Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ahmad, Naeem
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Imran, Muhammad
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Khursheed, Khursheed
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Lawal, Najeem
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    O'Nils, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Model, placement optimization and verification of a sky surveillance visual sensor network2013In: International Journal of Space-Based and Situated Computing (IJSSC), ISSN 2044-4893, E-ISSN 2044-4907, Vol. 3, no 3, p. 125-135Article in journal (Refereed)
    Abstract [en]

    A visual sensor network (VSN) is a distributed system of a large number of camera nodes, which generates two dimensional data. This paper presents a model of a VSN to track large birds, such as golden eagle, in the sky. The model optimises the placement of camera nodes in VSN. A camera node is modelled as a function of lens focal length and camera sensor. The VSN provides full coverage between two altitude limits. The model can be used to minimise the number of sensor nodes for any given camera sensor, by exploring the focal lengths that fulfils both the full coverage and minimum object size requirement. For the case of large bird surveillance, 100% coverage is achieved for relevant altitudes using 20 camera nodes per km² for the investigated camera sensors. A real VSN is designed and measurements of VSN parameters are performed. The results obtained verify the VSN model.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf