, Benedicte R.
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Witzell, Johanna
    Pedunculate Oaks (Quercus robur L.) Differing in Vitality as Reservoirs for Fungal Biodiversity2018In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 9, article id 1758Article in journal (Refereed)
    Abstract [en]

    Ecological significance of trees growing in urban and peri-urban settings is likely to increase in future land-use regimes, calling for better understanding of their role as potential reservoirs or stepping stones for associated biodiversity. We studied the diversity of fungal endophytes in woody tissues of asymptomatic even aged pedunculate oak trees, growing as amenity trees in a peri-urban setting. The trees were classified into three groups according to their phenotypic vitality (high, medium, and low). Endophytes were cultured on potato dextrose media from surface sterilized twigs and DNA sequencing was performed to reveal the taxonomic identity of the morphotypes. In xylem tissues, the frequency and diversity of endophytes was highest in oak trees showing reduced vitality. This difference was not found for bark samples, in which the endophyte infections were more frequent and communities more diverse than in xylem. In general, most taxa were shared across the samples with few morphotypes being recovered in unique samples. Leaf phenolic profiles were found to accurately classify the trees according to their phenotypic vitality. Our results confirm that xylem is more selective substrate for endophytes than bark and that endophyte assemblages in xylem are correlated to the degree of host vitality. Thus, high vitality of trees may be associated with reduced habitat quality to wood-associated endophytes.

  • 2.
    Aliashkevich, Alena
    et al.
    Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Alvarez, Laura
    Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Cava, Felipe
    Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    New Insights Into the Mechanisms and Biological Roles of D-Amino Acids in Complex Eco-Systems2018In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 9, article id 683Article, review/survey (Refereed)
    Abstract [en]

    In the environment bacteria share their habitat with a great diversity of organisms, from microbes to humans, animals and plants. In these complex communities, the production of extracellular effectors is a common strategy to control the biodiversity by interfering with the growth and/or viability of nearby microbes. One of such effectors relies on the production and release of extracellular D-amino acids which regulate diverse cellular processes such as cell wall biogenesis, biofilm integrity, and spore germination. Non-canonical D-amino acids are mainly produced by broad spectrum racemases (Bsr). Bsr's promiscuity allows it to generate high concentrations of D-amino acids in environments with variable compositions of L-amino acids. However, it was not clear until recent whether these molecules exhibit divergent functions. Here we review the distinctive biological roles of D-amino acids, their mechanisms of action and their modulatory properties of the biodiversity of complex eco-systems.

  • 3.
    Almeida, Rafael M.
    et al.
    Univ Fed Juiz de Fora, Inst Ciencias Biol, Dept Biol, Aquat Ecol Lab, Juiz De Fora, Brazil..
    Nobrega, Gabriel N.
    Univ Sao Paulo, Escola Super Agr Luiz de Queiroz, Dept Ciencia Solo, Piracicaba, Brazil..
    Junger, Pedro C.
    Univ Fed Rio de Janeiro, Lab Limnol, Rio De Janeiro, Brazil..
    Figueiredo, Aline V.
    Univ Fed Rio Grande do Norte, Lab Water Resources & Environm Sanitat, BR-59072970 Natal, RN, Brazil..
    Andrade, Anizio S.
    Univ Fed Rio Grande do Norte, Lab Limnol, BR-59072970 Natal, RN, Brazil..
    de Moura, Caroline G. B.
    Univ Fed Rio Grande do Norte, Lab Limnol, BR-59072970 Natal, RN, Brazil..
    Tonetta, Denise
    Univ Fed Santa Catarina, Lab Freshwater Ecol, Florianopolis, SC, Brazil..
    Oliveira, Ernandes S., Jr.
    Radboud Univ Nijmegen, Dept Aquat Ecol & Environm Biol, Inst Water & Wetland Res, NL-6525 ED Nijmegen, Netherlands..
    Araujo, Fabiana
    Univ Fed Rio Grande do Norte, Lab Water Resources & Environm Sanitat, BR-59072970 Natal, RN, Brazil..
    Rust, Felipe
    Univ Fed Juiz de Fora, Inst Ciencias Biol, Dept Biol, Aquat Ecol Lab, Juiz De Fora, Brazil..
    Pineiro-Guerra, Juan M.
    Univ Republica, Dept Ecol Teor & Aplicada, Ctr Univ Reg Este, Montevideo, Uruguay.;Univ Republica, Fac Ciencias, Montevideo, Uruguay..
    Mendonca, Jurandir R., Jr.
    Univ Fed Rio Grande do Norte, Lab Water Resources & Environm Sanitat, BR-59072970 Natal, RN, Brazil..
    Medeiros, Leonardo R.
    Univ Fed Rio Grande do Norte, Lab Limnol, BR-59072970 Natal, RN, Brazil..
    Pinheiro, Lorena
    Univ Fed Estado Rio de Janeiro, Dept Ciencias Nat, Rio De Janeiro, Brazil..
    Miranda, Marcela
    Univ Fed Juiz de Fora, Inst Ciencias Biol, Dept Biol, Aquat Ecol Lab, Juiz De Fora, Brazil..
    Costa, Mariana R. A.
    Univ Fed Rio Grande do Norte, Lab Water Resources & Environm Sanitat, BR-59072970 Natal, RN, Brazil..
    Melo, Michaela L.
    Univ Fed Sao Carlos, Lab Microbial Proc & Biodivers, BR-13560 Sao Carlos, SP, Brazil..
    Nobre, Regina L. G.
    Univ Fed Rio Grande do Norte, Lab Limnol, BR-59072970 Natal, RN, Brazil..
    Benevides, Thiago
    Univ Fed Rio de Janeiro, Lab Limnol, Rio De Janeiro, Brazil..
    Roland, Fabio
    Univ Fed Juiz de Fora, Inst Ciencias Biol, Dept Biol, Aquat Ecol Lab, Juiz De Fora, Brazil..
    de Klein, Jeroen
    Wageningen Univ, Aquat Ecol & Environm Sci, NL-6700 AP Wageningen, Netherlands..
    Barros, Nathan O.
    Univ Fed Juiz de Fora, Inst Ciencias Biol, Dept Biol, Aquat Ecol Lab, Juiz De Fora, Brazil..
    Mendonca, Raquel
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology. Univ Fed Juiz de Fora, Inst Ciencias Biol, Dept Biol, Aquat Ecol Lab, Juiz De Fora, Brazil.
    Becker, Vanessa
    Univ Fed Rio Grande do Norte, Lab Water Resources & Environm Sanitat, BR-59072970 Natal, RN, Brazil..
    Huszar, Veral. M.
    Univ Fed Rio de Janeiro, Museu Nacl, Lab Ficol, Rio De Janeiro, Brazil..
    Kosten, Sarian
    Radboud Univ Nijmegen, Dept Aquat Ecol & Environm Biol, Inst Water & Wetland Res, NL-6525 ED Nijmegen, Netherlands..
    High Primary Production Contrasts with Intense Carbon Emission in a Eutrophic Tropical Reservoir2016In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 7, article id 717Article in journal (Refereed)
    Abstract [en]

    Recent studies from temperate lakes indicate that eutrophic systems tend to emit less carbon dioxide (Co-2) and bury more organic carbon (OC) than oligotrophic ones, rendering them CO2 sinks in some cases. However, the scarcity of data from tropical systems is critical for a complete understanding of the interplay between eutrophication and aquatic carbon (C) fluxes in warm waters. We test the hypothesis that a warm eutrophic system is a source of both CO2 and CH4 to the atmosphere, and that atmospheric emissions are larger than the burial of OC in sediments. This hypothesis was based on the following assumptions: (i) OC mineralization rates are high in warm water systems, so that water column CO2 production overrides the high C uptake by primary producers, and (ii) increasing trophic status creates favorable conditions for CH4 production. We measured water-air and sediment-water CO2 fluxes, CH4 diffusion, ebullition and oxidation, net ecosystem production (NEP) and sediment OC burial during the dry season in a eutrophic reservoir in the semiarid northeastern Brazil. The reservoir was stratified during daytime and mixed during nighttime. In spite of the high rates of primary production (4858 +/- 934 mg C m(-2) d(-1)), net heterotrophy was prevalent due to high ecosystem respiration (5209 +/- 992 mg C m(-2) d(-1)). Consequently, the reservoir was a source of atmospheric CO2 (518 +/- 182 mg C m(-2) d(-1)). In addition, the reservoir was a source of ebullitive (17 +/- 10 mg C m(-2) d(-1)) and diffusive CH4 (11 +/- 6 mg C m(-2) d(-1)). OC sedimentation was high (1162 mg C m(-2) d(-1)), but our results suggest that the majority of it is mineralized to CO2 (722 +/- 182 mg C m(-2) d(-1)) rather than buried as OC (440 mg C m(-2) d(-1)). Although temporally resolved data would render our findings more conclusive, our results suggest that despite being a primary production and OC burial hotspot, the tropical eutrophic system studied here was a stronger CO2 and CH4 source than a C sink, mainly because of high rates of OC mineralization in the water column and sediments.

  • 4.
    Alonso-Saez, Laura
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Zeder, Michael
    Harding, Tommy
    Pernthaler, Jakob
    Lovejoy, Connie
    Bertilsson, Stefan
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Pedros-Alio, Carlos
    Winter bloom of a rare betaproteobacteriurn in the Arctic Ocean2014In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 5, p. 425-Article in journal (Refereed)
    Abstract [en]

    Extremely low abundance microorganisms (members of the "rare biosphere") are believed to include dormant taxa, which can sporadically become abundant following environmental triggers. Yet, microbial transitions from rare to abundant have seldom been captured in situ, and it is uncertain how widespread these transitions are. A bloom of a single ribotype (>= 99% similarity in the 16S ribosomal RNA gene) of a widespread betaproteobacterium (Janthinobacterium sp.) occurred over 2 weeks in Arctic marine waters. The Janthinobactenum population was not detected microscopically in situ in January and early February, but suddenly appeared in the water column thereafter, eventually accounting for up to 20% of bacterial cells in mid February. During the bloom, this bacterium was detected at open water sites up to 50 km apart, being abundant down to more than 300 m. This event is one of the largest monospecific bacterial blooms reported in polar oceans. It is also remarkable because Betaproteobacteria are typically found only in low abundance in marine environments. In particular, Janthinobacterium were known from non-marine habitats and had previously been detected only in the rare biosphere of seawater samples, including the polar oceans. The Arctic Janthinobacterium formed mucilagenous monolayer aggregates after short (ca. 8 h) incubations, suggesting that biofilm formation may play a role in maintaining rare bacteria in pelagic marine environments. The spontaneous mass occurrence of this opportunistic rare taxon in polar waters during the energy-limited season extends current knowledge of how and when microbial transitions between rare and abundant occur in the ocean.

  • 5.
    Anasontzis, George E.
    et al.
    National and Kapodistrian University of Athens, Chalmers University of Technology, Department of Chemical and Biological Engineering, Microbial Biotechnology Unit, Sector of Botany, Department of Biology, National and Kapodistrian University of Athens, Zografou.
    Kourtoglou, Elisavet
    National Technical University of Athens, BIOtechMASS Unit, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens.
    Villas-Boâs, Silas G
    Centre for Microbial Innovation, School of Biological Sciences, The University of Auckland, Technical University of Denmark.
    Hatzinikolaou, Dimitris G.
    Department of Chemical Engineering, National Technical University of Athens.
    Christakopoulos, Paul
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Chemical Engineering.
    Metabolic Engineering of Fusarium oxysporum to Improve Its Ethanol-Producing Capability2016In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 7, article id 632Article in journal (Refereed)
    Abstract [en]

    Fusarium oxysporum is one of the few filamentous fungi capable of fermenting ethanol directly from plant cell wall biomass. It has the enzymatic toolbox necessary to break down biomass to its monosaccharides and, under anaerobic and microaerobic conditions, ferments them to ethanol. Although these traits could enable its use in consolidated processes and thus bypass some of the bottlenecks encountered in ethanol production from lignocellulosic material when Saccharomyces cerevisiae is used-namely its inability to degrade lignocellulose and to consume pentoses-two major disadvantages of F. oxysporum compared to the yeast-its low growth rate and low ethanol productivity-hinder the further development of this process. We had previously identified phosphoglucomutase and transaldolase, two major enzymes of glucose catabolism and the pentose phosphate pathway, as possible bottlenecks in the metabolism of the fungus and we had reported the effect of their constitutive production on the growth characteristics of the fungus. In this study, we investigated the effect of their constitutive production on ethanol productivity under anaerobic conditions. We report an increase in ethanol yield and a concomitant decrease in acetic acid production. Metabolomics analysis revealed that the genetic modifications applied did not simply accelerate the metabolic rate of the microorganism; they also affected the relative concentrations of the various metabolites suggesting an increased channeling toward the chorismate pathway, an activation of the γ-aminobutyric acid shunt, and an excess in NADPH regeneration

  • 6.
    Ansell, Brendan R. E.
    et al.
    Univ Melbourne, Fac Vet & Agr Sci, Melbourne, Vic, Australia..
    Baker, Louise
    Walter & Eliza Hall Inst Med Res, Populat Hlth & Immun Div, Melbourne, Vic, Australia..
    Emery, Samantha J.
    Walter & Eliza Hall Inst Med Res, Populat Hlth & Immun Div, Melbourne, Vic, Australia..
    McConville, Malcolm J.
    Univ Melbourne, Mol Sci & Biotechnol Inst Bio21, Melbourne, Vic, Australia..
    Svärd, Staffan
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Microbiology.
    Gasser, Robin B.
    Univ Melbourne, Fac Vet & Agr Sci, Melbourne, Vic, Australia..
    Jex, Aaron R.
    Univ Melbourne, Fac Vet & Agr Sci, Melbourne, Vic, Australia.;Walter & Eliza Hall Inst Med Res, Populat Hlth & Immun Div, Melbourne, Vic, Australia..
    Transcriptomics Indicates Active and Passive Metronidazole Resistance Mechanisms in Three Seminal Giardia Lines2017In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 8, article id 398Article in journal (Refereed)
    Abstract [en]

    Giardia duodenalis is an intestinal parasite that causes 200-300 million episodes of diarrhoea annually. Metronidazole (Mtz) is a front-line anti-giardial, but treatment failure is common and clinical resistance has been demonstrated. Mtz is thought to be activated within the parasite by oxidoreductase enzymes, and to kill by causing oxidative damage. In G. duodenalis, Mtz resistance involves active and passive mechanisms. Relatively low activity of iron-sulfur binding proteins, namely pyruvate: ferredoxin oxidoreductase (PFOR), ferredoxins, and nitroreductase-1, enable resistant cells to passively avoid Mtz activation. Additionally, low expression of oxygen-detoxification enzymes can allow passive (non-enzymatic) Mtz detoxification via futile redox cycling. In contrast, active resistance mechanisms include complete enzymatic detoxification of the pro-drug by nitroreductase-2 and enhanced repair of oxidized biomolecules via thioredoxin-dependent antioxidant enzymes. Molecular resistance mechanisms may be largely founded on reversible transcriptional changes, as some resistant lines revert to drug sensitivity during drug-free culture in vitro, or passage through the life cycle. To comprehensively characterize these changes, we undertook strand-specific RNA sequencing of three laboratory-derived Mtz-resistant lines, 106-2ID(10), 713-M3, and WB-M3, and compared transcription relative to their susceptible parents. Common up-regulated genes encoded variant-specific surface proteins (VSPs), a high cysteine membrane protein, calcium and zinc channels, a Mad-2 cell cycle regulator and a putative fatty acid a alpha-oxidase. Down-regulated genes included nitroreductase-1, putative chromate and quinone reductases, and numerous genes that act proximal to PFOR. Transcriptional changes in 106-2ID(10) diverged from those in 713-r and WB-r (r <= 0.2), which were more similar to each other (r = 0.47). In 106-2ID(10), a nonsense mutation in nitroreductase-1 transcripts could enhance passive resistance whereas increased transcription of nitroreductase-2, and a MATE transmembrane pump system, suggest active drug detoxification and efflux, respectively. By contrast, transcriptional changes in 713-M3 and WB-M3 indicated a higher oxidative stress load, attributed to Mtz- and oxygen-derived radicals, respectively. Quantitative comparisons of orthologous gene transcription between Mtz-resistant G. duodenalis and Trichomonas vaginalis, a closely related parasite, revealed changes in transcripts encoding peroxidases, heat shock proteins, and FMN-binding oxidoreductases, as prominent correlates of resistance. This work provides deep insight into Mtz-resistant G. duodenalis, and illuminates resistance-associated features across parasitic species.

  • 7. Askarian, Fatemeh
    et al.
    Lapek, John D., Jr.
    Dongre, Mitesh
    Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Tsai, Chih-Ming
    Kumaraswamy, Monika
    Kousha, Armin
    Valderrama, J. Andres
    Ludviksen, Judith A.
    Cavanagh, Jorunn P.
    Uchiyama, Satoshi
    Mollnes, Tom E.
    Gonzalez, David J.
    Wai, Sun N.
    Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Nizet, Victor
    Johannessen, Mona
    Staphylococcus aureus Membrane-Derived Vesicles Promote Bacterial Virulence and Confer Protective Immunity in Murine Infection Models2018In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 9, article id 262Article in journal (Refereed)
    Abstract [en]

    Staphylococcus aureus produces membrane-derived vesicles (MVs), which share functional properties to outer membrane vesicles. Atomic force microscopy revealed that S. aureus-derived MVs are associated with the bacterial surface or released into the surrounding environment depending on bacterial growth conditions. By using a comparative proteomic approach, a total of 131 and 617 proteins were identified in MVs isolated from S. aureus grown in Luria-Bertani and brain-heart infusion broth, respectively. Purified S. aureus MVs derived from the bacteria grown in either media induced comparable levels of cytotoxicity and neutrophil-activation. Administration of exogenous MVs increased the resistance of S. aureus to killing by whole blood or purified human neutrophils ex vivo and increased S. aureus survival in vivo. Finally, immunization of mice with S. aureus-derived MVs induced production of IgM, total IgG, IgG1, IgG2a, and IgG2b resulting in protection against subcutaneous and systemic S. aureus infection. Collectively, our results suggest S. aureus MVs can influence bacterial-host interactions during systemic infections and provide protective immunity in murine models of infection.

  • 8.
    Asplund Samuelsson, Johannes
    et al.
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO).
    Sundh, J.
    Dupont, C. L.
    Allen, A. E.
    McCrow, J. P.
    Celepli, N. A.
    Bergman, B.
    Ininbergs, K.
    Ekman, M.
    Diversity and expression of bacterial metacaspases in an aquatic ecosystem2016In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 7, no JUL, article id 1043Article in journal (Refereed)
    Abstract [en]

    Metacaspases are distant homologs of metazoan caspase proteases, implicated in stress response, and programmed cell death (PCD) in bacteria and phytoplankton. While the few previous studies on metacaspases have relied on cultured organisms and sequenced genomes, no studies have focused on metacaspases in a natural setting. We here present data from the first microbial community-wide metacaspase survey; performed by querying metagenomic and metatranscriptomic datasets from the brackish Baltic Sea, a water body characterized by pronounced environmental gradients and periods of massive cyanobacterial blooms. Metacaspase genes were restricted to ~4% of the bacteria, taxonomically affiliated mainly to Bacteroidetes, Alpha- and Betaproteobacteria and Cyanobacteria. The gene abundance was significantly higher in larger or particle-associated bacteria (<0.8 μm), and filamentous Cyanobacteria dominated metacaspase gene expression throughout the bloom season. Distinct seasonal expression patterns were detected for the three metacaspase genes in Nodularia spumigena, one of the main bloom-formers. Clustering of normalized gene expression in combination with analyses of genomic and assembly data suggest functional diversification of these genes, and possible roles of the metacaspase genes related to stress responses, i.e., sulfur metabolism in connection to oxidative stress, and nutrient stress induced cellular differentiation. Co-expression of genes encoding metacaspases and nodularin toxin synthesis enzymes was also observed in Nodularia spumigena. The study shows that metacaspases represent an adaptation of potentially high importance for several key organisms in the Baltic Sea, most prominently Cyanobacteria, and open up for further exploration of their physiological roles in microbes and assessment of their ecological impact in aquatic habitats.

  • 9.
    Asplund-Samuelsson, Johannes
    et al.
    Stockholm University.
    Sundh, John
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Dupont, Chris L.
    Craig Venter Institute, USA.
    Allen, Andrew E.
    Craig Venter Institute, USA.
    McCrow, John P.
    Craig Venter Institute, USA.
    Celepli, Narin A.
    Stockholm University.
    Bergman, Birgitta
    Stockholm University.
    Ininbergs, Karolina
    Stockholm University.
    Ekman, Martin
    Stockholm University.
    Diversity and expression of bacterial metacaspases in an aquatic ecosystem2016In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 7, p. 1-18, article id 1043Article in journal (Refereed)
    Abstract [en]

    Metacaspases are distant homologs of metazoan caspase proteases, implicated in stress response, and programmed cell death (PCD) in bacteria and phytoplankton. While the few previous studies on metacaspases have relied on cultured organisms and sequenced genomes, no studies have focused on metacaspases in a natural setting. We here present data from the first microbial community-wide metacaspase survey; performed by querying metagenomic and metatranscriptomic datasets from the brackish Baltic Sea, a water body characterized by pronounced environmental gradients and periods of massive cyanobacterial blooms. Metacaspase genes were restricted to ~4% of the bacteria, taxonomically affiliated mainly to Bacteroidetes, Alpha- and Betaproteobacteria and Cyanobacteria. The gene abundance was significantly higher in larger or particle-associated bacteria (<0.8 μm), and filamentous Cyanobacteria dominated metacaspase gene expression throughout the bloom season. Distinct seasonal expression patterns were detected for the three metacaspase genes in Nodularia spumigena, one of the main bloom-formers. Clustering of normalized gene expression in combination with analyses of genomic and assembly data suggest functional diversification of these genes, and possible roles of the metacaspase genes related to stress responses, i.e., sulfur metabolism in connection to oxidative stress, and nutrient stress induced cellular differentiation. Co-expression of genes encoding metacaspases and nodularin toxin synthesis enzymes was also observed in Nodularia spumigena. The study shows that metacaspases represent an adaptation of potentially high importance for several key organisms in the Baltic Sea, most prominently Cyanobacteria, and open up for further exploration of their physiological roles in microbes and assessment of their ecological impact in aquatic habitats.

  • 10.
    Atterby, Clara
    et al.
    Uppsala University.
    Mourkas, Evangelos
    Uppsala University;Univ Bath, UK.
    Meric, Guillaume
    Univ Bath, UK.
    Pascoe, Ben
    Univ Bath, UK;MRC CLIMB Consortium, UK.
    Wang, Helen
    Uppsala University.
    Waldenström, Jonas
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Sheppard, Samuel K.
    Univ Bath, UK;MRC CLIMB Consortium, UK.
    Olsen, Björn
    Uppsala University.
    Jarhult, Josef D.
    Uppsala University.
    Ellström, Patrik
    Uppsala University.
    The Potential of Isolation Source to Predict Colonization in Avian Hosts: A Case Study in Campylobacter jejuni Strains From Three Bird Species2018In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 9, article id 591Article in journal (Refereed)
    Abstract [en]

    Campylobacter jejuni is the primary cause of bacterial gastroenteritis worldwide, infecting humans mostly through consumption of contaminated poultry. C. jejuni is common in the gut of wild birds, and shows distinct strain-specific association to particular bird species. This contrasts with farm animals, in which several genotypes co-exist. It is unclear if the barriers restricting transmission between host species of such specialist strains are related to environmental factors such as contact between host species, bacterial survival in the environment, etc., or rather to strain specific adaptation to the intestinal environment of specific hosts. We compared colonization dynamics in vivo between two host-specific C. jejuni from a song thrush (ST-1304 complex) and a mallard (ST-995), and a generalist strain from chicken (ST-21 complex) in a wild host, the mallard (Anas platyrhynchos). In 18-days infection experiments, the song thrush strain showed only weak colonization and was cleared from all birds after 10 days, whereas both mallard and chicken strains remained stable. When the chicken strain was given 4 days prior to co-infection of the same birds with a mallard strain, it was rapidly outcompeted by the latter. In contrast, when the mallard strain was given 4 days prior to co-infection with the chicken strain, the mallard strain remained and expansion of the chicken strain was delayed. Our results suggest strain-specific differences in the ability of C. jejuni to colonize mallards, likely associated with host origin. This difference might explain observed host association patterns in C. jejuni from wild birds.

  • 11.
    Atterby, Clara
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Infection medicine.
    Mourkas, Evangelos
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Univ Bath, Dept Biol & Biochem, Milner Ctr Evolut, Bath, Avon, England.
    Meric, Guillaume
    Univ Bath, Dept Biol & Biochem, Milner Ctr Evolut, Bath, Avon, England.
    Pascoe, Ben
    Univ Bath, Dept Biol & Biochem, Milner Ctr Evolut, Bath, Avon, England;MRC CLIMB Consortium, Bath, Avon, England.
    Wang, Helen
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Waldenström, Jonas
    Linnaeus Univ, Ctr Ecol & Evolut Microbial Model Syst, Kalmar, Sweden.
    Sheppard, Samuel K.
    Univ Bath, Dept Biol & Biochem, Milner Ctr Evolut, Bath, Avon, England;MRC CLIMB Consortium, Bath, Avon, England.
    Olsen, Björn
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Infection medicine.
    Järhult, Josef D.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Infection medicine.
    Ellström, Patrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Infection medicine.
    The Potential of Isolation Source to Predict Colonization in Avian Hosts: A Case Study in Campylobacter jejuni Strains From Three Bird Species2018In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 9, article id 591Article in journal (Refereed)
    Abstract [en]

    Campylobacter jejuni is the primary cause of bacterial gastroenteritis worldwide, infecting humans mostly through consumption of contaminated poultry. C. jejuni is common in the gut of wild birds, and shows distinct strain-specific association to particular bird species. This contrasts with farm animals, in which several genotypes co-exist. It is unclear if the barriers restricting transmission between host species of such specialist strains are related to environmental factors such as contact between host species, bacterial survival in the environment, etc., or rather to strain specific adaptation to the intestinal environment of specific hosts. We compared colonization dynamics in vivo between two host-specific C. jejuni from a song thrush (ST-1304 complex) and a mallard (ST-995), and a generalist strain from chicken (ST-21 complex) in a wild host, the mallard (Anas platyrhynchos). In 18-days infection experiments, the song thrush strain showed only weak colonization and was cleared from all birds after 10 days, whereas both mallard and chicken strains remained stable. When the chicken strain was given 4 days prior to co-infection of the same birds with a mallard strain, it was rapidly outcompeted by the latter. In contrast, when the mallard strain was given 4 days prior to co-infection with the chicken strain, the mallard strain remained and expansion of the chicken strain was delayed. Our results suggest strain-specific differences in the ability of C. jejuni to colonize mallards, likely associated with host origin. This difference might explain observed host association patterns in C. jejuni from wild birds.

  • 12.
    Baltar, Federico
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. Univ Otago, New Zealand.
    Lundin, Daniel
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Palovaara, Joakim
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Lekunberri, Itziar
    Univ Vienna, Austria;Inst Catala Recerca Aigua, Spain.
    Reinthaler, Thomas
    Univ Vienna, Austria.
    Herndl, Gerhard J.
    Univ Vienna, Austria;Univ Utrecht, Netherlands.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Prokaryotic Responses to Ammonium and Organic Carbon Reveal Alternative CO2 Fixation Pathways and Importance of Alkaline Phosphatase in the Mesopelagic North Atlantic2016In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 7, article id 1670Article in journal (Refereed)
    Abstract [en]

    To decipher the response of mesopelagic prokaryotic communities to input of nutrients, we tracked changes in prokaryotic abundance, extracellular enzymatic activities, heterotrophic production, dark dissolved inorganic carbon (DIC) fixation, community composition (16S rRNA sequencing) and community gene expression (metatranscriptomics) in 3 microcosm experiments with water from the mesopelagic North Atlantic. Responses in 3 different treatments amended with thiosulfate, ammonium or organic matter (i.e., pyruvate plus acetate) were compared to unamended controls. The strongest stimulation was found in the organic matter enrichments, where all measured rates increased >10-fold. Strikingly, in the organic matter treatment, the dark DIC fixation rates-assumed to be related to autotrophic metabolisms-were equally stimulated as all the other heterotrophic-related parameters. This increase in DIC fixation rates was paralleled by an up-regulation of genes involved in DIC assimilation via anaplerotic pathways. Alkaline phosphatase was the metabolic rate most strongly stimulated and its activity seemed to be related to cross-activation by nonpartner histidine kinases, and/or the activation of genes involved in the regulation of elemental balance during catabolic processes. These findings suggest that episodic events such as strong sedimentation of organic matter into the mesopelagic might trigger rapid increases of originally rare members of the prokaryotic community, enhancing heterotrophic and autotrophic carbon uptake rates, ultimately affecting carbon cycling. Our experiments highlight a number of fairly unstudied microbial processes of potential importance in mesopelagic waters that require future attention.

  • 13.
    Beier, Sara
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology.
    Bertilsson, Stefan
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology.
    Bacterial chitin degradation: mechanisms and ecophysiological strategies2013In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 4, p. 149-Article, review/survey (Refereed)
    Abstract [en]

    Chitin is one the most abundant polymers in nature and interacts with both carbon and nitrogen cycles. Processes controlling chitin degradation are summarized in reviews published some 20 years ago, but the recent use of culture-independent molecular methods has led to a revised understanding of the ecology and biochemistry of this process and the organisms involved. This review summarizes different mechanisms and the principal steps involved in chitin degradation at a molecular level while also discussing the coupling of community composition to measured chitin hydrolysis activities and substrate uptake. Ecological consequences are then highlighted and discussed with a focus on the cross feeding associated with the different habitats that arise because of the need for extracellular hydrolysis of the chitin polymer prior to metabolic use. Principal environmental drivers of chitin degradation are identified which are likely to influence both community composition of chitin degrading bacteria and measured chitin hydrolysis activities.

  • 14. Bell, E.
    et al.
    Lamminmäki, T.
    Alneberg, Johannes
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Gene Technology.
    Andersson, Anders F.
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Gene Technology.
    Qian, C.
    Xiong, W.
    Hettich, R. L.
    Balmer, L.
    Frutschi, M.
    Sommer, G.
    Bernier-Latmani, R.
    Biogeochemical cycling by a low-diversity microbial community in deep groundwater2018In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 9, no SEP, article id 2129Article in journal (Refereed)
    Abstract [en]

    Olkiluoto, an island on the south-west coast of Finland, will host a deep geological repository for the storage of spent nuclear fuel. Microbially induced corrosion from the generation of sulphide is therefore a concern as it could potentially compromise the longevity of the copper waste canisters. Groundwater at Olkiluoto is geochemically stratified with depth and elevated concentrations of sulphide are observed when sulphate-rich and methane-rich groundwaters mix. Particularly high sulphide is observed in methane-rich groundwater from a fracture at 530.6 mbsl, where mixing with sulphate-rich groundwater occurred as the result of an open drill hole connecting two different fractures at different depths. To determine the electron donors fuelling sulphidogenesis, we combined geochemical, isotopic, metagenomic and metaproteomic analyses. This revealed a low diversity microbial community fuelled by hydrogen and organic carbon. Sulphur and carbon isotopes of sulphate and dissolved inorganic carbon, respectively, confirmed that sulphate reduction was ongoing and that CO2 came from the degradation of organic matter. The results demonstrate the impact of introducing sulphate to a methane-rich groundwater with limited electron acceptors and provide insight into extant metabolisms in the terrestrial subsurface. 

  • 15.
    Bellenberg, Sören
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. Univ Duisburg Essen, Germany.
    Huynh, Dieu
    TU Bergakademie Freiberg, Germany.
    Poetsch, Ansgar
    Ruhr Univ Bochum, Germany;Univ Plymouth, UK.
    Sand, Wolfgang
    Univ Duisburg Essen, Germany;TU Bergakad Freiberg, Germany;Donghua Univ, Peoples Republic of China.
    Vera, Mario
    Pontificia Univ Catolica Chile, Chile.
    Proteomics Reveal Enhanced Oxidative Stress Responses and Metabolic Adaptation in Acidithiobacillus ferrooxidans Biofilm Cells on Pyrite2019In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 10, p. 1-14, article id 592Article in journal (Refereed)
    Abstract [en]

    Reactive oxygen species (ROS) cause oxidative stress and growth inhibition by inactivation of essential enzymes, DNA and lipid damage in microbial cells. Acid mine drainage (AMD) ecosystems are characterized by low pH values, enhanced levels of metal ions and low species abundance. Furthermore, metal sulfides, such as pyrite and chalcopyrite, generate extracellular ROS upon exposure to acidic water. Consequently, oxidative stress management is especially important in acidophilic leaching microorganisms present in industrial biomining operations, especially when forming biofilms on metal sulfides. Several adaptive mechanisms have been described, but the molecular repertoire of responses upon exposure to pyrite and the presence of ROS are not thoroughly understood in acidophiles. In this study the impact of the addition of H2O2 on iron oxidation activity in Acidithiobacillus ferrooxidans DSM 14882(T) was investigated. Iron(II)- or sulfur-grown cells showed a higher sensitivity toward H2O2 than pyrite-grown ones. In order to elucidate which molecular responses may be involved, we used shot-gun proteomics and compared proteomes of cells grown with iron(II)-ions against biofilm cells, grown for 5 days in presence of pyrite as sole energy source. In total 1157 proteins were identified. 213 and 207 ones were found to have increased levels in iron(II) ion-grown or pyrite-biofilm cells, respectively. Proteins associated with inorganic sulfur compound (ISC) oxidation were among the latter. In total, 80 proteins involved in ROS degradation, thiol redox regulation, macromolecule repair mechanisms, biosynthesis of antioxidants, as well as metal and oxygen homeostasis were found. 42 of these proteins had no significant changes in abundance, while 30 proteins had increased levels in pyrite-biofilm cells. New insights in ROS mitigation strategies, such as importance of globins for oxygen homeostasis and prevention of unspecific reactions of free oxygen that generate ROS are presented for A. ferrooxidans biofilm cells. Furthermore, proteomic analyses provide insights in adaptations of carbon fixation and oxidative phosphorylation pathways under these two growth conditions.

  • 16. Bengtsson-Palme, Johan
    et al.
    Boulund, Fredrik
    Fick, Jerker
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Kristiansson, Erik
    Larsson, D. G. Joakim
    Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India2014In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 5Article in journal (Refereed)
    Abstract [en]

    There is increasing evidence for an environmental origin of many antibiotic resistance genes. Consequently, it is important to identify environments of particular risk for selecting and maintaining such resistance factors. In this study, we described the diversity of antibiotic resistance genes in an Indian lake subjected to industrial pollution with fluoroquinolone antibiotics. We also assessed the genetic context of the identified resistance genes, to try to predict their genetic transferability. The lake harbored a wide range of resistance genes (81 identified gene types) against essentially every major class of antibiotics, as well as genes responsible for mobilization of genetic material. Resistance genes were estimated to be 7000 times more abundant than in a Swedish lake included for comparison, where only eight resistance genes were found. The sul2 and qnrD genes were the most common resistance genes in the Indian lake. Twenty-six known and 21 putative novel plasmids were recovered in the Indian lake metagenome, which, together with the genes found, indicate a large potential for horizontal gene transfer through conjugation. Interestingly, the microbial community of the lake still included a wide range of taxa, suggesting that, across most phyla, bacteria has adapted relatively well to this highly polluted environment. Based on the wide range and high abundance of known resistance factors we have detected, it is plausible that yet unrecognized resistance genes are also present in the lake. Thus, we conclude that environments polluted with waste from antibiotic manufacturing could be important reservoirs for mobile antibiotic resistance genes.

  • 17.
    Berga, Mercè
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology. Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, Germany.
    Zha, Yinghua
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology.
    Székely, Anna J.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology.
    Langenheder, Silke
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology.
    Functional and Compositional Stability of Bacterial Metacommunities in Response to Salinity Changes2017In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 8, article id 948Article in journal (Refereed)
    Abstract [en]

    Disturbances and environmental change are important factors determining the diversity,composition, and functioning of communities. However, knowledge about how naturalbacterial communities are affected by such perturbations is still sparse. We performeda whole ecosystem manipulation experiment with freshwater rock pools where weapplied salinity disturbances of different intensities. The aim was to test how thecompositional and functional resistance and resilience of bacterial communities,alpha- and beta-diversity and the relative importance of stochastic and deterministiccommunity assembly processes changed along a disturbance intensity gradient.We found that bacterial communities were functionally resistant to all salinity levels (3, 6, and 12 psu) and compositionally resistant to a salinity increase to 3 psu andresilient to increases of 6 and 12 psu. Increasing salinities had no effect on local richnessand evenness, beta-diversity and the proportion of deterministically vs. stochasticallyassembled communities. Our results show a high functional and compositional stabilityof bacterial communities to salinity changes of different intensities both at localand regional scales, which possibly reflects long-term adaptation to environmentalconditions in the study system.

  • 18.
    Berkelmann, Dirk
    et al.
    Georg August Univ, Germany.
    Schneider, Dominik
    Georg August Univ, Germany.
    Engelhaupt, Martin
    Georg August Univ, Germany.
    Heinemann, Melanie
    Georg August Univ, Germany.
    Christel, Stephan
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. Georg August Univ, Germany.
    Wijayanti, Marini
    Bogor Agr Univ, Indonesia.
    Meryandini, Anja
    Bogor Agr Univ, Indonesia.
    Daniel, Rolf
    Georg August Univ, Germany.
    How Rainforest Conversion to Agricultural Systems in Sumatra (Indonesia) Affects Active Soil Bacterial Communities2018In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 9, article id 2381Article in journal (Refereed)
    Abstract [en]

    Palm oil production in Indonesia increased constantly over the last decades, which led to massive deforestation, especially on Sumatra island. The ongoing conversion of rainforest to agricultural systems results in high biodiversity loss. Here, we present the first RNA-based study on the effects of rainforest transformation to rubber and oil palm plantations in Indonesia for the active soil bacterial communities. For this purpose, bacterial communities of three different converted systems (jungle rubber, rubber plantation, and oil palm plantation) were studied in two landscapes with rainforest as reference by RT-PCR amplicon-based analysis of 16S rRNA gene transcripts. Active soil bacterial communities were dominated by Frankiales (Actinobacteria), subgroup 2 of the Acidobacteria and Alphaproteobacteria (mainly Rhizobiales and Rhodospirillales). Community composition differed significantly between the converted land use systems and rainforest reference sites. Alphaproteobactena decreased significantly in oil palm samples compared to rainforest samples. In contrast, relative abundances of taxa within the Acidobacteria increased. Most important abiotic drivers for shaping soil bacterial communities were pH, calcium concentration, base saturation and C:N ratio. Indicator species analysis showed distinct association patterns for the analyzed land use systems. Nitrogen-fixing taxa including members of Rhizobiales and Rhodospirillales were associated with rainforest soils while nitrifiers and heat-resistant taxa including members of Actinobacteria were associated with oil palm soils. Predicted metabolic profiles revealed that the relative abundances of genes associated with fixation of nitrogen significantly decreased in plantation soils. Furthermore, predicted gene abundances regarding motility, competition or gene transfer ability indicated rainforest conversion-induced changes as well.

  • 19. Berner, Christoffer
    et al.
    Bertos-Fortis, Mireia
    Pinhassi, Jarone
    Legrand, Catherine
    Response of Microbial Communities to Changing Climate Conditions During Summer Cyanobacterial Blooms in the Baltic Sea2018In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 9, article id 1562Article in journal (Refereed)
    Abstract [en]

    Frequencies and biomass of Baltic Sea cyanobacterial blooms are expected to be higher in future climate conditions, but also of longer duration as a result of increased sea surface temperature. Concurrently, climate predictions indicate a reduced salinity in the Baltic Sea. These climate-driven changes are expected to alter not solely the phytoplankton community but also the role of microbial communities for nutrient remineralization. Here, we present the response of summer plankton communities (filamentous cyanobacteria, picocyanobacteria, and heterotrophic bacteria) to the interplay of increasing temperature (from 16 to 18 degrees C and 20 degrees C) and reduced salinity (from salinity 6.9 to 5.9) in the Baltic Proper (NW Gotland Sea) using a microcosm approach. Warmer temperatures led to an earlier peak of cyanobacterial biomass, while yields were reduced. These conditions caused a decrease of nitrogen-fixers (Dolichospermum sp.) biomass, while non nitrogen-fixers (Pseudanabaena sp.) increased. Salinity reduction did not affect cyanobacterial growth nor community composition. Among heterotrophic bacteria, Actinobacteria showed preference for high temperature, while Gammaproteobacteria thrived at in situ temperature. Heterotrophic bacteria community changed drastically at lower salinity and resembled communities at high temperature. Picocyanobacteria and heterotrophic bacterial biomass had a pronounced increase associated with the decay of filamentous cyanobacteria. This suggests that shifts in community composition of heterotrophic bacteria are influenced both directly by abiotic factors (temperature and salinity) and potentially indirectly by cyanobacteria. Our findings suggest that at warmer temperature, lower yield of photosynthetic cyanobacteria combined with lower proportion of nitrogen-fixers in the community could result in lower carbon export to the marine food web with consequences for the decomposer community of heterotrophic bacteria.

  • 20.
    Berner, Christoffer
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Bertos-Fortis, Mireia
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Legrand, Catherine
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Response of Microbial Communities to Changing Climate Conditions During Summer Cyanobacterial Blooms in the Baltic Sea2018In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 9, article id 1562Article in journal (Refereed)
    Abstract [en]

    Frequencies and biomass of Baltic Sea cyanobacterial blooms are expected to be higher in future climate conditions, but also of longer duration as a result of increased sea surface temperature. Concurrently, climate predictions indicate a reduced salinity in the Baltic Sea. These climate-driven changes are expected to alter not solely the phytoplankton community but also the role of microbial communities for nutrient remineralization. Here, we present the response of summer plankton communities (filamentous cyanobacteria, picocyanobacteria, and heterotrophic bacteria) to the interplay of increasing temperature (from 16 to 18 degrees C and 20 degrees C) and reduced salinity (from salinity 6.9 to 5.9) in the Baltic Proper (NW Gotland Sea) using a microcosm approach. Warmer temperatures led to an earlier peak of cyanobacterial biomass, while yields were reduced. These conditions caused a decrease of nitrogen-fixers (Dolichospermum sp.) biomass, while non nitrogen-fixers (Pseudanabaena sp.) increased. Salinity reduction did not affect cyanobacterial growth nor community composition. Among heterotrophic bacteria, Actinobacteria showed preference for high temperature, while Gammaproteobacteria thrived at in situ temperature. Heterotrophic bacteria community changed drastically at lower salinity and resembled communities at high temperature. Picocyanobacteria and heterotrophic bacterial biomass had a pronounced increase associated with the decay of filamentous cyanobacteria. This suggests that shifts in community composition of heterotrophic bacteria are influenced both directly by abiotic factors (temperature and salinity) and potentially indirectly by cyanobacteria. Our findings suggest that at warmer temperature, lower yield of photosynthetic cyanobacteria combined with lower proportion of nitrogen-fixers in the community could result in lower carbon export to the marine food web with consequences for the decomposer community of heterotrophic bacteria.

  • 21.
    Bertos-Fortis, Mireia
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Farnelid, Hanna
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Lindh, Markus V.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Casini, Michele
    Swedish University of Agricultural Sciences.
    Andersson, Agneta
    Umeå University.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Legrand, Catherine
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Unscrambling Cyanobacteria Community Dynamics Related to Environmental Factors2016In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 7, article id 625Article in journal (Refereed)
    Abstract [en]

    Future climate scenarios in the Baltic Sea project an increase of cyanobacterial bloom frequency and duration, attributed to eutrophication and climate change. Some cyanobacteria can be toxic and their impact on ecosystem services is relevant for a sustainable sea. Yet, there is limited understanding of the mechanisms regulating cyanobacterial diversity and biogeography. Here we unravel successional patterns and changes in cyanobacterial community structure using a 2-year monthly time series during the productive season in a 100 km coastal-offshore transect using microscopy and high-throughput sequencing of 16S rRNA gene fragments. A total of 565 cyanobacterial OTUs were found, of which 231 where filamentous/colonial and 334 picocyanobacterial. Spatial differences in community structure between coastal and offshore waters were minor. An "epidemic population structure" (dominance of a single cluster) was found for Aphanizomenon/Dolichospermum within the filamentous/colonial cyanobacterial community. In summer, this cluster simultaneously occurred with opportunistic clusters/OTUs, e.g., Nodulana spumigena and Pseudanabaena. Picocyanobacteria, Synechococcus/Cyanobium, formed a consistent but highly diverse group. Overall, the potential drivers structuring summer cyanobacterial communities were temperature and salinity. However, the different responses to environmental factors among and within genera suggest high niche specificity for individual OTUs. The recruitment and occurrence of potentially toxic filamentous/colonial clusters was likely related to disturbance such as mixing events and short-term shifts in salinity, and not solely dependent on increasing temperature and nitrogen-limiting conditions. Nutrients did not explain further the changes in cyanobacterial community composition. Novel occurrence patterns were identified as a strong seasonal succession revealing a tight coupling between the emergence of opportunistic picocyanobacteria and the bloom of filamentous/colonial clusters. These findings highlight that if environmental conditions can partially explain the presence of opportunistic picocyanobacteria, microbial and trophic interactions with filamentous/colonial cyanobacteria should also be considered as potential shaping factors for single-celled communities. Regional climate change scenarios in the Baltic Sea predict environmental shifts leading to higher temperature and lower salinity; conditions identified here as favorable for opportunistic filamentous/colonial cyanobacteria. Altogether, the diversity and complexity of cyanobacterial communities reported here is far greater than previously known, emphasizing the importance of microbial interactions between filamentous and picocyanobacteria in the context of environmental disturbances.

  • 22. Bertos-Fortis, Mireia
    et al.
    Farnelid, Hanna M.
    Lindh, Markus V.
    Casini, Michele
    Andersson, Agneta
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Pinhassi, Jarone
    Legrand, Catherine
    Unscrambling Cyanobacteria Community Dynamics Related to Environmental Factors2016In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 7, article id 625Article in journal (Refereed)
    Abstract [en]

    Future climate scenarios in the Baltic Sea project an increase of cyanobacterial bloom frequency and duration, attributed to eutrophication and climate change. Some cyanobacteria can be toxic and their impact on ecosystem services is relevant for a sustainable sea. Yet, there is limited understanding of the mechanisms regulating cyanobacterial diversity and biogeography. Here we unravel successional patterns and changes in cyanobacterial community structure using a 2-year monthly time series during the productive season in a 100 km coastal-offshore transect using microscopy and high-throughput sequencing of 16S rRNA gene fragments. A total of 565 cyanobacterial OTUs were found, of which 231 where filamentous/colonial and 334 picocyanobacterial. Spatial differences in community structure between coastal and offshore waters were minor. An "epidemic population structure" (dominance of a single cluster) was found for Aphanizomenon/Dolichospermum within the filamentous/colonial cyanobacterial community. In summer, this cluster simultaneously occurred with opportunistic clusters/OTUs, e.g., Nodulana spumigena and Pseudanabaena. Picocyanobacteria, Synechococcus/Cyanobium, formed a consistent but highly diverse group. Overall, the potential drivers structuring summer cyanobacterial communities were temperature and salinity. However, the different responses to environmental factors among and within genera suggest high niche specificity for individual OTUs. The recruitment and occurrence of potentially toxic filamentous/colonial clusters was likely related to disturbance such as mixing events and short-term shifts in salinity, and not solely dependent on increasing temperature and nitrogen-limiting conditions. Nutrients did not explain further the changes in cyanobacterial community composition. Novel occurrence patterns were identified as a strong seasonal succession revealing a tight coupling between the emergence of opportunistic picocyanobacteria and the bloom of filamentous/colonial clusters. These findings highlight that if environmental conditions can partially explain the presence of opportunistic picocyanobacteria, microbial and trophic interactions with filamentous/colonial cyanobacteria should also be considered as potential shaping factors for single-celled communities. Regional climate change scenarios in the Baltic Sea predict environmental shifts leading to higher temperature and lower salinity; conditions identified here as favorable for opportunistic filamentous/colonial cyanobacteria. Altogether, the diversity and complexity of cyanobacterial communities reported here is far greater than previously known, emphasizing the importance of microbial interactions between filamentous and picocyanobacteria in the context of environmental disturbances.

  • 23.
    Blumenstein, Kathrin
    et al.
    Swedish University of Agricultural Sciences, Alnarp, Sweden.
    Macaya-Sanz, David
    Madrid, Spain.
    Martin, Juana A.
    Madrid, Spain.
    Albrectsen, Benedicte R.
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark.
    Witzell, Johanna
    Joensuu, Finland.
    Phenotype MicroArrays as a complementary tool to next generation sequencing for characterization of tree endophytes2015In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 6, article id 1033Article in journal (Refereed)
    Abstract [en]

    There is an increasing need to calibrate microbial community profiles obtained through next generation sequencing (NGS) with relevant taxonomic identities of the microbes, and to further associate these identities with phenotypic attributes. Phenotype MicroArray (PM) techniques provide a semi-high throughput assay for characterization and monitoring the microbial cellular phenotypes. Here, we present detailed descriptions of two different PM protocols used in our recent studies on fungal endophytes of forest trees, and highlight the benefits and limitations of this technique. We found that the PM approach enables effective screening of substrate utilization by endophytes. However, the technical limitations are multifaceted and the interpretation of the PM data challenging. For the best result, we recommend that the growth conditions for the fungi are carefully standardized. In addition, rigorous replication and control strategies should be employed whether using pre-configured, commercial microwell-plates or in-house designed PM plates for targeted substrate analyses. With these precautions, the PM technique is a valuable tool to characterize the metabolic capabilities of individual endophyte isolates, or successional endophyte communities identified by NGS, allowing a functional interpretation of the taxonomic data. Thus, PM approaches can provide valuable complementary information for NGS studies of fungal endophytes in forest trees.

  • 24. Brodiazhenko, Tetiana
    et al.
    Johansson, Marcus J. O.
    Takada, Hiraku
    Nissan, Tracy
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute. University of Sussex, United Kingdom.
    Hauryliuk, Vasili
    Murina, Victoriia
    Elimination of Ribosome Inactivating Factors Improves the Efficiency of Bacillus subtilis and Saccharomyces cerevisiae Cell-Free Translation Systems2018In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 9, article id 3041Article in journal (Refereed)
    Abstract [en]

    Cell-free translation systems based on cellular lysates optimized for in vitro protein synthesis have multiple applications both in basic and applied science, ranging from studies of translational regulation to cell-free production of proteins and ribosomenascent chain complexes. In order to achieve both high activity and reproducibility in a translation system, it is essential that the ribosomes in the cellular lysate are enzymatically active. Here we demonstrate that genomic disruption of genes encoding ribosome inactivating factors - HPF in Bacillus subtilis and Stmt in Saccharomyces cerevisiae - robustly improve the activities of bacterial and yeast translation systems. Importantly, the elimination of B. subtilis HPF results in a complete loss of 100S ribosomes, which otherwise interfere with disome-based approaches for preparation of stalled ribosomal complexes for cryo-electron microscopy studies.

  • 25.
    Brodiazhenko, Tetiana
    et al.
    Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Institute of Technology, University of Tartu, Tartu, Estonia.
    Johansson, Marcus J. O.
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Takada, Hiraku
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Nissan, Tracy
    Hauryliuk, Vasili
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Institute of Technology, University of Tartu, Tartu, Estonia.
    Murina, Victoriia
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Elimination of Ribosome Inactivating Factors Improves the Efficiency of Bacillus subtilis and Saccharomyces cerevisiae Cell-Free Translation Systems2018In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 9, article id 3041Article in journal (Refereed)
    Abstract [en]

    Cell-free translation systems based on cellular lysates optimized for in vitro protein synthesis have multiple applications both in basic and applied science, ranging from studies of translational regulation to cell-free production of proteins and ribosome-nascent chain complexes. In order to achieve both high activity and reproducibility in a translation system, it is essential that the ribosomes in the cellular lysate are enzymatically active. Here we demonstrate that genomic disruption of genes encoding ribosome inactivating factors – HPF in Bacillus subtilis and Stm1 in Saccharomyces cerevisiae – robustly improve the activities of bacterial and yeast translation systems. Importantly, the elimination of B. subtilis HPF results in a complete loss of 100S ribosomes, which otherwise interfere with disome-based approaches for preparation of stalled ribosomal complexes for cryo-electron microscopy studies.

  • 26.
    Broman, Elias
    et al.
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences. Linnaeus University, Sweden.
    Asmala, Eero
    Carstensen, Jacob
    Pinhassi, Jarone
    Dopson, Mark
    Distinct Coastal Microbiome Populations Associated With Autochthonous- and Allochthonous-Like Dissolved Organic Matter2019In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 10, article id 2579Article in journal (Refereed)
    Abstract [en]

    Coastal zones are important transitional areas between the land and sea, where both terrestrial and phytoplankton supplied dissolved organic matter (DOM) are respired or transformed. As climate change is expected to increase river discharge and water temperatures, DOM from both allochthonous and autochthonous sources is projected to increase. As these transformations are largely regulated by bacteria, we analyzed microbial community structure data in relation to a 6-month long time-series dataset of DOM characteristics from Roskilde Fjord and adjacent streams, Denmark. The results showed that the microbial community composition in the outer estuary (closer to the sea) was largely associated with salinity and nutrients, while the inner estuary formed two clusters linked to either nutrients plus allochthonous DOM or autochthonous DOM characteristics. In contrast, the microbial community composition in the streams was found to be mainly associated with allochthonous DOM characteristics. A general pattern across the land-to-sea interface was that Betaproteobacteria were strongly associated with humic-like DOM [operational taxonomic units (OTUs) belonging to family Comamonadaceae], while distinct populations were instead associated with nutrients or abiotic variables such as temperature (Cyanobacteria genus Synechococcus) and salinity (Actinobacteria family Microbacteriaceae). Furthermore, there was a stark shift in the relative abundance of OTUs between stream and marine stations. This indicates that as DOM travels through the land-to-sea interface, different bacterial guilds continuously degrade it.

  • 27.
    Broman, Elias
    et al.
    Linnéuniversitetet, Institutionen för biologi och miljö (BOM).
    Sachpazidou, Varvara
    Linnéuniversitetet, Institutionen för biologi och miljö (BOM).
    Pinhassi, Jarone
    Linnéuniversitetet, Institutionen för biologi och miljö (BOM).
    Dopson, Mark
    Linnéuniversitetet, Institutionen för biologi och miljö (BOM).
    Oxygenation of Hypoxic Coastal Baltic Sea Sediments Impacts on Chemistry, Microbial Community Composition, and Metabolism2017In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 8, article id 2453Article in journal (Refereed)
    Abstract [en]

    The Baltic Sea has undergone severe eutrophication during the last century, resulting in increased algal blooms and the development of hypoxic bottom waters. In this study, we sampled oxygen deficient sediment cores from a Baltic Sea coastal bay and exposed the bottom water including the sediment surface to oxygen shifts via artificial addition of air during laboratory incubation. Surface sediment (top 1 cm) from the replicate cores were sliced in the field as well as throughout the laboratory incubations and chemical parameters were analyzed along with high throughput sequencing of community DNA and RNA. After oxygenation, dissolved iron decreased in the water overlying the sediment while inorganic sulfur compounds (thiosulfate and tetrathionate) increased when the water was kept anoxic. Oxygenation of the sediment also maintained RNA transcripts attributed to sulfide and sulfur oxidation as well as nitrogen fixation in the sediment surface. Based on 16S rRNA gene and metatranscriptomic analyses it was found that oxygenation of the sediment surface caused a bloom of the Epsilonproteobacteria genus Arcobacter. In addition, the formation of a thick white film was observed that was likely filamentous zero-valent sulfur produced by the Arcobacter spp. Based on these results, sulfur cycling and nitrogen fixation that were evident in the field samples were ongoing during re-oxygenation of the sediment. These processes potentially added organic nitrogen to the system and facilitated the re-establishment of micro- and macroorganism communities in the benthic zone.

  • 28.
    Broman, Elias
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Sachpazidou, Varvara
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Dopson, Mark
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Oxygenation of Hypoxic Coastal Baltic Sea Sediments Impacts on Chemistry, Microbial Community Composition, and Metabolism2017In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 8, article id 2453Article in journal (Refereed)
    Abstract [en]

    The Baltic Sea has undergone severe eutrophication during the last century, resulting in increased algal blooms and the development of hypoxic bottom waters. In this study, we sampled oxygen deficient sediment cores from a Baltic Sea coastal bay and exposed the bottom water including the sediment surface to oxygen shifts via artificial addition of air during laboratory incubation. Surface sediment (top 1 cm) from the replicate cores were sliced in the field as well as throughout the laboratory incubations and chemical parameters were analyzed along with high throughput sequencing of community DNA and RNA. After oxygenation, dissolved iron decreased in the water overlying the sediment while inorganic sulfur compounds (thiosulfate and tetrathionate) increased when the water was kept anoxic. Oxygenation of the sediment also maintained RNA transcripts attributed to sulfide and sulfur oxidation as well as nitrogen fixation in the sediment surface. Based on 16S rRNA gene and metatranscriptomic analyses it was found that oxygenation of the sediment surface caused a bloom of the Epsilonproteobacteria genus Arcobacter. In addition, the formation of a thick white film was observed that was likely filamentous zero-valent sulfur produced by the Arcobacter spp. Based on these results, sulfur cycling and nitrogen fixation that were evident in the field samples were ongoing during re-oxygenation of the sediment. These processes potentially added organic nitrogen to the system and facilitated the re-establishment of micro- and macroorganism communities in the benthic zone.

  • 29.
    Brüggemann, Holger
    et al.
    Department of Biomedicine, Aarhus University, Aarhus, Denmark.
    Poehlein, Anja
    Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany.
    Brzuszkiewicz, Elzbieta
    Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany.
    Scavenius, Carsten
    Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
    Enghild, Jan J.
    Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
    Al-Zeer, Munir A.
    Department of Applied Biochemistry, Institute of Biotechnology, Technical University of Berlin, Berlin, Germany.
    Brinkmann, Volker
    Microscopy Core Facility, Max Planck Institute for Infection Biology, Berlin, Germany.
    Jensen, Anders
    Department of Biomedicine, Aarhus University, Aarhus, Denmark.
    Söderquist, Bo
    Örebro University, School of Medical Sciences. Department of Laboratory Medicine, Clinical Microbiology.
    Staphylococcus saccharolyticus Isolated From Blood Cultures and Prosthetic Joint Infections Exhibits Excessive Genome Decay2019In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 10, article id 478Article in journal (Refereed)
    Abstract [en]

    The slow-growing, anaerobic, coagulase-negative species Staphylococcus saccharolyticus is found on human skin and in clinical specimens but its pathogenic potential is unclear. Here, we investigated clinical isolates and sequenced the genomes of seven strains of S. saccharolyticus. Phylogenomic analyses showed that the closest relative of S. saccharolyticus is Staphylococcus capitis with an average nucleotide identity of 80%. Previously sequenced strains assigned to S. saccharoiyticus are misclassified and belong to S. capitis. Based on single nucleotide polymorphisms of the core genome, the population of S. saccharolyticus can be divided into two clades that also differ in a few larger genomic islands as part of the flexible genome. An unexpected feature of S. saccharolyticus is extensive genome decay, with over 300 pseudogenes, indicating ongoing reductive evolution. Many genes of the core metabolism are not functional, rendering the species auxotrophic for several amino acids, which could explain its slow growth and need for fastidious growth conditions. Secreted proteins of S. saccharolyticus were determined; they include stress response proteins such as heat and oxidative stress-related factors, as well as immunodominant staphylococcal surface antigens and enzymes that can degrade host tissue components. The strains secrete lipases and a hyaluronic acid lyase. Hyaluronidase as well as urease activities were detected in biochemical assays, with Glade-specific differences. Our study revealed that S. saccharolyticus has adapted its genome, possibly due to a recent change of habitat; moreover, the data imply that the species has tissue-invasive potential and might cause prosthetic joint infections.

  • 30.
    Bunse, Carina
    et al.
    Linnéuniversitetet, Institutionen för biologi och miljö (BOM).
    Bertos-Fortis, Mireia
    Linnéuniversitetet, Institutionen för biologi och miljö (BOM).
    Sassenhagen, Ingrid
    Sildever, Sirje
    Sjöqvist, Conny
    Godhe, Anna
    Gross, Susanna
    Kremp, Anke
    Lips, Inga
    Lundholm, Nina
    Rengefors, Karin
    Sefbom, Josefin
    Pinhassi, Jarone
    Legrand, Catherine
    Spatio-temporal interdependence of bacteria and phytoplankton during a baltic sea spring bloom2016In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 7, article id 517Article in journal (Refereed)
    Abstract [en]

    In temperate systems, phytoplankton spring blooms deplete inorganic nutrients and are major sources of organic matter for the microbial loop. In response to phytoplankton exudates and environmental factors, heterotrophic microbial communities are highly dynamic and change their abundance and composition both on spatial and temporal scales. Yet, most of our understanding about these processes comes from laboratory model organism studies, mesocosm experiments or single temporal transects. Spatial -temporal studies examining interactions of phytoplankton blooms and bacterioplankton community composition and function, though being highly informative, are scarce. In this study, pelagic microbial community dynamics (bacteria and phytoplankton) and environmental variables were monitored during a spring bloom across the Baltic Proper (two cruises between North Germany to Gulf of Finland). To test to what extent bacterioplankton community composition relates to the spring bloom, we used next generation amplicon sequencing of the 16S rRNA gene, phytoplankton diversity analysis based on microscopy counts and population genotyping of the dominating diatom Skeletonema rnarinoi. Several phytoplankton bloom related and environmental variables were identified to influence bacterial community composition. Members of Bacteroidetes and Alphaproteobacteria dominated the bacterial community composition but the bacterial groups showed no apparent correlation with direct bloom related variables. The less abundant bacterial phyla Actinobacteria, Planctomycetes, and Verrucomicrobia, on the other hand, were strongly associated with phytoplankton biomass, diatom:dinoflagellate ratio, and colored dissolved organic matter (cDOM). Many bacterial operational taxonomic units (OTUs) showed high niche specificities. For example, particular Bacteroidetes OTUs were associated with two distinct genetic clusters of S. marinoi. Our study revealed the complexity of interactions of bacterial taxa with inter- and intraspecific genetic variation in phytoplankton. Overall, our findings imply that biotic and abiotic factors during spring bloom influence bacterial community dynamics in a hierarchical manner.

  • 31.
    Bunse, Carina
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Bertos-Fortis, Mireia
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Sassenhagen, Ingrid
    Lund University.
    Sildever, Sirje
    Tallinn University of Technology, Estonia.
    Sjöqvist, Conny
    Marine Research Centre, Finland;Åbo Akademi University, Finland.
    Godhe, Anna
    University of Gothenburg.
    Gross, Susanna
    University of Gothenburg.
    Kremp, Anke
    Marine Research Centre, Finland.
    Lips, Inga
    Tallinn University of Technology, Estonia.
    Lundholm, Nina
    University of Copenhagen, Denmark.
    Rengefors, Karin
    Lund University.
    Sefbom, Josefin
    University of Gothenburg.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Legrand, Catherine
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Spatio-Temporal Interdependence of Bacteria and Phytoplankton during a Baltic Sea Spring Bloom2016In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 7, article id 517Article in journal (Refereed)
    Abstract [en]

    In temperate systems, phytoplankton spring blooms deplete inorganic nutrients and are major sources of organic matter for the microbial loop. In response to phytoplankton exudates and environmental factors, heterotrophic microbial communities are highly dynamic and change their abundance and composition both on spatial and temporal scales. Yet, most of our understanding about these processes comes from laboratory model organism studies, mesocosm experiments or single temporal transects. Spatial -temporal studies examining interactions of phytoplankton blooms and bacterioplankton community composition and function, though being highly informative, are scarce. In this study, pelagic microbial community dynamics (bacteria and phytoplankton) and environmental variables were monitored during a spring bloom across the Baltic Proper (two cruises between North Germany to Gulf of Finland). To test to what extent bacterioplankton community composition relates to the spring bloom, we used next generation amplicon sequencing of the 16S rRNA gene, phytoplankton diversity analysis based on microscopy counts and population genotyping of the dominating diatom Skeletonema rnarinoi. Several phytoplankton bloom related and environmental variables were identified to influence bacterial community composition. Members of Bacteroidetes and Alphaproteobacteria dominated the bacterial community composition but the bacterial groups showed no apparent correlation with direct bloom related variables. The less abundant bacterial phyla Actinobacteria, Planctomycetes, and Verrucomicrobia, on the other hand, were strongly associated with phytoplankton biomass, diatom:dinoflagellate ratio, and colored dissolved organic matter (cDOM). Many bacterial operational taxonomic units (OTUs) showed high niche specificities. For example, particular Bacteroidetes OTUs were associated with two distinct genetic clusters of S. marinoi. Our study revealed the complexity of interactions of bacterial taxa with inter- and intraspecific genetic variation in phytoplankton. Overall, our findings imply that biotic and abiotic factors during spring bloom influence bacterial community dynamics in a hierarchical manner.

  • 32. Bunse, Carina
    et al.
    Israelsson, Stina
    Baltar, Federico
    Bertos-Fortis, Mireia
    Fridolfsson, Emil
    Legrand, Catherine
    Lindehoff, Elin
    Lindh, Markus
    SMHI, Core Services.
    Martinez-Garcia, Sandra
    Pinhassi, Jarone
    High Frequency Multi-Year Variability in Baltic Sea Microbial Plankton Stocks and Activities2019In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 9, article id 3296Article in journal (Refereed)
  • 33. Bunse, Carina
    et al.
    Israelsson, Stina
    Baltar, Federico
    Bertos-Fortis, Mireia
    Fridolfsson, Emil
    Legrand, Catherine
    Lindehoff, Elin
    Lindh, Markus V.
    Martinez-Garcia, Sandra
    Pinhassi, Jarone
    High Frequency Multi-Year Variability in Baltic Sea Microbial Plankton Stocks and Activities2019In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 9, article id 3296Article in journal (Refereed)
    Abstract [en]

    Marine bacterioplankton are essential in global nutrient cycling and organic matter turnover. Time-series analyses, often at monthly sampling frequencies, have established the paramount role of abiotic and biotic variables in structuring bacterioplankton communities and productivities. However, fine-scale seasonal microbial activities, and underlying biological principles, are not fully understood. We report results from four consecutive years of high-frequency time-series sampling in the Baltic Proper. Pronounced temporal dynamics in most investigated microbial variables were observed, including bacterial heterotrophic production, plankton biomass, extracellular enzyme activities, substrate uptake rate constants of glucose, pyruvate, acetate, amino acids, and leucine, as well as nutrient limitation bioassays. Spring blooms consisting of diatoms and dinoflagellates were followed by elevated bacterial heterotrophic production and abundances. During summer, bacterial productivity estimates increased even further, coinciding with an initial cyanobacterial bloom in early July. However, bacterial abundances only increased following a second cyanobacterial bloom, peaking in August. Uptake rate constants for the different measured carbon compounds varied seasonally and inter-annually and were highly correlated to bacterial productivity estimates, temperature, and cyanobacterial abundances. Further, we detected nutrient limitation in response to environmental conditions in a multitude of microbial variables, such as elevated productivities in nutrient bioassays, changes in enzymatic activities, or substrate preferences. Variations among biotic variables often occurred on time scales of days to a few weeks, yet often spanning several sampling occasions. Such dynamics might not have been captured by sampling at monthly intervals, as compared to more predictable transitions in abiotic variables such as temperature or nutrient concentrations. Our study indicates that high resolution analyses of microbial biomass and productivity parameters can help out in the development of biogeochemical and food web models disentangling the microbial black box.

  • 34.
    Bunse, Carina
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. Carl von Ossietzky Univ Oldenburg, Germany.
    Israelsson, Stina
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Baltar, Federico
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. Univ Vienna, Austria.
    Bertos-Fortis, Mireia
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Fridolfsson, Emil
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Legrand, Catherine
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Lindehoff, Elin
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Lindh, Markus V.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. Swedish Meteorological & Hydrological Institute.
    Martínez-García, Sandra
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. Univ Vigo, Spain.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    High Frequency Multi-Year Variability in Baltic Sea Microbial Plankton Stocks and Activities2019In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 9, article id 3296Article in journal (Refereed)
    Abstract [en]

    Marine bacterioplankton are essential in global nutrient cycling and organic matter turnover. Time-series analyses, often at monthly sampling frequencies, have established the paramount role of abiotic and biotic variables in structuring bacterioplankton communities and productivities. However, fine-scale seasonal microbial activities, and underlying biological principles, are not fully understood. We report results from four consecutive years of high-frequency time-series sampling in the Baltic Proper. Pronounced temporal dynamics in most investigated microbial variables were observed, including bacterial heterotrophic production, plankton biomass, extracellular enzyme activities, substrate uptake rate constants of glucose, pyruvate, acetate, amino acids, and leucine, as well as nutrient limitation bioassays. Spring blooms consisting of diatoms and dinoflagellates were followed by elevated bacterial heterotrophic production and abundances. During summer, bacterial productivity estimates increased even further, coinciding with an initial cyanobacterial bloom in early July. However, bacterial abundances only increased following a second cyanobacterial bloom, peaking in August. Uptake rate constants for the different measured carbon compounds varied seasonally and inter-annually and were highly correlated to bacterial productivity estimates, temperature, and cyanobacterial abundances. Further, we detected nutrient limitation in response to environmental conditions in a multitude of microbial variables, such as elevated productivities in nutrient bioassays, changes in enzymatic activities, or substrate preferences. Variations among biotic variables often occurred on time scales of days to a few weeks, yet often spanning several sampling occasions. Such dynamics might not have been captured by sampling at monthly intervals, as compared to more predictable transitions in abiotic variables such as temperature or nutrient concentrations. Our study indicates that high resolution analyses of microbial biomass and productivity parameters can help out in the development of biogeochemical and food web models disentangling the microbial black box.

  • 35.
    Cardoso, Simone J.
    et al.
    Laboratory of Aquatic Ecology, Federal University of Juiz de Fora, Juiz de Fora, Brazil.
    Vidal, Luciana O.
    Laboratory of Aquatic Ecology, Federal University of Juiz de Fora, Juiz de Fora, Brazil.
    Mendonça, Raquel F.
    Laboratory of Aquatic Ecology, Federal University of Juiz de Fora, Juiz de Fora, Brazil.
    Tranvik, Lars J.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology.
    Sobek, Sebastian
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology.
    Fábio, Roland
    Laboratory of Aquatic Ecology, Federal University of Juiz de Fora, Juiz de Fora, Brazil.
    Spatial variation of sediment mineralization supports differential CO2 emissions from a tropical hydroelectric reservoir2013In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 4, p. 101-Article in journal (Refereed)
    Abstract [en]

    Substantial amounts of organic matter (OM) from terrestrial ecosystems are buried as sediments in inland waters. It is still unclear to what extent this OM constitutes a sink of carbon, and how much of it is returned to the atmosphere upon mineralization to carbon dioxide (CO2). The construction of reservoirs affects the carbon cycle by increasing OM sedimentation at the regional scale. In this study we determine the OM mineralization in the sediment of three zones (river, transition, and dam) of a tropical hydroelectric reservoir in Brazil as well as identify the composition of the carbon pool available for mineralization. We measured sediment organic carbon mineralization rates and related them to the composition of the OM, bacterial abundance and pCO2 of the surface water of the reservoir. Terrestrial OM was an important substrate for the mineralization. In the river and transition zones most of the OM was allochthonous (56 and 48%, respectively) while the dam zone had the lowest allochthonous contribution (7%). The highest mineralization rates were found in the transition zone (154.80 ± 33.50 mg C m-2 d-1) and the lowest in the dam (51.60 ± 26.80 mg C m-2 d-1). Moreover, mineralization rates were significantly related to bacterial abundance (r2= 0.50, p < 0.001) and pCO2 in the surface water of the reservoir (r2 = 0.73, p < 0.001). The results indicate that allochthonous OM has different contributions to sediment mineralization in the three zones of the reservoir. Further, the sediment mineralization, mediated by heterotrophic bacteria metabolism, significantly contributes to CO2supersaturation in the water column, resulting in higher pCO2 in the river and transition zones in comparison with the dam zone, affecting greenhouse gas emission estimations from hydroelectric reservoirs.

  • 36. Chauhan, Deepika
    et al.
    Srivastava, Pulkit Anupam
    Ritzl, Barbara
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Yennamalli, Ragothaman M.
    Cava, Felipe
    Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Priyadarshini, Richa
    Amino Acid-Dependent Alterations in Cell Wall and Cell Morphology of Deinococcus indicus DR12019In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 10, article id 1449Article in journal (Refereed)
    Abstract [en]

    Deinococcus radiodurans exhibits growth medium-dependent morphological variation in cell shape, but there is no evidence whether this phenomenon is observed in other members of the Deinococcaceae family. In this study, we isolated a red-pigmented, aerobic, Deinococcus indicus strain DR1 from Dadri wetland, India. This D. indicus strain exhibited cell-morphology transition from rod-shaped cells to multi-cell chains in a growth-medium-dependent fashion. In response to addition of 1% casamino acids in the minimal growth medium, rod-shaped cells formed multi-cell chains. Addition of all 20 amino acids to the minimal medium was able to recapitulate the phenotype. Specifically, a combination of L-methionine, L-lysine, L-aspartate, and L-threonine caused morphological alterations. The transition from rod shape to multi-cell chains is due to delay in daughter cell separation after cell division. Minimal medium supplemented with L-ornithine alone was able to cause cell morphology changes. Furthermore, a comparative UPLC analysis of PG fragments isolated from D. indicus cells propagated in different growth media revealed alterations in the PG composition. An increase in the overall cross-linkage of PG was observed in muropeptides from nutrient-rich TSB and NB media versus PYE medium. Overall our study highlights that environmental conditions influence PG composition and cell morphology in D. indicus.

  • 37.
    Chi, Xiaohui
    et al.
    Shandong Univ, Peoples R China.
    Berglund, Björn
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Zhejiang Univ, Peoples R China.
    Zou, Huiyun
    Shandong Univ, Peoples R China.
    Zheng, Beiwen
    Zhejiang Univ, Peoples R China.
    Börjesson, Stefan
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Natl Vet Inst, Sweden.
    Ji, Xiang
    Shandong Univ, Peoples R China.
    Ottoson, Jakob
    Natl Food Agcy, Sweden.
    Lundborg, Cecilia Stalsby
    Karolinska Inst, Sweden.
    Li, Xuewen
    Shandong Univ, Peoples R China.
    Nilsson, Lennart E
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Characterization of Clinically Relevant Strains of Extended-Spectrum beta-Lactamase-Producing Klebsiella pneumoniae Occurring in Environmental Sources in a Rural Area of China by Using Whole-Genome Sequencing2019In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 10, article id 211Article in journal (Refereed)
    Abstract [en]

    Klebsiella pneumoniae is a gram-negative, opportunistic pathogen, and a common cause of healthcare-associated infections such as pneumonia, septicemia, and urinary tract infection. The purpose of this study was to survey the occurrence of and characterize K. pneumoniae in different environmental sources in a rural area of Shandong province, China. Two hundred and thirty-one samples from different environmental sources in 12 villages were screened for extended-spectrum beta-lactamase-(ESBL)-producing K. pneumoniae, and 14 (6%) samples were positive. All isolates were multidrug-resistant and a few of them belonged to clinically relevant strains which are known to cause hospital outbreaks worldwide. Serotypes, virulence genes, serum survival, and phagocytosis survival were analyzed and the results showed the presence of virulence factors associated with highly virulent clones and a high degree of phagocytosis survivability, indicating the potential virulence of these isolates. These results emphasize the need for further studies designed to elucidate the role of the environment in transmission and dissemination of ESBL-producing K. pneumoniae and the potential risk posed to human and environmental health.

  • 38.
    Christel, Stephan
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Herold, Malte
    University of Luxembourg, Luxembourg.
    Bellenberg, Sören
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. Universität Duisburg-Essen, Germany.
    Buetti-Dinh, Antoine
    Università della Svizzera italiana, Switzerland;Swiss Institute of Bioinformatics (SIB), Switzerland.
    El Hajjami, Mohamed
    Ruhr-Universität Bochum, Germany.
    Pivkin, Igor
    Università della Svizzera italiana, Switzerland;Swiss Institute of Bioinformatics (SIB), Switzerland.
    Sand, Wolfgang
    Universität Duisburg-Essen, Germany;Donghua University, Peoples Republic of China;Mining Academy, Germany;Technical University Freiberg, Germany.
    Wilmes, Paul
    University of Luxembourg, Luxembourg.
    Poetsch, Ansgar
    Ruhr-Universität Bochum, Germany;Plymouth University, United Kingdom.
    Vera, Mario
    Pontificia Universidad Católica de Chile, Chile.
    Dopson, Mark
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Weak Iron Oxidation by Sulfobacillus thermosulfidooxidans Maintains a Favorable Redox Potential for Chalcopyrite Bioleaching2018In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 9, article id 3059Article in journal (Refereed)
    Abstract [en]

    Bioleaching is an emerging technology, describing the microbially assisted dissolution of sulfidicores that provides a more environmentally friendly alternative to many traditional metal extractionmethods, such as roasting or smelting. Industrial interest increases steadily and today, circa 15-20%of the world’s copper production can be traced back to this method. However, bioleaching of theworld’s most abundant copper mineral chalcopyrite suffers from low dissolution rates, oftenattributed to passivating layers, which need to be overcome to use this technology to its full potential.To prevent these passivating layers from forming, leaching needs to occur at a lowoxidation/reduction potential (ORP), but chemical redox control in bioleaching heaps is difficult andcostly. As an alternative, selected weak iron-oxidizers could be employed that are incapable ofscavenging exceedingly low concentrations of iron and therefore, raise the ORP just above the onsetof bioleaching, but not high enough to allow for the occurrence of passivation. In this study, wereport that microbial iron oxidation by Sulfobacillus thermosulfidooxidans meets these specifications.Chalcopyrite concentrate bioleaching experiments with S. thermosulfidooxidans as the sole ironoxidizer exhibited significantly lower redox potentials and higher release of copper compared tocommunities containing the strong iron oxidizer Leptospirillum ferriphilum. Transcriptomic responseto single and co-culture of these two iron oxidizers was studied and revealed a greatly decreasednumber of mRNA transcripts ascribed to iron oxidation in S. thermosulfidooxidans when cultured inthe presence of L. ferriphilum. This allowed for the identification of genes potentially responsible forS. thermosulfidooxidans’ weaker iron oxidation to be studied in the future, as well as underlined theneed for mechanisms to control the microbial population in bioleaching heaps

  • 39. Conroy, Brandon J.
    et al.
    Steinberg, Deborah K.
    Song, Bongkuen
    Kalmbach, Andrew
    Carpenter, Edward J.
    Foster, Rachel A.
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences. University of California, United States.
    Mesozooplankton Graze on Cyanobacteria in the Amazon River Plume and Western Tropical North Atlantic2017In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 8, article id 1436Article in journal (Refereed)
    Abstract [en]

    Diazotrophic cyanobacteria, those capable of fixing di-nitrogen (N2), are considered one of the major sources of new nitrogen (N) in the oligotrophic tropical ocean, but direct incorporation of diazotrophic N into food webs has not been fully examined. In the Amazon River-influenced western tropical North Atlantic (WTNA), diatom diazotroph associations (DDAs) and the filamentous colonial diazotrophs Trichodesmium have seasonally high abundances. We sampled epipelagic mesozooplankton in the Amazon River plume and WTNA in May-June 2010 to investigate direct grazing by mesozooplankton on two DDA populations: Richelia associated with Rhizosolenia diatoms (het-1) and Hemiaulus diatoms (het-2), and on Trichodesmium using highly specific qPCR assays targeting nitrogenase genes (nifH). Both DDAs and Trichodesmium occurred in zooplankton gut contents, with higher detection of het-2 predominantly in calanoid copepods (2.33-16.76 nifH copies organism 1). Abundance of Trichodesmium was low (2.21-4.03 nifH copies organism 1), but they were consistently detected at high salinity stations (> 35) in calanoid copepods. This suggests direct grazing on DDAs, Trichodesmium filaments and colonies, or consumption as part of sinking aggregates, is common. In parallel with the qPCR approach, a next generation sequencing analysis of 16S rRNA genes identified that cyanobacterial assemblage associated with zooplankton guts was dominated by the non-diazotrophic unicellular phylotypes Synechococcus (56%) and Prochlorococcus (26%). However, in two separate calanoid copepod samples, two unicellular diazotrophs Candidatus Atelocyanobacterium thalassa (UCYN-A) and Crocosphaera watsonii (UCYN-B) were present, respectively, as a small component of cyanobacterial assemblages (< 2%). This study represents the first evidence of consumption of DDAs, Trichodesmium, and unicellular cyanobacteria by calanoid copepods in an area of the WTNA known for high carbon export. These diazotroph populations are quantitatively important in the global N budget, widespread and hence, the next step is to accurately quantify grazing. Nonetheless, these results highlight a direct pathway of diazotrophic N into the food web and have important implications for biogeochemical cycles, particularly oligotrophic regions where N-2 fixation is the main source of new nitrogen.

  • 40.
    Cooper, Callum J.
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Mirzaei, Mohammadali Khan
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Nilsson, Anders S.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Adapting Drug Approval Pathways for Bacteriophage-Based Therapeutics2016In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 7, article id 1209Article, review/survey (Refereed)
    Abstract [en]

    The global rise of multi-drug resistant bacteria has resulted in the notion that an antibiotic apocalypse is fast approaching. This has led to a number of well publicized calls for global funding initiatives to develop new antibacterial agents. The long clinical history of phage therapy in Eastern Europe, combined with more recent in vitro and in vivo success, demonstrates the potential for whole phage or phage based antibacterial agents. To date, no whole phage or phage derived products are approved for human therapeutic use in the EU or USA. There are at least three reasons for this: (i) phages possess different biological, physical, and pharmacological properties compared to conventional antibiotics. Phages need to replicate in order to achieve a viable antibacterial effect, resulting in complex pharmacodynamics/pharmacokinetics. (ii) The specificity of individual phages requires multiple phages to treat single species infections, often as part of complex cocktails. (iii) The current approval process for antibacterial agents has evolved with the development of chemically based drugs at its core, and is not suitable for phages. Due to similarities with conventional antibiotics, phage derived products such as endolysins are suitable for approval under current processes as biological therapeutic proteins. These criteria render the approval of phages for clinical use theoretically possible but not economically viable. In this review, pitfalls of the current approval process will be discussed for whole phage and phage derived products, in addition to the utilization of alternative approval pathways including adaptive licensing and Right to try legislation.

  • 41.
    Couturier, Mohea
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Lindås, Ann-Christin
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    The DNA Methylome of the Hyperthermoacidophilic Crenarchaeon Sulfolobus acidocaldarius2018In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 9, article id 137Article in journal (Refereed)
    Abstract [en]

    DNA methylation is the most common epigenetic modification observed in the genomic DNA (gDNA) of prokaryotes and eukaryotes. Methylated nucleobases, N-6-methyladenine (m6A), N-4-methyl-cytosine (m4C), and 5-methyl-cytosine (m5C), detected on gDNA represent the discrimination mark between self and non-self DNA when they are part of restriction-modification systems in prokaryotes (Bacteria and Archaea). In addition, m5C in Eukaryotes and m6A in Bacteria play an important role in the regulation of key cellular processes. Although archaeal genomes present modified bases as in the two other domains of life, the significance of DNA methylations as regulatory mechanisms remains largely uncharacterized in Archaea. Here, we began by investigating the DNA methylome of Sulfolobus acidocaldarius. The strategy behind this initial study entailed the use of combined digestion assays, dot blots, and genome resequencing, which utilizes specific restriction enzymes, antibodies specifically raised against m6A and m5C and single-molecule real-time (SMRT) sequencing, respectively, to identify DNA methylations occurring in exponentially growing cells. The previously identified restriction-modification system, specific of S. acidocaldarius, was confirmed by digestion assay and SMRT sequencing while, the presence of m6A was revealed by dot blot and identified on the characteristic Dam motif by SMRT sequencing. No m5C was detected by dot blot under the conditions tested. Furthermore, by comparing the distribution of both detected methylations along the genome and, by analyzing DNA methylation profiles in synchronized cells, we investigated in which cellular pathways, in particular the cell cycle, this m6A methylation could be a key player. The analysis of sequencing data rejected a role for m6A methylation in another defense system and also raised new questions about a potential involvement of this modification in the regulation of other biological functions in S. acidocaldarius.

  • 42.
    Dahlin, Paul
    et al.
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences. KTH Royal Institute of Technology, Sweden.
    Srivastava, Vaibhav
    Bulone, Vincent
    McKee, Lauren S.
    The Oxidosqualene Cyclase from the Oomycete Saprolegnia parasitica Synthesizes Lanosterol as a Single Product2016In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 7, article id 1802Article in journal (Refereed)
    Abstract [en]

    The first committed step of sterol biosynthesis is the cyclisation of 2,3-oxidosqualene to form either lanosterol (LA) or cycloartenol (CA). This is catalyzed by an oxidosqualene cyclase (OSC). LA and CA are subsequently converted into various sterols by a series of enzyme reactions. The specificity of the OSC therefore determines the final composition of the end sterols of an organism. Despite the functional importance of OSCs, the determinants of their specificity are not well understood. In sterol-synthesizing oomycetes, recent bioinformatics, and metabolite analysis suggest that LA is produced. However, this catalytic activity has never been experimentally demonstrated. Here, we show that the OSC of the oomycete Saprolegnia parasitica, a severe pathogen of salmonid fish, has an uncommon sequence in a conserved motif important for specificity. We present phylogenetic analysis revealing that this sequence is common to sterol-synthesizing oomycetes, as well as some plants, and hypothesize as to the evolutionary origin of some microbial sequences. We also demonstrate for the first time that a recombinant form of the OSC from S. parasitica produces LA exclusively. Our data pave the way for a detailed structural characterization of the protein and the possible development of specific inhibitors of oomycete OSCs for disease control in aquaculture.

  • 43.
    Dahlin, Paul
    et al.
    KTH, School of Biotechnology (BIO), Glycoscience. Stockholm University, Sweden.
    Srivastava, Vaibhav
    KTH, School of Biotechnology (BIO), Glycoscience.
    Bulone, Vincent
    KTH, School of Biotechnology (BIO), Glycoscience. University of Adelaide, Australia.
    Mckee, Lauren S.
    KTH, School of Biotechnology (BIO), Glycoscience. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    The Oxidosqualene Cyclase from the Oomycete Saprolegnia parasitica Synthesizes Lanosterol as a Single Product2016In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 7, article id 1802Article in journal (Refereed)
    Abstract [en]

    The first committed step of sterol biosynthesis is the cyclisation of 2,3-oxidosqualene to form either lanosterol (LA) or cycloartenol (CA). This is catalyzed by an oxidosqualene cyclase (OSC). LA and CA are subsequently converted into various sterols by a series of enzyme reactions. The specificity of the OSC therefore determines the final composition of the end sterols of an organism. Despite the functional importance of OSCs, the determinants of their specificity are not well understood. In sterol-synthesizing oomycetes, recent bioinformatics, and metabolite analysis suggest that LA is produced. However, this catalytic activity has never been experimentally demonstrated. Here, we show that the OSC of the oomycete Saprolegnia parasitica, a severe pathogen of salmonid fish, has an uncommon sequence in a conserved motif important for specificity. We present phylogenetic analysis revealing that this sequence is common to sterol-synthesizing oomycetes, as well as some plants, and hypothesize as to the evolutionary origin of some microbial sequences. We also demonstrate for the first time that a recombinant form of the OSC from S. parasitica produces LA exclusively. Our data pave the way for a detailed structural characterization of the protein and the possible development of specific inhibitors of oomycete OSCs for disease control in aquaculture.

  • 44.
    Davidsson, Sabina
    et al.
    Örebro University, School of Medical Sciences. Örebro University Hospital. Department of Urology, Örebro University Hospital, Örebro, Sweden.
    Carlsson, Jessica
    Örebro University, School of Medical Sciences. Örebro University Hospital. Department of Urology, Örebro University Hospital, Örebro, Sweden.
    Mölling, Paula
    Department of Laboratory Medicine, Örebro University Hospital, Örebro, Sweden.
    Gashi, Natyra
    Department of Urology, Örebro University Hospital, Örebro, Sweden.
    Andrén, Ove
    Örebro University, School of Medical Sciences. Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
    Andersson, Swen-Olof
    Department of Urology, Örebro University Hospital, Örebro, Sweden.
    Brzuszkiewicz, Elzbieta
    Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany.
    Poehlein, Anja
    Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany.
    Al-Zeer, Munir A.
    Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany.
    Brinkmann, Volker
    Microscopy Core Facility, Max Planck Institute for Infection Biology, Berlin, Germany.
    Scavenius, Carsten
    Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
    Nazipi, Seven
    Department of Biomedicine, Aarhus University, Aarhus, Denmark.
    Söderquist, Bo
    Örebro University, School of Medical Sciences. Department of Laboratory Medicine, Clinical Microbiology, Faculty of Health and Medical Sciences, Örebro University, Örebro, Sweden.
    Brüggemann, Holger
    Department of Biomedicine, Aarhus University, Aarhus, Denmark.
    Prevalence of Flp Pili-Encoding Plasmids in Cutibacterium acnes Isolates Obtained from Prostatic Tissue2017In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 8, article id 2241Article in journal (Refereed)
    Abstract [en]

    Inflammation is one of the hallmarks of prostate cancer. The origin of inflammation is unknown, but microbial infections are suspected to play a role. In previous studies, the Gram-positive, low virulent bacterium Cutibacterium (formerly Propionibacterium) acnes was frequently isolated from prostatic tissue. It is unclear if the presence of the bacterium represents a true infection or a contamination. Here we investigated Cutibacterium acnes type II, also called subspecies defendens, which is the most prevalent type among prostatic C. acnes isolates. Genome sequencing of type II isolates identified large plasmids in several genomes. The plasmids are highly similar to previously identified linear plasmids of type I C. acnes strains associated with acne vulgaris. A PCR-based analysis revealed that 28.4% (21 out of 74) of all type II strains isolated from cancerous prostates carry a plasmid. The plasmid shows signatures for conjugative transfer. In addition, it contains a gene locus for tight adherence (tad) that is predicted to encode adhesive Flp (fimbrial low-molecular weight protein) pili. In subsequent experiments a tad locus-encoded putative pilin subunit was identified in the surface-exposed protein fraction of plasmid-positive C. acnes type II strains by mass spectrometry, indicating that the tad locus is functional. Additional plasmid-encoded proteins were detected in the secreted protein fraction, including two signal peptide-harboring proteins; the corresponding genes are specific for type II C. acnes, thus lacking from plasmid-positive type I C. acnes strains. Further support for the presence of Flp pili in C. acnes type II was provided by electron microscopy, revealing cell appendages in tad locus-positive strains. Our study provides new insight in the most prevalent prostatic subspecies of C. acnes, subsp. defendens, and indicates the existence of Flp pili in plasmid-positive strains. Such pili may support colonization and persistent infection of human prostates by C. acnes.

  • 45.
    de Pedro, Miguel A.
    et al.
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Cava, Felipe
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Structural constraints and dynamics of bacterial cell wall architecture2015In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 6, article id 449Article, review/survey (Refereed)
    Abstract [en]

    The peptidoglycan wall (PG) is a unique structure which confers physical strength and defined shape to bacteria. It consists of a net-like macromolecule of peptide interlinked glycan chains overlying the cell membrane. The structure and layout of the PG dictates that the wall has to be continuously modified as bacteria go through division, morphological differentiation, and adaptive responses. The PG is poorly known in structural terms. However, to understand morphogenesis a precise knowledge of glycan strand arrangement and of local effects of the different kinds of subunits is essential. The scarcity of data led to a conception of the PG as a regular, highly ordered structure which strongly influenced growth models. Here, we review the structure of the PG to define a more realistic conceptual framework. We discuss the consequences of the plasticity of murein architecture in morphogenesis and try to define a set of minimal structural constraints that must be fulfilled by any model to be compatible with present day information.

  • 46. Delmont, Tom O.
    et al.
    Hammar, Katherine M.
    Ducklow, Hugh W.
    Yager, Patricia L.
    Post, Anton F.
    Phaeocystis antarctica blooms strongly influence bacterial community structures in the Amundsen Sea polynya2014In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 5Article in journal (Refereed)
    Abstract [en]

    Rising temperatures and changing winds drive the expansion of the highly productive polynyas (open water areas surrounded by sea ice) abutting the Antarctic continent. Phytoplankton blooms in polynyas are often dominated by the haptophyte Phaeocystis antarctica, and they generate the organic carbon that enters the resident microbial food web. Yet, little is known about how Phaeocystis blooms shape bacterial community structures and carbon fluxes in these systems. We identified the bacterial communities that accompanied a Phaeocystis bloom in the Amundsen Sea polynya during the austral summers of 20072008 and 20102011. These communities are distinct from those determined for the Antarctic Circumpolar Current (ACC) and off the Palmer Peninsula. Diversity patterns for most microbial taxa in the Amundsen Sea depended on location (e.g., waters abutting the pack ice near the shelf break and at the edge of the Dotson glacier) and depth, reflecting different niche adaptations within the confines of this isolated ecosystem. Inside the polynya, P. antarctica coexisted with the bacterial taxa Polaribacter sensu lato, a cryptic Oceanospirillum, SAR92 and Pelagibacter. These taxa were dominated by a single oligotype (genotypes partitioned by Shannon entropy analysis) and together contributed up to 73% of the bacterial community. Size fractionation of the bacterial community [<3 mu m (free-living bacteria) vs. >3 mu m (particle-associated bacteria)] identified several taxa (especially SAR92) that were preferentially associated with Phaeocystis colonies, indicative of a distinct role in Phaeocystis bloom ecology. In contrast, particle-associated bacteria at 250 m depth were enriched in Colwellia and members of the Cryomorphaceae suggesting that they play important roles in the decay of Phaeocystis blooms.

  • 47.
    Demirel, Isak
    et al.
    Örebro University, School of Medical Sciences. Inflammatory Response and Infection Susceptibility Centre.
    Rangel, Ignacio
    Örebro University, School of Medical Sciences.
    Petersson, Ulrika
    School of Medical Sciences, Örebro University, Örebro, Sweden.
    Persson, Katarina
    Örebro University, School of Medical Sciences. Faculty of Medicine and Health, Inflammatory Response and Infection Susceptibility Centre, Örebro University, Örebro, Sweden.
    Kruse, Robert
    Örebro University, School of Medical Sciences. Faculty of Medicine and Health, Inflammatory Response and Infection Susceptibility Centre, Örebro University, Örebro, Sweden; Department of Clinical Research Laboratory, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
    Transcriptional Alterations of Virulence-Associated Genes in Extended Spectrum Beta-Lactamase (ESBL)-Producing Uropathogenic Escherichia coli during Morphologic Transitions Induced by Ineffective Antibiotics2017In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 8, article id 1058Article in journal (Refereed)
    Abstract [en]

    It is known that an ineffective antibiotic treatment can induce morphological shifts in uropathogenic Escherichia coli (UPEC) but the virulence properties during these shifts remain to be studied. The present study examines changes in global gene expression patterns and in virulence factor-associated genes in an extended spectrum beta-lactamase (ESBL)-producing UPEC (ESBL019) during the morphologic transitions induced by an ineffective antibiotic and in the presence of human primary bladder epithelial cells. Microarray results showed that the different morphological states of ESBL019 had significant transcriptional alterations of a large number of genes (Transition; 7%, Filamentation; 32%, and Reverted 19% of the entities on the array). All three morphological states of ESBL019 were associated with a decreased energy metabolism, altered iron acquisition systems and altered adhesion expression. In addition, genes associated with LPS synthesis and bacterial motility was also altered in all the morphological states. Furthermore, the transition state induced a significantly higher release of TNF-alpha from bladder epithelial cells compared to all other morphologies, while the reverted state was unable to induce INF-alpha release. Our findings show that the morphological shifts induced by ineffective antibiotics are associated with significant transcriptional virulence alterations in ESBL-producing UPEC, which may affect survival and persistence in the urinary tract.

  • 48.
    Dinasquet, Julie
    et al.
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences. University of Copenhagen, Denmark.
    Granhag, Lena
    University of Gothenburg ; Chalmers University of Technology.
    Riemann, Lasse
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Stimulated bacterioplankton growth and selection for certain bacterial taxa in the vicinity of the ctenophore Mnemiopsis leidyi2012In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 3, article id 302Article in journal (Refereed)
    Abstract [en]

    Episodic blooms of voracious gelatinous zooplankton, such as the ctenophore Mnemiopsis leidyi, affect pools of inorganic nutrients and dissolved organic carbon by intensive grazing activities and mucus release. This will potentially influence bacterioplankton activity and community composition, at least at local scales; however, available studies on this are scarce. In the present study we examined effects of M. leidyi on bacterioplankton growth and composition in incubation experiments. Moreover, we examined community composition of bacteria associated with the surface and gut of M. leidyi. High release of ammonium and high bacterial growth was observed in the treatments with M. leidyi relative to controls. Deep 454 pyrosequencing of 16 S rRNA genes showed specific bacterial communities in treatments with M. leidyi as well as specific communities associated with M. leidyi tissue and gut. In particular, members of Flavobacteriaceae were associated with M. leidyi. Our study shows that M. leidyi influences bacterioplankton activity and community composition in the vicinity of the jellyfish. In particular during temporary aggregations of jellyfish, these local zones of high bacterial growth may contribute significantly to the spatial heterogeneity of bacterioplankton activity and community composition in the sea.

  • 49.
    Dopson, Mark
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Holmes, David S.
    Andrés Bello National University, Chile;Fundación Ciencia & Vida, Chile.
    Lazcano, Marcelo
    Andrés Bello National University, Chile;Fundación Ciencia & Vida, Chile.
    McCredden, Timothy J.
    Curtin University, Australia.
    Bryan, Christopher G.
    Curtin University, Australia.
    Mulroney, Kieran T.
    Curtin University, Australia.
    Steuart, Robert
    Curtin University, Australia.
    Jackaman, Connie
    Curtin University, Australia.
    Watkin, Elizabeth L. J.
    Curtin University, Australia.
    Multiple Osmotic Stress Responses in Acidihalobacter prosperus Result in Tolerance to Chloride Ions2017In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 7, article id 2132Article in journal (Refereed)
    Abstract [en]

    Extremely acidophilic microorganisms (pH optima for growth of <= 3) are utilized for the extraction of metals from sulfide minerals in the industrial biotechnology of biomining. A long term goal for biomining has been development of microbial consortia able to withstand increased chloride concentrations for use in regions where freshwater is scarce. However, when challenged by elevated salt, acidophiles experience both osmotic stress and an acidification of the cytoplasm due to a collapse of the inside positive membrane potential, leading to an influx of protons. In this study, we tested the ability of the halotolerant acidophile Acidihalobacter prosperus to grow and catalyze sulfide mineral dissolution in elevated concentrations of salt and identified chloride tolerance mechanisms in Ac. prosperus as well as the chloride susceptible species, Acidithiobacillus ferrooxidans. Ac. prosperus had optimum iron oxidation at 20 g L-1 NaCl while At. ferrooxidans iron oxidation was inhibited in the presence of 6 g L-1 NaCl. The tolerance to chloride in Ac. prosperus was consistent with electron microscopy, determination of cell viability, and bioleaching capability. The Ac. prosperus proteomic response to elevated chloride concentrations included the production of osmotic stress regulators that potentially induced production of the compatible solute, ectoine uptake protein, and increased iron oxidation resulting in heightened electron flow to drive proton export by the F0F1 ATPase. In contrast, At. ferrooxidans responded to low levels of Cl- with a generalized stress response, decreased iron oxidation, and an increase in central carbon metabolism. One potential adaptation to high chloride in the Ac. prosperus Rus protein involved in ferrous iron oxidation was an increase in the negativity of the surface potential of Rus Form I (and Form II) that could help explain how it can be active under elevated chloride concentrations. These data have been used to create a model of chloride tolerance in the salt tolerant and susceptible species Ac. prosperus and At. ferrooxidans, respectively.

  • 50.
    Dopson, Mark
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Ossandon, Francisco J.
    Universidad Andrés Bello, Chile.
    Lovgren, Lars
    Umeå University.
    Holmes, David S.
    Universidad Andrés Bello, Chile.
    Metal resistance or tolerance?: Acidophiles confront high metal loads via both abiotic and biotic mechanisms2014In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 5, article id 157Article in journal (Refereed)
    Abstract [en]

    All metals are toxic at high concentrations and consequently their intracellular concentrations must be regulated. Extremely acidophilic microorganisms have an optimum growth of pH <3 and proliferate in natural and anthropogenic low pH environments. Some acidophiles are involved in the catalysis of sulfide mineral dissolution, resulting in high concentrations of metals in solution. Acidophiles are often described as highly metal resistant via mechanisms such as multiple and/or more efficient active resistance systems than are present in neutrophiles. However, this is not the case for all acidophiles and we contend that their growth in high metal concentrations is partially due to an intrinsic tolerance as a consequence of the environment in which they live. In this perspective, we highlight metal tolerance via complexation of free metals by sulfate ions and passive tolerance to metal influx via an internal positive cytoplasmic transmembrane potential. These tolerance mechanisms have been largely ignored in past studies of acidophile growth in the presence of metals and should be taken into account.

1234 1 - 50 of 160
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf