Digitala Vetenskapliga Arkivet

Change search
Refine search result
1 - 33 of 33
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abbasi, Mazhar Ali
    et al.
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Hussain Ibupoto, Zafar
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Hussain, Mushtaque
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Nur, Omer
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Willander, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    The fabrication of white light-emitting diodes using the n-ZnO/NiO/p-GaN heterojunction with enhanced luminescence2013In: Nanoscale Research Letters, ISSN 1931-7573, E-ISSN 1556-276X, Vol. 8, no 320Article in journal (Refereed)
    Abstract [en]

    Cheap and efficient white light-emitting diodes (LEDs) are of great interest due to the energy crisis all over the world. Herein, we have developed heterojunction LEDs based on the well-aligned ZnO nanorods and nanotubes on the p-type GaN with the insertion of the NiO buffer layer that showed enhancement in the light emission. Scanning electron microscopy have well demonstrated the arrays of the ZnO nanorods and the proper etching into the nanotubes. X-ray diffraction study describes the wurtzite crystal structure array of ZnO nanorods with the involvement of GaN at the (002) peak. The cathodoluminescence spectra represent strong and broad visible emission peaks compared to the UV emission and a weak peak at 425 nm which is originated from GaN. Electroluminescence study has shown highly improved luminescence response for the LEDs fabricated with NiO buffer layer compared to that without NiO layer. Introducing a sandwich-thin layer of NiO between the n-type ZnO and the p-type GaN will possibly block the injection of electrons from the ZnO to the GaN. Moreover, the presence of NiO buffer layer might create the confinement effect.

    Download full text (pdf)
    fulltext
  • 2. Al-Saadi, Mubarak J.
    et al.
    Al-Harthi, Salim H.
    Kyaw, Htet H.
    Myint, Myo T. Z.
    Bora, Tanujjal
    Laxman, Karthik
    KTH, School of Engineering Sciences (SCI), Applied Physics, Materials and Nanophysics.
    Al-Hinai, Ashraf
    Dutta, Joydeep
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Influence of Atomic Hydrogen, Band Bending, and Defects in the Top Few Nanometers of Hydrothermally Prepared Zinc Oxide Nanorods2017In: Nanoscale Research Letters, ISSN 1931-7573, E-ISSN 1556-276X, Vol. 12, article id 22Article in journal (Refereed)
    Abstract [en]

    We report on the surface, sub-surface (top few nanometers) and bulk properties of hydrothermally grown zinc oxide (ZnO) nanorods (NRs) prior to and after hydrogen treatment. Upon treating with atomic hydrogen (H*), upward and downward band bending is observed depending on the availability of molecular H2O within the structure of the NRs. In the absence of H2O, the H* treatment demonstrated a cleaning effect of the nanorods, leading to a 0.51 eV upward band bending. In addition, enhancement in the intensity of room temperature photoluminescence (PL) signals due to the creation of new surface defects could be observed. The defects enhanced the visible light activity of the ZnO NRs which were subsequently used to photocatalytically degrade aqueous phenol under simulated sunlight. On the contrary, in the presence of H2O, H* treatment created an electronic accumulation layer inducing downward band bending of 0.45 eV (similar to 1/7th of the bulk ZnO band gap) along with the weakening of the defect signals as observed from room temperature photoluminescence spectra. The results suggest a plausible way of tailoring the band bending and defects of the ZnO NRs through control of H2O/H* species.

  • 3.
    Alvi, Naveed ul Hassan
    et al.
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Hussain, S.
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Nour, Omer
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Willander, Magnus
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Influence of helium-ion bombardment on the optical properties of ZnO nanorods/p-GaN light emitting diodes2011In: Nanoscale Research Letters, ISSN 1931-7573, E-ISSN 1556-276X, Vol. 6, no 628Article in journal (Refereed)
    Abstract [en]

    Light emitting diodes (LEDs) based on zinc oxide (ZnO) nanorods grown by vapor-liquid-solid (VLS) catalytic growth method were irradiated with 2 MeV helium (He+) ions. The fabricated LEDs were irradiated with fluencies of ~ 2×1013 ions/cm2 and ~ 4×1013 ions/cm2. Scanning electron microscopy (SEM) images showed that the morphology of the irradiated samples is not changed. The as-grown and He+ irradiated LEDs showed rectifying behaviour with the same I-V characteristics. Photoluminescence (PL) measurements showed that there is a blue shift of approximately 0.0347 eV and 0.082 eV in the near band emission (free exciton) and green emission of the irradiated ZnO nanorods, respectively. It was also observed that the PL intensity of the near band emission was decreased after irradiation of the samples. The electroluminescence (EL) measurements of the fabricated LEDs showed that there is a blue shift of 0.125 eV in the broad green emission after irradiation and the EL intensity of violet emission approximately centred at 398 nm was nearly disappeared after irradiations. The color rendering properties shows a small decrease in the color rendering indices of 3% after 2 MeV He+ ions irradiation.

    Download full text (pdf)
    fulltext
  • 4. Bandyopadhyay, Sulalit
    et al.
    McDonagh, Birgitte H.
    Singh, Gurvinder
    Raghunathan, Karthik
    Sandvig, Axel
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience. 3 Department of Neuroscience, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway.
    Sandvig, Ioanna
    Andreassen, Jens-Petter
    Glomm, Wilhelm R.
    Growing gold nanostructures for shape-selective cellular uptake2018In: Nanoscale Research Letters, ISSN 1931-7573, E-ISSN 1556-276X, Vol. 13, article id 254Article in journal (Refereed)
    Abstract [en]

    With development in the synthesis of shape- and size-dependent gold (Au) nanostructures (NSs) and their applications in nanomedicine, one of the biggest challenges is to understand the interaction of these shapes with cancer cells. Herein, we study the interaction of Au NSs of five different shapes with glioblastoma-astrocytoma cells. Three different shapes (nanorods, tetrahexahedra, and bipyramids), possessing tunable optical properties, have been synthesized by a single-step seed-mediated growth approach employing binary surfactant mixtures of CTAB and a secondary surfactant By the use of two-step seed-mediated approach, we obtained new NSs, named nanomakura (Makura is a Japanese word used for pillow) which is reported for the first time here. Spherical Au nanoparticles were prepared by the Turkevich method. To study NS-cell interactions, we functionalized the NSs using thiolated PEG followed by 11-Mercaptoundecanoic acid. The influence of shape and concentration of NSs on the cytotoxicity were assessed with a LIVE/DEAD assay in glioblastoma-astrocytoma cells. Furthermore, the time-dependent uptake of nanomakura was studied with TEM. Our results indicate that unlike the other shapes studied here, the nanomakura were taken up both via receptor-mediated endocytosis and macropinocytosis. Thus, from our library of different NSs with similar surface functionality, the shape is found to be an important parameter for cellular uptake.

    Download full text (pdf)
    fulltext
  • 5.
    Chalangar, Ebrahim
    et al.
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering. School of Information Technology, Halmstad University, 301 18, Halmstad, Sweden.
    Nur, Omer
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics.
    Willander, Magnus
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics.
    Gustafsson, Anders
    Solid State Physics and NanoLund, Lund University, Box 118, 221 00, Lund, Sweden.
    Pettersson, Håkan
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering. School of Information Technology, Halmstad University, 301 18, Halmstad, Sweden; Solid State Physics and NanoLund, Lund University, Box 118, 221 00, Lund, Sweden.
    Synthesis of Vertically Aligned ZnO Nanorods Using Sol-gel Seeding and Colloidal Lithography Patterning2021In: Nanoscale Research Letters, ISSN 1931-7573, E-ISSN 1556-276X, Vol. 16, no 1, article id 46Article in journal (Refereed)
    Abstract [en]

    Different ZnO nanostructures can be grown using low-cost chemical bath deposition. Although this technique is cost-efficient and flexible, the final structures are usually randomly oriented and hardly controllable in terms of homogeneity and surface density. In this work, we use colloidal lithography to pattern (100) silicon substrates to fully control the nanorods' morphology and density. Moreover, a sol-gel prepared ZnO seed layer was employed to compensate for the lattice mismatch between the silicon substrate and ZnO nanorods. The results show a successful growth of vertically aligned ZnO nanorods with controllable diameter and density in the designated openings in the patterned resist mask deposited on the seed layer. Our method can be used to fabricate optimized devices where vertically ordered ZnO nanorods of high crystalline quality are crucial for the device performance.

    Download full text (pdf)
    fulltext
  • 6.
    Chalangar, Ebrahim
    et al.
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab. Department of Science and Technology, Linköping University, Norrköping, Sweden.
    Nur, Omer
    Department of Science and Technology, Linköping University, Norrköping, Sweden.
    Willander, Magnus
    Department of Science and Technology, Linköping University, Norrköping, Sweden.
    Gustafsson, Anders
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Pettersson, Håkan
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab. Department of Science and Technology, Linköping University, Norrköping, Sweden & Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Synthesis of Vertically Aligned ZnO Nanorods Using Sol-gel Seeding and Colloidal Lithography Patterning2021In: Nanoscale Research Letters, ISSN 1931-7573, E-ISSN 1556-276X, Vol. 16, no 1, article id 46Article in journal (Refereed)
    Abstract [en]

    Different ZnO nanostructures can be grown using low-cost chemical bath deposition. Although this technique is cost-efficient and flexible, the final structures are usually randomly oriented and hardly controllable in terms of homogeneity and surface density. In this work, we use colloidal lithography to pattern (100) silicon substrates to fully control the nanorods' morphology and density. Moreover, a sol-gel prepared ZnO seed layer was employed to compensate for the lattice mismatch between the silicon substrate and ZnO nanorods. The results show a successful growth of vertically aligned ZnO nanorods with controllable diameter and density in the designated openings in the patterned resist mask deposited on the seed layer. Our method can be used to fabricate optimized devices where vertically ordered ZnO nanorods of high crystalline quality are crucial for the device performance. © 2021 BioMed Central Ltd

  • 7.
    Cheng, Dan-Chen
    et al.
    Fudan Univ, Dept Opt Sci & Engn, Shanghai 200433, Peoples R China.;Fudan Univ, Shanghai Ultra Precis Opt Mfg Engn Ctr, Shanghai 200433, Peoples R China..
    Hao, Hong-Chen
    Fudan Univ, Dept Opt Sci & Engn, Shanghai 200433, Peoples R China.;Fudan Univ, Shanghai Ultra Precis Opt Mfg Engn Ctr, Shanghai 200433, Peoples R China..
    Zhang, Miao
    KTH, School of Engineering Sciences (SCI), Applied Physics, Materials and Nanophysics. Royal Inst Technol KTH, S-16440 Kista, Sweden..
    Shi, Wei
    Fudan Univ, Dept Opt Sci & Engn, Shanghai 200433, Peoples R China.;Fudan Univ, Shanghai Ultra Precis Opt Mfg Engn Ctr, Shanghai 200433, Peoples R China..
    Lu, Ming
    Fudan Univ, Dept Opt Sci & Engn, Shanghai 200433, Peoples R China.;Fudan Univ, Shanghai Ultra Precis Opt Mfg Engn Ctr, Shanghai 200433, Peoples R China..
    Improving Si solar cell performance using Mn:ZnSe quantum dot-doped PLMA thin film2013In: Nanoscale Research Letters, ISSN 1931-7573, E-ISSN 1556-276X, Vol. 8, article id 291Article in journal (Refereed)
    Abstract [en]

    Poly(lauryl methacrylate) (PLMA) thin film doped with Mn:ZnSe quantum dots (QDs) was spin-deposited on the front surface of Si solar cell for enhancing the solar cell efficiency via photoluminescence (PL) conversion. Significant solar cell efficiency enhancements (approximately 5% to 10%) under all-solar-spectrum (AM0) condition were observed after QD-doped PLMA coatings. Furthermore, the real contribution of the PL conversion was precisely assessed by investigating the photovoltaic responses of the QD-doped PLMA to monochromatic and AM0 light sources as functions of QD concentration, combined with reflectance and external quantum efficiency measurements. At a QD concentration of 1.6 mg/ml for example, among the efficiency enhancement of 5.96%, about 1.04% was due to the PL conversion, and the rest came from antireflection. Our work indicates that for the practical use of PL conversion in solar cell performance improvement, cautions are to be taken, as the achieved efficiency enhancement might not be wholly due to the PL conversion.

  • 8.
    Chinga-Carrasco, Gary
    RISE, Innventia, PFI – Paper and Fiber Research Institute.
    Cellulose fibres, nanofibrils and microfibrils: The morphological sequence of MFC components from a plant physiology and fibre technology point of view2011In: Nanoscale Research Letters, ISSN 1931-7573, E-ISSN 1556-276X, Vol. 6Article in journal (Refereed)
  • 9.
    Chinga-Carrasco, Gary
    et al.
    RISE, Innventia, PFI – Paper and Fiber Research Institute.
    Syverud, Kristin
    RISE, Innventia, PFI – Paper and Fiber Research Institute.
    On the structure and oxygen transmission rate of biodegradable cellulose nanobarriers2012In: Nanoscale Research Letters, ISSN 1931-7573, E-ISSN 1556-276X, Vol. 7Article in journal (Refereed)
  • 10.
    Dawi, E. A.
    et al.
    Ajman Univ, U Arab Emirates.
    Karar, A. A.
    Edith Cowan Univ, Australia.
    Mustafa, Elfatih Mohammed
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Nur, Omer
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Plasmon-Enhanced Light Absorption in (p-i-n) Junction GaAs Nanowire Solar Cells: An FDTD Simulation Method Study2021In: Nanoscale Research Letters, ISSN 1931-7573, E-ISSN 1556-276X, Vol. 16, no 1, article id 149Article in journal (Refereed)
    Abstract [en]

    A finite-difference time-domain method is developed for studying the plasmon enhancement of light absorption from vertically aligned GaAs nanowire arrays decorated with Au nanoparticles. Vertically aligned GaAs nanowires with a length of 1 mu m, a diameter of 100 nm and a periodicity of 165-500 nm are functionalized with Au nanoparticles with a diameter between 30 and 60 nm decorated in the sidewall of the nanowires. The results show that the metal nanoparticles can improve the absorption efficiency through their plasmonic resonances, most significantly within the near-bandgap edge of GaAs. By optimizing the nanoparticle parameters, an absorption enhancement of almost 35% at 800 nm wavelength is achieved. The latter increases the chance of generating more electron-hole pairs, which leads to an increase in the overall efficiency of the solar cell. The proposed structure emerges as a promising material combination for high-efficiency solar cells.

    Download full text (pdf)
    fulltext
  • 11.
    Dobrovolsky, Alexander
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Chen, Shula
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Kuang, Y. J.
    Department of Physics, University of California, La Jolla, California, USA.
    Sukrittanon, S.
    Graduate Program of Materials Science and Engineering, La Jolla, California, USA.
    Tu, C. W.
    Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California, USA.
    Chen, Weimin
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Buyanova, Irina
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Optical properties of GaP/GaNP core/shell nanowires: a temperature-dependent study2013In: Nanoscale Research Letters, ISSN 1931-7573, E-ISSN 1556-276X, Vol. 8, no 1, p. 239-Article in journal (Refereed)
    Abstract [en]

    Recombination processes in GaP/GaNP core/shell nanowires (NWs) grown on Si are studied by employing temperature-dependent continuous wave and time-resolved photoluminescence (PL) spectroscopies. The NWs exhibit bright PL emissions due to radiative carrier recombination in the GaNP shell. Though the radiative efficiency of the NWs is found to decrease with increasing temperature, the PL emission remains intense even at room temperature. Two thermal quenching processes of the PL emission are found to be responsible for the degradation of the PL intensity at elevated temperatures: (a) thermal activation of the localized excitons from the N-related localized states and (b) activation of a competing non-radiative recombination (NRR) process. The activation energy of the latter process is determined as being around 180 meV. NRR is also found to cause a significant decrease of carrier lifetime.

    Download full text (pdf)
    fulltext
  • 12. Girgis, Emad
    et al.
    Wahsh, Mohamed M. S.
    Othman, Atef G. M.
    Bhandu, Lokeshwar
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Rao, K. Venkat
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Engineering Material Physics.
    Synthesis, magnetic and optical properties of core/shell Co(1-x)Zn(x)Fe(2)O(4)/SiO(2) nanoparticles2011In: Nanoscale Research Letters, ISSN 1931-7573, E-ISSN 1556-276X, Vol. 6, p. 460-Article in journal (Refereed)
    Abstract [en]

    The optical properties of multi-functionalized cobalt ferrite (CoFe(2)O(4)), cobalt zinc ferrite (Co(0.5)Zn(0.5)Fe(2)O(4)), and zinc ferrite (ZnFe(2)O(4)) nanoparticles have been enhanced by coating them with silica shell using a modified Stober method. The ferrites nanoparticles were prepared by a modified citrate gel technique. These core/shell ferrites nanoparticles have been fired at temperatures: 400 degrees C, 600 degrees C and 800 degrees C, respectively, for 2 h. The composition, phase, and morphology of the prepared core/shell ferrites nanoparticles were determined by X-ray diffraction and transmission electron microscopy, respectively. The diffuse reflectance and magnetic properties of the core/shell ferrites nanoparticles at room temperature were investigated using UV/VIS double-beam spectrophotometer and vibrating sample magnetometer, respectively. It was found that, by increasing the firing temperature from 400 degrees C to 800 degrees C, the average crystallite size of the core/shell ferrites nanoparticles increases. The cobalt ferrite nanoparticles fired at temperature 800 degrees C; show the highest saturation magnetization while the zinc ferrite nanoparticles coated with silica shell shows the highest diffuse reflectance. On the other hand, core/shell zinc ferrite/silica nanoparticles fired at 400 degrees C show a ferromagnetic behavior and high diffuse reflectance when compared with all the uncoated or coated ferrites nanoparticles. These characteristics of core/shell zinc ferrite/silica nanostructures make them promising candidates for magneto-optical nanodevice applications.

  • 13. Li, C.
    et al.
    Lin, H.
    Li, J.
    Yin, X.
    Zhang, Y.
    Kong, Z.
    Wang, G.
    Zhu, H.
    Radamson, Henry H.
    Growth and Selective Etch of Phosphorus-Doped Silicon/Silicon–Germanium Multilayers Structures for Vertical Transistors Application2020In: Nanoscale Research Letters, ISSN 1931-7573, E-ISSN 1556-276X, Vol. 15, no 1, article id 225Article in journal (Refereed)
    Abstract [en]

    Vertical gate-all-around field-effect transistors (vGAAFETs) are considered as the potential candidates to replace FinFETs for advanced integrated circuit manufacturing technology at/beyond 3-nm technology node. A multilayer (ML) of Si/SiGe/Si is commonly grown and processed to form vertical transistors. In this work, the P-incorporation in Si/SiGe/Si and vertical etching of these MLs followed by selective etching SiGe in lateral direction to form structures for vGAAFET have been studied. Several strategies were proposed for the epitaxy such as hydrogen purging to deplete the access of P atoms on Si surface, and/or inserting a Si or Si0.93Ge0.07 spacers on both sides of P-doped Si layers, and substituting SiH4 by SiH2Cl2 (DCS). Experimental results showed that the segregation and auto-doping could also be relieved by adding 7% Ge to P-doped Si. The structure had good lattice quality and almost had no strain relaxation. The selective etching between P-doped Si (or P-doped Si0.93Ge0.07) and SiGe was also discussed by using wet and dry etching. The performance and selectivity of different etching methods were also compared. This paper provides knowledge of how to deal with the challenges or difficulties of epitaxy and etching of n-type layers in vertical GAAFETs structure. © 2020, The Author(s).

  • 14.
    Liu, Fangcen
    et al.
    Nanjing Univ, Peoples R China; Nanjing Univ, Peoples R China.
    Wang, Xinyue
    Nanjing Univ, Peoples R China.
    Liu, Qin
    Nanjing Univ, Peoples R China.
    Zhang, Huan
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Children's and Women's Health. Linköping University, Faculty of Medicine and Health Sciences.
    Xie, Li
    Nanjing Univ, Peoples R China.
    Wang, Qin
    Nanjing Univ, Peoples R China.
    Li, Lin
    Nanjing Univ, Peoples R China.
    Li, Rutian
    Nanjing Univ, Peoples R China.
    Biocompatible Nanoparticles as a Platform for Enhancing Antitumor Efficacy of Cisplatin-Tetradrine Combination2021In: Nanoscale Research Letters, ISSN 1931-7573, E-ISSN 1556-276X, Vol. 16, no 1, article id 61Article in journal (Refereed)
    Abstract [en]

    Combination therapy has been a standard strategy in the clinical tumor treatment. We have demonstrated that combination of Tetradrine (Tet) and Cisplatin (CDDP) presented a marked synergistic anticancer activity, but inevitable side effects limit their therapeutic concentration. Considering the different physicochemical and pharmacokinetic properties of the two drugs, we loaded them into a nanovehicle together by the improved double emulsion method. The nanoparticles (NPs) were prepared from the mixture of poly(ethyleneglycol)-polycaprolactone (PEG-PCL) and polycarprolactone (HO-PCL), so CDDP and Tet can be located into the NPs simultaneously, resulting in low interfering effect and high stability. Images from fluorescence microscope revealed the cellular uptake of both hydrophilic and hydrophobic agents delivered by the NPs. In vitro studies on different tumor cell lines and tumor tissue revealed increased tumor inhibition and apoptosis rates. As to the in vivo studies, superior antitumor efficacy and reduced side effects were observed in the NPs group. Furthermore, (18)FDG-PET/CT imaging demonstrated that NPs reduced metabolic activities of tumors more prominently. Our results suggest that PEG-PCL block copolymeric NPs could be a promising carrier for combined chemotherapy with solid efficacy and minor side effects.

    Download full text (pdf)
    fulltext
  • 15. Liu, Y. S.
    et al.
    Hong, X. K.
    Feng, J. F.
    Yang, Xifeng
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Fano-Rashba effect in thermoelectricity of a double quantum dot molecular junction2011In: Nanoscale Research Letters, ISSN 1931-7573, E-ISSN 1556-276X, Vol. 6, p. 618-Article in journal (Refereed)
    Abstract [en]

    We examine the relation between the phase-coherent processes and spin-dependent thermoelectric effects in an Aharonov-Bohm (AB) interferometer with a Rashba quantum dot (QD) in each of its arm by using the Green's function formalism and equation of motion (EOM) technique. Due to the interplay between quantum destructive interference and Rashba spin-orbit interaction (RSOI) in each QD, an asymmetrical transmission node splits into two spin-dependent asymmetrical transmission nodes in the transmission spectrum and, as a consequence, results in the enhancement of the spin-dependent thermoelectric effects near the spin-dependent asymmetrical transmission nodes. We also examine the evolution of spin-dependent thermoelectric effects from a symmetrical parallel geometry to a configuration in series. It is found that the spin-dependent thermoelectric effects can be enhanced by controlling the dot-electrode coupling strength. The simple analytical expressions are also derived to support our numerical results.PACS numbers: 73.63.Kv; 71.70.Ej; 72.20.Pa

  • 16.
    Mo, Lixin
    et al.
    Beijing Institute of Graphic Communication, China.
    Guo, Zhenxin
    Beijing Institute of Graphic Communication, China.
    Wang, Zhenguo
    Beijing Institute of Graphic Communication, China.
    Yang, Li
    RISE - Research Institutes of Sweden, Bioeconomy, Papermaking and Packaging.
    Fang, Yi
    Beijing Institute of Graphic Communication, China.
    Xin, Zhiqing
    Beijing Institute of Graphic Communication, China.
    Li, Xiu
    Beijing Institute of Graphic Communication, China.
    Chen, Yinjie
    Beijing Institute of Graphic Communication, China.
    Cao, Meijuan
    Beijing Institute of Graphic Communication, China.
    Zhang, Qingqing
    Beijing Institute of Graphic Communication, China.
    Li, Luhai
    Beijing Institute of Graphic Communication, China.
    Nano-Silver Ink of High Conductivity and Low Sintering Temperature for Paper Electronics2019In: Nanoscale Research Letters, ISSN 1931-7573, E-ISSN 1556-276X, Vol. 14, article id 197Article in journal (Refereed)
    Abstract [en]

    Highly conductive ink with low sintering temperature is important for printed electronics on paper substrate. Silver nanoparticles (Ag NPs) of different average radii ranging from 48 to 176 nm were synthesized by adjusting the Ag+ concentration in the reaction process. The electric resistivity of the Ag NP-based ink film in relation to Ag NP size, sintering temperature, amount of PVP capping agent on Ag NP surface, and morphology evolution of the film during heating process was investigated. It was found that the resistivity of the films reduced very rapidly with increasing particle size due above all to reduced amount of protective agent capping on the Ag NPs. A semi-empirical relationship between the resistivity and the particle size was proposed. With the help of this mathematical expression, one gains both systematic and detailed insight to the resistivity evaluation with regard to the Ag particle size. The optimal electric resistivity of 4.6 μΩ cm was achieved at 140 °C for 10 min which was very close to the resistivity value of bulk Ag (1.58 μΩ cm). Mechanical flexibility of the printed electronics with the Ag NP-based ink on paper substrates was investigated. The prints on the art coated paper exhibited better flexibility compared to that on the photopaper. This might be attributed to the surface coating composition, surface morphology of the paper, and their corresponding ink absorption property. © 2019, The Author(s).

  • 17.
    Mustafa, Elfatih Mohammed
    et al.
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Elhadi Adam, Rania Elhadi
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Rouf, Polla
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Willander, Magnus
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Nur, Omer
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Solar-Driven Photoelectrochemical Performance of Novel ZnO/Ag2WO4/AgBr Nanorods-Based Photoelectrodes2021In: Nanoscale Research Letters, ISSN 1931-7573, E-ISSN 1556-276X, Vol. 16, no 1, article id 133Article in journal (Refereed)
    Abstract [en]

    Highly efficient photoelectrochemical (PEC) water oxidation under solar visible light is crucial for water splitting to produce hydrogen as a source of sustainable energy. Particularly, silver-based nanomaterials are important for PEC performance due to their surface plasmon resonance which can enhance the photoelectrochemical efficiency. However, the PEC of ZnO/Ag2WO4/AgBr with enhanced visible-light water oxidation has not been studied so far. Herein, we present a novel photoelectrodes based on ZnO/Ag2WO4/AgBr nanorods (NRs) for PEC application, which is prepared by the low-temperature chemical growth method and then by successive ionic layer adsorption and reaction (SILAR) method. The synthesized photoelectrodes were investigated by several characterization techniques, emphasizing a successful synthesis of the ZnO/Ag2WO4/AgBr heterostructure NRs with excellent photocatalysis performance compared to pure ZnO NRs photoelectrode. The significantly enhanced PEC was due to improved photogeneration and transportation of electrons in the heterojunction due to the synergistic effect of the heterostructure. This study is significant for basic understanding of the photocatalytic mechanism of the heterojunction which can prompt further development of novel efficient photoelectrochemical-catalytic materials.

    Download full text (pdf)
    fulltext
  • 18.
    Nour, E. S.
    et al.
    Linköping University, Sweden.
    Bondarevs, A.
    Linköping University, Sweden.
    Huss, P.
    Linköping University, Sweden.
    Sandberg, Mats
    RISE, Swedish ICT, Acreo. Linköping University, Sweden.
    Gong, S.
    Linköping University, Sweden.
    Willander, M.
    Linköping University, Sweden.
    Nur, O.
    Linköping University, Sweden.
    Low-Frequency Self-Powered Footstep Sensor Based on ZnO Nanowires on Paper Substrate2016In: Nanoscale Research Letters, ISSN 1931-7573, E-ISSN 1556-276X, Vol. 11, no 1, article id 156Article in journal (Refereed)
    Abstract [en]

    In this work, we design and fabricate a wireless system with the main operating device based on zinc oxide (ZnO) nanowires. The main operating device is based on piezoelectric nanogenerator (NG) achieved using ZnO nanowires grown hydrothermally on paper substrate. The fabricated NG is capable of harvesting ambient mechanical energy from various kinds of human motion, e.g., footsteps. The harvested electric output has been used to serve as a self-powered pressure sensor. Without any storage device, the signal from a single footstep has successfully triggered a wireless sensor node circuit. This study demonstrates the feasibility of using ZnO nanowire piezoelectric NG as a low-frequency self-powered sensor, with potential applications in wireless sensor networks.

    Download full text (pdf)
    fulltext
  • 19.
    Nour, Eiman
    et al.
    Linköping University, Department of Science and Technology. Linköping University, Faculty of Science & Engineering.
    Bondarevs, Andrejs
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Huss, Patrik
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Sandberg, Mats
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering. Acreo AB, Sweden.
    Gong, Shaofang
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Willander, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Nour, Omer
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Low-Frequency Self-Powered Footstep Sensor Based on ZnO Nanowires on Paper Substrate2016In: Nanoscale Research Letters, ISSN 1931-7573, E-ISSN 1556-276X, Vol. 11, no 156Article in journal (Refereed)
    Abstract [en]

    In this work, we design and fabricate a wireless system with the main operating device based on zinc oxide (ZnO) nanowires. The main operating device is based on piezoelectric nanogenerator (NG) achieved using ZnO nanowires grown hydrothermally on paper substrate. The fabricated NG is capable of harvesting ambient mechanical energy from various kinds of human motion, e.g., footsteps. The harvested electric output has been used to serve as a self-powered pressure sensor. Without any storage device, the signal from a single footstep has successfully triggered a wireless sensor node circuit. This study demonstrates the feasibility of using ZnO nanowire piezoelectric NG as a low-frequency self-powered sensor, with potential applications in wireless sensor networks.

    Download full text (pdf)
    fulltext
  • 20.
    Palmqvist, N. G. Martin
    et al.
    Swedish University Agricultural Sciences, Department of Chemistry and Biotechnology.
    Seisenbaeva, Gulaim A.
    Swedish University Agricultural Sciences, Department of Chemistry and Biotechnology.
    Svedlindh, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Kessler, Vadim G.
    Swedish University Agricultural Sciences, Department of Chemistry and Biotechnology.
    Maghemite Nanoparticles Acts as Nanozymes, Improving Growth and Abiotic Stress Tolerance in Brassica napus2017In: Nanoscale Research Letters, ISSN 1931-7573, E-ISSN 1556-276X, Vol. 12, article id 631Article in journal (Refereed)
    Abstract [en]

    Yttrium doping-stabilized γ-Fe2O3 nanoparticles were studied for its potential to serve as a plant fertilizer and, through enzymatic activity, support drought stress management. Levels of both hydrogen peroxide and lipid peroxidation, after drought, were reduced when γ-Fe2O3 nanoparticles were delivered by irrigation in a nutrient solution to Brassica napus plants grown in soil. Hydrogen peroxide was reduced from 151 to 83 μM g−1 compared to control, and the malondialdehyde formation was reduced from 36 to 26 mM g−1. Growth rate of leaves was enhanced from 33 to 50% growth compared to fully fertilized plants and SPAD-measurements of chlorophyll increased from 47 to 52 suggesting improved agronomic properties by use of γ-Fe2O3 nanoparticles as fertilizer as compared to chelated iron.

    Download full text (pdf)
    fulltext
  • 21.
    Polishchuk, Dmytr
    et al.
    KTH, School of Engineering Sciences (SCI), Applied Physics, Nanostructure Physics.
    Tykhonenko-Polishchuk, Yuliya
    KTH, School of Engineering Sciences (SCI), Applied Physics, Nanostructure Physics.
    Borynskyi, Vladyslav
    NAS Ukraine, Inst Magnetism, UA-03142 Kiev, Ukraine.;MES Ukraine, UA-03142 Kiev, Ukraine..
    Kravets, Anatolii
    KTH, School of Engineering Sciences (SCI), Applied Physics, Nanostructure Physics.
    Tovstolytkin, Alexandr
    NAS Ukraine, Inst Magnetism, UA-03142 Kiev, Ukraine.;MES Ukraine, UA-03142 Kiev, Ukraine..
    Korenivski, Vladislav
    KTH, School of Engineering Sciences (SCI), Applied Physics, Nanostructure Physics.
    Magnetic Hysteresis in Nanostructures with Thermally Controlled RKKY Coupling2018In: Nanoscale Research Letters, ISSN 1931-7573, E-ISSN 1556-276X, Vol. 13, article id 245Article in journal (Refereed)
    Abstract [en]

    Mechanisms of the recently demonstrated ex-situ thermal control of the indirect exchange coupling in magnetic multilayer are discussed for different designs of the spacer layer. Temperature-induced changes in the hysteresis of magnetization are shown to be associated with different types of competing interlayer exchange interactions. Theoretical analysis indicates that the measured step-like shape and hysteresis of the magnetization loops is due to local in-plane magnetic anisotropy of nano-crystallites within the strongly ferromagnetic films. Comparison of the experiment and theory is used to contrast the mechanisms of the magnetization switching based on the competition of (i) indirect (RKKY) and direct (non-RKKY) interlayer exchange interactions as well as (ii) indirect ferromagnetic and indirect antiferromagnetic (both of RKKY type) interlayer exchange. These results, detailing the rich magnetic phase space of the system, should help enable the practical use of RKKY for thermally switching the magnetization in magnetic multilayers.

  • 22.
    Rudko, Galyna
    et al.
    National Academic Science Ukraine, Ukraine.
    Kovalchuk, Andrii
    National Academic Science Ukraine, Ukraine.
    Fediv, Volodymyr
    Bukovinian State Medical University, Ukraine.
    Chen, Weimin
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Buyanova, Irina
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Enhancement of polymer endurance to UV light by incorporation of semiconductor nanoparticles2015In: Nanoscale Research Letters, ISSN 1931-7573, E-ISSN 1556-276X, Vol. 10, no 81, p. 1-6Article in journal (Refereed)
    Abstract [en]

    Improvement of polyvinyl alcohol stability against ultraviolet (UV) illumination is achieved by introducing cadmium sulfide (CdS) nanoparticles into the polymeric matrix. Enhancement of stability is analyzed by optical characterization methods. UV protection is achieved by diminishing the probability of photo-activated formation of defects in polymer. The sources of polymer protection are the lowering of the efficiency of polymer excitation via partial absorption of incident light by the embedded nanoparticles as well as the de-excitation of the macromolecules that have already absorbed UV quanta via energy drain to nanoparticles. Within the nanoparticles, the energy is either dissipated by conversion to the thermal energy or reemitted as visible-range photoluminescence quanta.

    Download full text (pdf)
    fulltext
  • 23.
    Rudko, Galyna Yu.
    et al.
    National Academic Science Ukraine, Ukraine.
    Vorona, Igor P.
    National Academic Science Ukraine, Ukraine.
    Fediv, Volodymyr I.
    Bukovinian State Medical University, Ukraine.
    Kovalchuk, Andrii
    National Academic Science Ukraine, Ukraine.
    Stehr, Jan Eric
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering. Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials.
    Shanina, Bela D.
    National Academic Science Ukraine, Ukraine.
    Chen, Weimin
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering. Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials.
    Buyanova, Irina
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering. Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials.
    Luminescent and Optically Detected Magnetic Resonance Studies of CdS/PVA Nanocomposite2017In: Nanoscale Research Letters, ISSN 1931-7573, E-ISSN 1556-276X, Vol. 12, article id 130Article in journal (Refereed)
    Abstract [en]

    A series of solid nanocomposites containing CdS nanoparticles in polymeric matrix with varied conditions on the interface particle/polymer was fabricated and studied by photoluminescence (PL) and optically detected magnetic resonance (ODMR) methods. The results revealed interface-related features in both PL and ODMR spectra. The revealed paramagnetic centers are concluded to be involved in the processes of photo-excited carriers relaxation.

    Download full text (pdf)
    fulltext
  • 24.
    Sadaf, Jamil R
    et al.
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Israr, Muhammad Q
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Nur, Omer
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Willander, Magnus
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Ding, Yong
    Georgia Institute Technology.
    Wang, Zhong L
    Georgia Institute Technology.
    The correlation between radiative surface defect states and high color rendering index from ZnO nanotubes2011In: Nanoscale Research Letters, ISSN 1931-7573, E-ISSN 1556-276X, Vol. 6, no 513Article in journal (Refereed)
    Abstract [en]

    Combined surface, structural and opto-electrical investigations are drawn from the chemically fashioned ZnO nanotubes and its heterostructure with p-GaN film. A strong correlation has been found between the formation of radiative surface defect states in the nanotubes and the pure cool white light possessing averaged eight color rendering index value of 96 with appropriate color temperature. Highly important deep-red color index value has been realized andgt; 95 which has the capability to render and reproduce natural and vivid colors accurately. Diverse types of deep defect states and their relative contribution to the corresponding wavelengths in the broad emission band is suggested.

    Download full text (pdf)
    fulltext
  • 25.
    Sen Karaman, Didem
    et al.
    Abo Akad University, Finland .
    Desai, Diti
    Abo Akad University, Finland Maharaja Sayajirao University of Baroda, India .
    Senthilkumar, Rajendran
    Abo Akad University, Finland .
    Johansson, Emma
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Ratts, Natalie
    Abo Akad University, Finland Abo Akad University, Finland Abo Akad University, Finland University of Turku, Finland .
    Odén, Magnus
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    E Eriksson, John
    Abo Akad University, Finland .
    Sahlgren, Cecilia
    Abo Akad University, Finland Abo Akad University, Finland University of Turku, Finland .
    Toivola, Diana M.
    Abo Akad University, Finland Turku Centre Disease Modeling, Finland .
    Rosenholm, Jessica M.
    Abo Akad University, Finland .
    Shape engineering vs organic modification of inorganic nanoparticles as a tool for enhancing cellular internalization2012In: Nanoscale Research Letters, ISSN 1931-7573, E-ISSN 1556-276X, Vol. 7, no 358Article in journal (Refereed)
    Abstract [en]

    In nanomedicine, physicochemical properties of the nanocarrier affect the nanoparticles pharmacokinetics and biodistribution, which are also decisive for the passive targeting and nonspecific cellular uptake of nanoparticles. Size and surface charge are, consequently, two main determining factors in nanomedicine applications. Another important parameter which has received much less attention is the morphology (shape) of the nanocarrier. In order to investigate the morphology effect on the extent of cellular internalization, two similarly sized but differently shaped rod-like and spherical mesoporous silica nanoparticles were synthesized, characterized and functionalized to yield different surface charges. The uptake in two different cancer cell lines was investigated as a function of particle shape, coating (organic modification), surface charge and dose. According to the presented results, particle morphology is a decisive property regardless of both the different surface charges and doses tested, whereby rod-like particles internalized more efficiently in both cell lines. At lower doses whereby the shape-induced advantage is less dominant, charge-induced effects can, however, be used to fine-tune the cellular uptake as a prospective secondary uptake regulator for tight dose control in nanoparticle-based drug formulations.

    Download full text (pdf)
    fulltext
  • 26.
    Soomro, Muhammad Yousuf
    et al.
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Hussain, Ijaz
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Bano, Nargis
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Broitman, Esteban
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Nur, Omer
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Willander, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Nanoscale elastic modulus of single horizontal ZnO nanorod using nanoindentation experiment2012In: Nanoscale Research Letters, ISSN 1931-7573, E-ISSN 1556-276X, Vol. 7, p. 146-148Article in journal (Refereed)
    Abstract [en]

    We measure the elastic modulus of a single horizontal ZnO nanorod [NR] grown by a low-temperature hydrothermal chemical process on silicon substrates by performing room-temperature, direct load-controlled nanoindentation measurements. The configuration of the experiment for the single ZnO NR was achieved using a focused ion beam/scanning electron microscope dual-beam instrument. The single ZnO NR was positioned horizontally over a hole on a silicon wafer using a nanomanipulator, and both ends were bonded with platinum, defining a three-point bending configuration. The elastic modulus of the ZnO NR, extracted from the unloading curve using the well-known Oliver-Pharr method, resulted in a value of approximately 800 GPa. Also, we discuss the NR creep mechanism observed under indentation. The mechanical behavior reported in this paper will be a useful reference for the design and applications of future nanodevices.

    Download full text (pdf)
    fulltext
  • 27.
    Strelchuk, V.
    et al.
    National Academic Science Ukraine, Ukraine.
    Kolomys, O.
    National Academic Science Ukraine, Ukraine.
    Rarata, S.
    National Academic Science Ukraine, Ukraine; Kyiv National Taras Shevchenko University, Ukraine.
    Lytvyn, P.
    National Academic Science Ukraine, Ukraine.
    Khyzhun, O.
    NASU, Ukraine.
    Chey, Chan Oeurn
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Nur, Omer
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Willander, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Raman Submicron Spatial Mapping of Individual Mn-doped ZnO Nanorods2017In: Nanoscale Research Letters, ISSN 1931-7573, E-ISSN 1556-276X, Vol. 12, article id 351Article in journal (Refereed)
    Abstract [en]

    ZnO nanorods (NRs) arrays doped with a large concentration of Mn synthesized by aqueous chemical growth and were characterized by SEM, photoluminescence, Raman scattering, magnetic force microscopy (MFM). By comparison of spectra taken on pure and Mn-doped ZnO NRs, a few new Raman impurity-related phonon modes, resulting from the presence of Mn in the investigated samples. We also present a vibrational and magnetic characterization of individual lying nanorods using Raman and MFM imaging. Confocal scanning micro-Raman mapping of the spatial distribution of intensity and frequency of phonon modes in single Mn-doped ZnO NRs nanorods is presented and analyzed for the first time. Mn-related local vibrational modes are also registered in Raman spectra of the single nanorod, confirming the incorporation of Mn into the ZnO host matrix. At higher Mn concentration the structural transformation toward the spinel phase ZnMn2O4 and Mn3O4 is observed mainly in 2D bottom layers. MFM images of Mn-doped ZnO NR arrays and single nanorod were studied in nanoscale at room temperature and demonstrate magnetic behavior. The circular domain magnetic pattern on top of single nanorod originated to superposition of some separate domains inside rod. This demonstrates that long-range ferromagnetic order is present at room temperature. Aligned Mn-doped ZnO NRs demonstrates that long-range ferromagnetic order and may be applied to future spintronic applications.

    Download full text (pdf)
    fulltext
  • 28.
    Syverud, Kristin
    et al.
    RISE, Innventia, PFI – Paper and Fiber Research Institute.
    Kirsebom, H.
    Hajizadet, S.
    Chinga-Carrasco, Gary
    RISE, Innventia, PFI – Paper and Fiber Research Institute.
    Cross-linking cellulose nanofibrils for potential elastic cryo-structured gels2011In: Nanoscale Research Letters, ISSN 1931-7573, E-ISSN 1556-276X, Vol. 6Article in journal (Refereed)
  • 29.
    Tan, Chunlin
    et al.
    South China Normal Univ, South China Acad Adv Optoelect, Ctr Opt & Electromagnet Res, Guangdong Prov Key Lab Opt Informat Mat & Technol, Guangzhou 510006, Guangdong, Peoples R China..
    Zhou, Chao
    South China Normal Univ, South China Acad Adv Optoelect, Ctr Opt & Electromagnet Res, Guangdong Prov Key Lab Opt Informat Mat & Technol, Guangzhou 510006, Guangdong, Peoples R China..
    Peng, Xingyun
    South China Normal Univ, South China Acad Adv Optoelect, Ctr Opt & Electromagnet Res, Guangdong Prov Key Lab Opt Informat Mat & Technol, Guangzhou 510006, Guangdong, Peoples R China..
    Zhi, Huozhen
    South China Normal Univ, Sch Chem & Environm, Minist Educ, Engn Res Ctr MTEES, Guangzhou 510006, Guangdong, Peoples R China..
    Wang, Dan
    Beijing Univ Chem Technol, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China..
    Zhan, Qiuqiang
    South China Normal Univ, South China Acad Adv Optoelect, Ctr Opt & Electromagnet Res, Guangdong Prov Key Lab Opt Informat Mat & Technol, Guangzhou 510006, Guangdong, Peoples R China..
    He, Sailing
    KTH, School of Engineering Sciences (SCI), Centres, Zhejiang-KTH Joint Research Center of Photonics, JORCEP. South China Normal Univ, South China Acad Adv Optoelect, Ctr Opt & Electromagnet Res, Guangdong Prov Key Lab Opt Informat Mat & Technol, Guangzhou 510006, Guangdong, Peoples R China..
    Sulfuric Acid Assisted Preparation of Red-Emitting Carbonized Polymer Dots and the Application of Bio-lmaging2018In: Nanoscale Research Letters, ISSN 1931-7573, E-ISSN 1556-276X, Vol. 13, article id 272Article in journal (Refereed)
    Abstract [en]

    Red-emitting carbonized polymer dots (CPDs) was prepared from p-phenylenediamine (p-PD) aqueous solution with the assistance of sulfuric acid (H2SO4), and the optical properties and bio-imaging application were studied in this paper. Compared with other strong acids-assisted systems, SA-CPDs (prepared from H2SO4-assisted system, average diameter is similar to 5 nm) is the brightest. The photoluminescence Quantum Yields (QYs) is 21.4% (in water), and the product yield is 16.5%. SA-CPDs aqueous solution emits at 600 nm when excited by the light from 300 to 580 nm. The emission wavelength is independent on the excitation wavelength. Formation energies of CPDs in two ways were calculated to show that longitudinal growth (forming polymers) is difficult, and the transverse growth (forming CPDs) is easy. In addition, the two-photon photoluminescence properties (emitting at 602 nm when excited by 850 nm femtosecond pulse laser) of SA-CPDs were also utilized in the experiments for HeLa cells staining and shown to have potential applications in bio-imaging.

  • 30.
    Ul Hasan, Kamran
    et al.
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Sandberg, Mats O
    Acreo AB.
    Nur, Omer
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Willander, Magnus
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Polycation stabilization of graphene suspensions2011In: Nanoscale Research Letters, ISSN 1931-7573, E-ISSN 1556-276X, Vol. 6, no 493Article in journal (Refereed)
    Abstract [en]

    Graphene is a leading contender for the next-generation electronic devices. We report a method to produce graphene membranes in the solution phase using polymeric imidazolium salts as a transferring medium. Graphene membranes were reduced from graphene oxides by hydrazine in the presence of the polyelectrolyte which is found to be a stable and homogeneous dispersion for the resulting graphene in the aqueous solution. A simple device with gold contacts on both sides was fabricated in order to observe the electronic properties.

    Download full text (pdf)
    fulltext
  • 31.
    Ul Hasan, Kamran
    et al.
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Ul Hassan Alvi, Naveed
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Nur, Omer
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Willander, Magnus
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Single nanowire-based UV photodetectors for fast switching2011In: Nanoscale Research Letters, ISSN 1931-7573, E-ISSN 1556-276X, Vol. 6, no 348Article in journal (Refereed)
    Abstract [en]

    Relatively long (30 mu m) high quality ZnO nanowires (NWs) were grown by the vapor-liquid-solid (VLS) technique. Schottky diodes of single NW were fabricated by putting single ZnO NW across Au and Pt electrodes. A device with ohmic contacts at both the sides was also fabricated for comparison. The current-voltage (I-V) measurements for the Schottky diode show clear rectifying behavior and no reverse breakdown was seen down to -5 V. High current was observed in the forward bias and the device was found to be stable up to 12 V applied bias. The Schottky barrier device shows more sensitivity, lower dark current, and much faster switching under pulsed UV illumination. Desorption and re-adsorption of much smaller number of oxygen ions at the Schottky junction effectively alters the barrier height resulting in a faster response even for very long NWs. The NW was treated with oxygen plasma to improve the switching. The photodetector shows high stability, reversibility, and sensitivity to UV light. The results imply that single ZnO NW Schottky diode is a promising candidate for fabricating UV photodetectors.

    Download full text (pdf)
    fulltext
  • 32. Wang, Guilei
    et al.
    Luo, Jun
    Liu, Jinbiao
    Yang, Tao
    Xu, Yefeng
    Li, Junfeng
    Yin, Huaxiang
    Yan, Jiang
    Zhu, Huilong
    Zhao, Chao
    Ye, Tianchun
    Radamson, Henry H.
    KTH, School of Information and Communication Technology (ICT), Electronics, Integrated devices and circuits.
    pMOSFETs Featuring ALD W Filling Metal Using SiH4 and B2H6 Precursors in 22 nm Node CMOS Technology2017In: Nanoscale Research Letters, ISSN 1931-7573, E-ISSN 1556-276X, Vol. 12, article id 306Article in journal (Refereed)
    Abstract [en]

    In this paper, pMOSFETs featuring atomic layer deposition (ALD) tungsten (W) using SiH4 and B2H6 precursors in 22 nm node CMOS technology were investigated. It is found that, in terms of threshold voltage, driving capability, carrier mobility, and the control of short-channel effects, the performance of devices featuring ALD W using SiH4 is superior to that of devices featuring ALD W using B2H6. This disparity in device performance results from different metal gate-induced strain from ALD W using SiH4 and B2H6 precursors, i.e. tensile stresses for SiH4 (similar to 2.4 GPa) and for B2H6 (similar to 0.9 GPa).

  • 33. Wang, Guilei
    et al.
    Luo, Jun
    Qin, Changliang
    Liang, Renrong
    Xu, Yefeng
    Liu, Jinbiao
    Li, Junfeng
    Yin, Huaxiang
    Yan, Jiang
    Zhu, Huilong
    Xu, Jun
    Zhao, Chao
    Radamson, Henry H.
    KTH, School of Information and Communication Technology (ICT), Electronics, Integrated devices and circuits.
    Ye, Tianchun
    Integration of Highly Strained SiGe in Source and Drain with HK and MG for 22 nm Bulk PMOS Transistors2017In: Nanoscale Research Letters, ISSN 1931-7573, E-ISSN 1556-276X, Vol. 12, article id 123Article in journal (Refereed)
    Abstract [en]

    In this study, the integration of SiGe selective epitaxy on source/drain regions and high-k and metal gate for 22 nm node bulk pMOS transistors has been presented. Selective Si1-xGex growth (0.35 <= x <= 0.40) with boron concentration of 1-3 x 10(20) cm(-3) was used to elevate the source/drain. The main focus was optimization of the growth parameters to improve the epitaxial quality where the high-resolution x-ray diffraction (HRXRD) and energy dispersive spectrometer (EDS) measurement data provided the key information about Ge profile in the transistor structure. The induced strain by SiGe layers was directly measured by x-ray on the array of transistors. In these measurements, the boron concentration was determined from the strain compensation of intrinsic and boron-doped SiGe layers. Finally, the characteristic of transistors were measured and discussed showing good device performance.

1 - 33 of 33
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf