Change search
Refine search result
123 1 - 50 of 143
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Aldick, Thomas
    et al.
    Bielaszewska, Martina
    Uhlin, Bernt Eric
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Humpf, Hans-Ulrich
    Wai, Sun Nyunt
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Karch, Helge
    Vesicular stabilization and activity augmentation of enterohaemorrhagic Escherichia coli haemolysin2009In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 71, no 6, p. 1496-508Article in journal (Refereed)
    Abstract [en]

    Haemolysin from enterohaemorrhagic Escherichia coli (EHEC-Hly), a putative EHEC virulence factor, belongs to the RTX (repeat-in-toxin) family whose members rapidly inactivate themselves by self-aggregation. By investigating the status of EHEC-Hly secreted extracellularly, we found the toxin both in a free, soluble form and associated, with high tendency and independently of its acylation status, to outer membrane vesicles (OMVs) extruded by EHEC. We compared the interaction of both toxin forms with erythrocytes using scanning electron microscopy and binding assays. The OMV-associated toxin was substantially (80 times) more stable under physiological conditions than the free EHEC-Hly as demonstrated by prolonged haemolytic activity (half-life time 20 h versus 15 min). The haemolysis was preceded by calcium-dependent binding of OMVs carrying EHEC-Hly to erythrocytes; this binding was mediated by EHEC-Hly. We demonstrate that EHEC-Hly is a biologically active cargo in OMVs with dual roles: a cell-binding protein and a haemolysin. These paired functions produce a biologically potent form of the OMV-associated RTX toxin and augment its potential towards target cells. Our findings provide a general concept for stabilization of RTX toxins and open new insights into the biology of these important virulence factors.

  • 2.
    Andersson, Dan I.
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Koskiniemi, Sanna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Hughes, Diarmaid
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Microbiology.
    Biological roles of translesion synthesis DNA polymerases in eubacteria2010In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 77, no 3, p. 540-548Article, review/survey (Refereed)
    Abstract [en]

    Biological systems are strongly selected to maintain the integrity of their genomes by prevention and repair of external and internal DNA damages. However, some types of DNA lesions persist and might block the replication apparatus. The universal existence of specialized translesion synthesis DNA polymerases (TLS polymerases) that can bypass such lesions in DNA implies that replication blockage is a general biological problem. We suggest that the primary function for which translesion synthesis polymerases are selected is to rescue cells from replication arrest at lesions in DNA, a situation that, if not amended, is likely to cause an immediate and severe reduction in cell fitness and survival. We will argue that the mutagenesis observed during translesion synthesis is an unavoidable secondary consequence of this primary function and not, as has been suggested, an evolved mechanism to increase mutation rates in response to various stresses. Finally, we will discuss recent data on additional roles for translesion synthesis polymerases in the formation of spontaneous deletions and in transcription-coupled TLS, where the coupling of transcription to TLS is proposed to allow the rescue of the transcription machinery arrested at DNA lesions.

  • 3. Andersson, K
    et al.
    Carballeira Suarez, N
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Magnusson, K E
    Persson, C
    Stendahl, O
    Wolf-Watz, H
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Fällman, M
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    YopH of Yersinia pseudotuberculosis interrupts early phosphotyrosine signalling associated with phagocytosis.1996In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 20, no 5, p. 1057-69Article in journal (Refereed)
    Abstract [en]

    The PTPase YopH of Yersinia is essential to the ability of these bacteria to block phagocytosis. Wild-type Yersinia pseudotuberculosis, but not the yopH mutant strain, resisted phagocytosis by J774 cells. Ingestion of a yopH mutant was dependent on tyrosine kinase activity. Transcomplementation with wild-type yopH restored the anti-phagocytic effect, whereas introduction of the gene encoding the catalytically inactive yopHC403A was without effect. The PTPase inhibitor orthovanadate impaired the anti-phagocytic effect of the wild-type strain, further demonstrating the importance of bacteria-derived PTPase activity for this event. The ability to resist phagocytosis indicates that the effect of the bacterium is immediately exerted when it becomes associated with the phagocyte. Within 30 s after the onset of infection, wild-type Y. pseudotuberculosis caused a YopH-dependent dephosphorylation of phosphotyrosine proteins in J774 cells. Furthermore, interaction of the cells with phagocytosable strains led to a rapid and transient increase in tyrosine phosphorylation of paxillin and some other proteins, an event dependent on the presence of the bacterial surface-located protein invasin. Co-infection with the phagocytosable strain and the wild-type strain abolished the induction of tyrosine phosphorylation. Taken together, the present findings demonstrate an immediate YopH-mediated dephosphorylation of macrophage phosphotyrosine proteins, suggesting that this PTPase acts by preventing early phagocytosis-linked signalling in the phagocyte.

  • 4. Arnqvist, Anna
    et al.
    Olsén, A
    Normark, S
    Sigma S-dependent growth-phase induction of the csgBA promoter in Escherichia coli can be achieved in vivo by sigma 70 in the absence of the nucleoid-associated protein H-NS.1994In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 13, no 6, p. 1021-32Article in journal (Refereed)
    Abstract [en]

    The stationary-phase-specific sigma factor sigma S (RpoS/KatF) is required for Escherichia coli to induce expression of fibronectin-binding curli organelles upon reaching stationary phase. We show that the csgA gene which encodes the curlin subunit protein belongs to a dicistronic operon, csgBA. The transcriptional start site of csgBA was determined and an AT-rich up-stream activating sequence (UAS) required for transcriptional activation was identified. The pcsgBA promoter is not specific for sigma S since the same promoter sequence can be used by E sigma 70 in vivo in a strain lacking nucleoid-associated protein H-NS and sigma S. Transcription remained growth-phase induced and dependent upon the UAS in such a double mutant. Furthermore, we demonstrate that an additional operon, hdeAB, which is also dependent upon sigma S for transcription, can be transcribed by E sigma 70 in vivo in the absence of H-NS by utilizing the phdeAB promoter. Two other genes known to be under the control of sigma S for expression, bolA and katE, remained transcriptionally silent in the absence of H-NS. It is suggested that a subset of E. coli promoters can be recognized by both E sigma S and E sigma 70 in vivo but H-NS interacting with these sequences prevents formation of successful transcription-initiation complexes with E sigma 70.

  • 5. Arnqvist, Anna
    et al.
    Olsén, A
    Pfeifer, J
    Russell, D G
    Normark, S
    The Crl protein activates cryptic genes for curli formation and fibronectin binding in Escherichia coli HB101.1992In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 6, no 17, p. 2443-52Article in journal (Refereed)
    Abstract [en]

    Curli are thin, coiled, temperature-regulated fibres on fibronectin-binding Escherichia coli. The subunit protein of curli was highly homologous at its amino terminus to SEF-17, the subunit protein of thin, aggregative fimbriae of Salmonella enteritidis 27655 strain 3b, suggesting that these fibres form a novel class of surface organelles on enterobacteria. E. coli HB101 is non-curliated and unable to bind soluble, iodinated fibronectin. The phenotypically cryptic curlin subunit gene, csgA, in HB101 is transcriptionally activated by expressing the cytoplasmic Crl on a multicopy plasmid. Transcriptional activation of csgA by Crl was observed after growth at 26 degrees C but not at 37 degrees C, even though crl transcription was not thermoregulated. A deletion of the 39 carboxy-terminal residues abolished Crl activity, whereas a deletion of 10 residues at the C-terminus did not, implying that a region between residue 93 and 122 in the 132-amino-acid-residue large Crl protein is required for activating curli expression in E. coli HB101. crl is a normal housekeeping gene in E. coli and it is suggested that its gene product may either be a DNA-binding protein affecting chromatin structure as has been suggested for histone-like protein H1 or interact with specific regulatory protein(s) controlling transcription of genes required for curli formation and fibronectin binding.

  • 6.
    Ausmees, Nora
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Microbiology.
    Wahlstedt, Helene
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology.
    Bagchi, Sonchita
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Microbiology.
    Elliot, Marie A.
    Buttner, Mark J.
    Flärdh, Klas
    SmeA, a small membrane protein with multiple functions in Streptomyces sporulation including targeting of a SpoIIIE/FtsK-like protein to cell division septa2007In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 65, no 6, p. 1458-1473Article in journal (Refereed)
    Abstract [en]

    Sporulation in aerial hyphae of Streptomyces coelicolor involves profound changes in regulation of fundamental morphogenetic and cell cycle processes to convert the filamentous and multinucleoid cells to small unigenomic spores. Here, a novel sporulation locus consisting of smeA (encoding a small putative membrane protein) and sffA (encoding a SpoIIIE/FtsK-family protein) is characterized. Deletion of smeA-sffA gave rise to pleiotropic effects on spore maturation, and influenced the segregation of chromosomes and placement of septa during sporulation. Both smeA and sffA were expressed specifically in apical cells of sporogenic aerial hyphae simultaneously with or slightly after Z-ring assembly. The presence of smeA-like genes in streptomycete chromosomes, plasmids and transposons, often paired with a gene for a SpoIIIE/FtsK- or Tra-like protein, indicates that SmeA and SffA functions might be related to DNA transfer. During spore development SffA accumulated specifically at sporulation septa where it colocalized with FtsK. However, sffA did not show redundancy with ftsK, and SffA function appeared distinct from the DNA translocase activity displayed by FtsK during closure of sporulation septa. The septal localization of SffA was dependent on SmeA, suggesting that SmeA may act as an assembly factor for SffA and possibly other proteins required during spore maturation.

  • 7. Bagchi, S.
    et al.
    Tomenius, H.
    Belova, Lyubov M.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Engineering Material Physics.
    Ausmees, N.
    Intermediate filament-like proteins in bacteria and a cytoskeletal function in Streptomyces2008In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 70, no 4, p. 1037-1050Article in journal (Refereed)
    Abstract [en]

    Actin and tubulin cytoskeletons are conserved and widespread in bacteria. A strikingly intermediate filament (IF)-like cytoskeleton, composed of crescentin, is also present in Caulobacter crescentus and determines its specific cell shape. However, the broader significance of this finding remained obscure, because crescentin appeared to be unique to Caulobacter. Here we demonstrate that IF-like function is probably a more widespread phenomenon in bacteria. First, we show that 21 genomes of 26 phylogenetically diverse species encoded uncharacterized proteins with a central segmented coiled coil rod domain, which we regarded as a key structural feature of IF proteins and crescentin. Experimental studies of three in silico predicted candidates from Mycobacterium and other actinomycetes revealed a common IF-like property to spontaneously assemble into filaments in vitro. Furthermore, the IF-like protein FilP formed cytoskeletal structures in the model actinomycete Streptomyces coelicolor and was needed for normal growth and morphogenesis. Atomic force microscopy of living cells revealed that the FilP cytoskeleton contributed to mechanical fitness of the hyphae, thus closely resembling the function of metazoan IF. Together, the bioinformatic and experimental data suggest that an IF-like protein architecture is a versatile design that is generally present in bacteria and utilized to perform diverse cytoskeletal tasks.

  • 8.
    Bagchi, Sonchita
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Microbiology.
    Tomenius, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology.
    Belova, Lyubov M.
    Ausmees, Nora
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Microbiology.
    Intermediate filament-like proteins in bacteria and a cytoskeletal function in Streptomyces2008In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 70, no 4, p. 1037-1050Article in journal (Refereed)
    Abstract [en]

    Actin and tubulin cytoskeletons are conserved and widespread in bacteria. A strikingly intermediate filament (IF)-like cytoskeleton, composed of crescentin, is also present in Caulobacter crescentus and determines its specific cell shape. However, the broader significance of this finding remained obscure, because crescentin appeared to be unique to Caulobacter. Here we demonstrate that IF-like function is probably a more widespread phenomenon in bacteria. First, we show that 21 genomes of 26 phylogenetically diverse species encoded uncharacterized proteins with a central segmented coiled coil rod domain, which we regarded as a key structural feature of IF proteins and crescentin. Experimental studies of three in silico predicted candidates from Mycobacterium and other actinomycetes revealed a common IF-like property to spontaneously assemble into filaments in vitro. Furthermore, the IF-like protein FilP formed cytoskeletal structures in the model actinomycete Streptomyces coelicolor and was needed for normal growth and morphogenesis. Atomic force microscopy of living cells revealed that the FilP cytoskeleton contributed to mechanical fitness of the hyphae, thus closely resembling the function of metazoan IF. Together, the bioinformatic and experimental data suggest that an IF-like protein architecture is a versatile design that is generally present in bacteria and utilized to perform diverse cytoskeletal tasks.

  • 9.
    Balsalobre, Carlos
    et al.
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Silván, José Manuel
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Berglund, Stina
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Mizunoe, Yoshimitsu
    Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.
    Uhlin, Bernt Eric
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Nyunt Wai, Sun
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Release of the type I secreted α-haemolysin via outer membrane vesicles from Escherichia coli2006In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 59, no 1, p. 99-112Article in journal (Refereed)
    Abstract [en]

    The α-haemolysin is an important virulence factor commonly expressed by extraintestinal pathogenic Escherichia coli. The secretion of the α-haemolysin is mediated by the type I secretion system and the toxin reaches the extracellular space without the formation of periplasmic intermediates presumably in a soluble form. Surprisingly, we found that a fraction of this type I secreted protein is located within outer membrane vesicles (OMVs) that are released by the bacteria. The α-haemolysin appeared very tightly associated with the OMVs as judged by dissociation assays and proteinase susceptibility tests. The α-haemolysin in OMVs was cytotoxically active and caused lysis of red blood cells. The OMVs containing the α-haemolysin were distinct from the OMVs not containing α-haemolysin, showing a lower density. Furthermore, they differed in protein composition and one component of the type I secretion system, the TolC protein, was found in the lower density vesicles. Studies of natural isolates of E. coli demonstrated that the localization of α-haemolysin in OMVs is a common feature among haemolytic strains. We propose an alternative pathway for the transport of the type I secreted α-haemolysin from the bacteria to the host cells during bacterial infections.

  • 10.
    Bednarska, Natalia G.
    et al.
    KULeuven, Belgium; VIB, Belgium.
    van Eldere, Johan
    KULeuven, Belgium.
    Gallardo, Rodrigo
    VIB, Belgium; KULeuven, Belgium.
    Ganesan, Ashok
    VIB, Belgium; KULeuven, Belgium.
    Ramakers, Meine
    VIB, Belgium; KULeuven, Belgium.
    Vogel, Isabel
    KULeuven, Belgium.
    Baatsen, Pieter
    VIB11, Belgium; KULeuven, Belgium.
    Staes, An
    VIB, Belgium; University of Ghent, Belgium.
    Goethals, Marc
    VIB, Belgium; University of Ghent, Belgium.
    Hammarström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Gevaert, Kris
    VIB, Belgium; University of Ghent, Belgium.
    Schymkowitz, Joost
    VIB, Belgium; KULeuven, Belgium.
    Rousseau, Frederic
    VIB, Belgium; KULeuven, Belgium.
    Protein aggregation as an antibiotic design strategy2016In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 99, no 5, p. 849-865Article in journal (Refereed)
    Abstract [en]

    Taking advantage of the xenobiotic nature of bacterial infections, we tested whether the cytotoxicity of protein aggregation can be targeted to bacterial pathogens without affecting their mammalian hosts. In particular, we examined if peptides encoding aggregation-prone sequence segments of bacterial proteins can display antimicrobial activity by initiating toxic protein aggregation in bacteria, but not in mammalian cells. Unbiased in vitro screening of aggregating peptide sequences from bacterial genomes lead to the identification of several peptides that are strongly bactericidal against methicillin-resistant Staphylococcus aureus. Upon parenteral administration in vivo, the peptides cured mice from bacterial sepsis without apparent toxic side effects as judged from histological and hematological evaluation. We found that the peptides enter and accumulate in the bacterial cytosol where they cause aggregation of bacterial polypeptides. Although the precise chain of events that leads to cell death remains to be elucidated, the ability to tap into aggregation-prone sequences of bacterial proteomes to elicit antimicrobial activity represents a rich and unexplored chemical space to be mined in search of novel therapeutic strategies to fight infectious diseases.

  • 11.
    Berghoff, Bork A.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Microbiology. Justus Liebig Univ, Inst Mikrobiol & Mol Biol, D-35392 Giessen, Germany..
    Hoekzema, Mirthe
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Microbiology.
    Aulbach, Lena
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Microbiology.
    Wagner, Gerhart E. H.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Microbiology.
    Two regulatory RNA elements affect TisB-dependent depolarization and persister formation2017In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 103, no 6, p. 1020-1033Article in journal (Refereed)
    Abstract [en]

    Bacterial survival strategies involve phenotypic diversity which is generated by regulatory factors and noisy expression of effector proteins. The question of how bacteria exploit regulatory RNAs to make decisions between phenotypes is central to a general understanding of these universal regulators. We investigated the TisB/IstR-1 toxin-antitoxin system of Escherichia coli to appreciate the role of the RNA antitoxin IstR-1 in TisB-dependent depolarization of the inner membrane and persister formation. Persisters are phenotypic variants that have become transiently drug-tolerant by arresting growth. The RNA antitoxin IstR-1 sets a threshold for TisB-dependent depolarization under DNA-damaging conditions, resulting in two sub-populations: polarized and depolarized cells. Furthermore, our data indicate that an inhibitory 5 UTR structure in the tisB mRNA serves as a regulatory RNA element that delays TisB translation to avoid inappropriate depolarization when DNA damage is low. Investigation of the persister sub-population further revealed that both regulatory RNA elements affect persister levels as well as persistence time. This work provides an intriguing example of how bacteria exploit regulatory RNAs to control phenotypic heterogeneity.

  • 12.
    Bernander, Rolf
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Molecular Evolution.
    The cell cycle of Sulfolobus2007In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 66, no 3, p. 557-562Article, review/survey (Refereed)
    Abstract [en]

    Much of the current information about the archaeal cell cycle has been generated through studies of the genus Sulfolobus. The overall organization of the cell cycle in these species is well understood, and information about the regulatory principles that govern cell cycle progression is rapidly accumulating. Exciting progress regarding the control and molecular details of the chromosome replication process is evident, and the first insights into the elusive crenarchaeal mitosis and cytokinesis machineries are within reach.

  • 13.
    Bernardo, Lisandro M D
    et al.
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Johansson, Linda U M
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Solera, Dafne
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Skärfstad, Eleonore
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Shingler, Victoria
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    The guanosine tetraphosphate (ppGpp) alarmone, DksA and promoter affinity for RNA polymerase in regulation of σ54-dependent transcription2006In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 60, no 3, p. 749-764Article in journal (Refereed)
    Abstract [en]

    The RNA polymerase-binding protein DksA is a cofactor required for guanosine tetraphosphate (ppGpp)-responsive control of transcription from sigma70 promoters. Here we present evidence: (i) that both DksA and ppGpp are required for in vivo sigma54 transcription even though they do not have any major direct effects on sigma54 transcription in reconstituted in vitro transcription and sigma-factor competition assays, (ii) that previously defined mutations rendering the housekeeping sigma70 less effective at competing with sigma54 for limiting amounts of core RNA polymerase similarly suppress the requirement for DksA and ppGpp in vivo and (iii) that the extent to which ppGpp and DksA affect transcription from sigma54 promoters in vivo reflects the innate affinity of the promoters for sigma54-RNA polymerase holoenzyme in vitro. Based on these findings, we propose a passive model for ppGpp/DksA regulation of sigma54-dependent transcription that depends on the potent negative effects of these regulatory molecules on transcription from powerful stringently regulated sigma70 promoters.

  • 14.
    Björkman, Johanna
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Microbiology.
    Samuelsson, Patrik
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Biology.
    Andersson, Dan I
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Biology.
    Hughes, Diarmaid
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology.
    Novel ribosomal mutations affecting translational accuracy, antibiotic resistance and virulence of Salmonella typhimurium1999In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 31, no 1, p. 53-58Article in journal (Other (popular science, discussion, etc.))
    Abstract [en]

    Many mutations in rpsL cause resistance to, or dependence on, streptomycin and are restrictive (hyperaccurate) in translation. Dependence on streptomycin and hyperaccuracy can each be reversed phenotypically by mutations in either rpsD or rpsE. Such compensatory mutations have been shown to have a ram phenotype (ribosomal ambiguity), increasing the level of translational errors. We have shown recently that restrictive rpsL alleles are also associated with a loss of virulence in Salmonella typhimurium. To test whether ram mutants could reverse this loss of virulence, we have isolated a set of rpsD alleles in Salmonella typhimurium. We found that the rpsD alleles restore the virulence of strains carrying restrictive rpsL alleles to a level close to that of the wild type. Unexpectedly, three out of seven mutant rpsD alleles tested have phenotypes typical of restrictive alleles of rpsL, being resistant to streptomycin and restrictive (hyperaccurate) in translation. These phenotypes have not been previously associated with the ribosomal protein S4. Furthermore, all seven rpsD alleles (four ram and three restrictive) can phenotypically reverse the hyperaccuracy associated with restrictive alleles of rpsL. This is the first demonstration that such compensations do not require that the compensating rpsD allele has a ribosomal ambiguity (ram) phenotype.

  • 15. Bouet, Jean-Yves
    et al.
    Nordström, Kurt
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology.
    Lane, David
    Plasmid partition and incompatibility: the focus shifts2007In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 65, no 6, p. 1405-1414Article, review/survey (Refereed)
    Abstract [en]

    The mitotic apparatus that a plasmid uses to ensure its stable inheritance responds to the appearance of an additional copy of the plasmid's centromere by segregating it from the pre-existing copies: if the new copy arises by replication of the plasmid the result is partition, if it arrives on a different plasmid the result is incompatibility. Incompatibility thus serves as a probe of the partition mechanism. Coupling of distinct plasmids via their shared centromeres to form mixed pairs has been the favoured explanation for centromere-based incompatibility, because it supports a long-standing assumption that pairing of plasmid replicas is a prerequisite for their partition into daughter cells. Recent results from molecular genetic and fluorescence microscopy studies challenge this mixed pairing model. Partition incompatibility is seen to result from various processes, including titration, randomized positioning and a form of mixed pairing that is based on co-activation of the same partition event rather than direct contact between partition complexes. The perspectives thus opened onto the partition mechanism confirm the continuing utility of incompatibility as an approach to understanding bacterial mitosis. The results considered are compatible with the view that direct pairing of plasmids is not essential to plasmid partition.

  • 16. Bouzenzana, Jamel
    et al.
    Pelosi, Ludovic
    Briolay, Anne
    Briolay, Jerome
    Bulone, Vincent
    KTH, School of Biotechnology (BIO), Glycoscience.
    Identification of the first Oomycete annexin as a (1 -> 3)-beta-D-glucan synthase activator2006In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 62, no 2, p. 552-565Article in journal (Refereed)
    Abstract [en]

    (1 -> 3)-beta-D-Glucans are major components of the cell walls of Oomycetes and as such they play an essential role in the morphogenesis and growth of these microorganisms. Despite the biological importance of (1 -> 3)-beta-D-glucans, their mechanisms of biosynthesis are poorly understood. Previous studies on (1 -> 3)-beta-D-glucan synthases from Saprolegnia monoica have shown that three protein bands of an apparent molecular weight of 34, 48 and 50 kDa co-purify with enzyme activity. However, none of the corresponding proteins have been identified. Here we have identified, purified, sequenced and characterized a protein from the 34 kDa band and clearly shown that it has all the biochemical properties of proteins from the annexin family. In addition, we have unequivocally demonstrated that the purified protein is an activator of (1 -> 3)-beta-D-glucan synthase. This represents a new type of function for proteins belonging to the annexin family. Two other proteins from the 48 and 50 kDa bands were identified as ATP synthase subunits, which most likely arise from contaminations by mitochondria during membrane preparation. The results, which are discussed in relation with the possible regulation mechanisms of (1 -> 3)-beta-D-glucan synthases, represent a first step towards a better understanding of cell wall polysaccharide biosynthesis in Oomycetes.

  • 17.
    Brady, L. Jeannine
    et al.
    Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA.
    Maddocks, Sarah E.
    School of Oral and Dental Sciences, University of Bristol, Bristol BS1 2LY, UK.
    Larson, Matthew R.
    Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
    Forsgren, Nina
    Umeå University, Faculty of Medicine, Department of Odontology, Cariology.
    Persson, Karina
    Umeå University, Faculty of Medicine, Department of Odontology.
    Deivanayagam, Champion C.
    Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
    Jenkinson, Howard F.
    School of Oral and Dental Sciences, University of Bristol, Bristol BS1 2LY, UK.
    The changing faces of Streptococcus antigen I/II polypeptide family adhesins2010In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 77, no 2, p. 276-286Article in journal (Refereed)
    Abstract [en]

    Streptococcus mutans antigen I/II (AgI/II) protein was one of the first cell wall-anchored adhesins identified in Gram-positive bacteria. It mediates attachment of S. mutans to tooth surfaces and has been a focus for immunization studies against dental caries. The AgI/II family polypeptides recognize salivary glycoproteins, and are also involved in biofilm formation, platelet aggregation, tissue invasion and immune modulation. The genes encoding AgI/II family polypeptides are found among Streptococcus species indigenous to the human mouth, as well as in Streptococcus pyogenes, S. agalactiae and S. suis. Evidence of functionalities for different regions of the AgI/II proteins has emerged. A sequence motif within the C-terminal portion of Streptococcus gordonii SspB (AgI/II) is bound by Porphyromonas gingivalis, thus promoting oral colonization by this anaerobic pathogen. The significance of other epitopes is now clearer following resolution of regional crystal structures. A new picture emerges of the central V (variable) region, predicted to contain a carbohydrate-binding trench, being projected from the cell surface by a stalk formed by an unusual association between an N-terminal α-helix and a C-terminal polyproline helix. This presentation mode might be important in determining functional conformations of other Gram-positive surface proteins that have adhesin domains flanked by α-helical and proline-rich regions.

    Ever since dental caries (tooth decay) was first shown to be caused by bacteria, there has been continued interest in developing vaccine or passive immunization protocols for its control or prevention (Lehner et al., 1980). Although dental caries is not fatal, and in developed countries caries is now considered to be largely avoidable through controlled diet and good oral hygiene, there remain significant problems with childhood disease, especially among indigent populations. Consequently, caries is one of the most common worldwide infectious diseases. Therefore, research continues towards employing vaccine formulations comprised of peptide components derived from surface proteins of Streptococcus mutans, a major agent associated with dental caries (Lehner et al., 1975). One of the most promising strategies seems to be delivery of peptides, derived from glucan-binding protein B (GbpB) and antigen I/II (AgI/II) protein, via a mucosal (nasal) route. The GbpB polypeptide binds extracellular glucans, thus promoting co-adhesion of S. mutans cells in the development of dental plaque (Taubman and Nash, 2006). The AgI/II protein (also named P1, SpaP, AgB or PAc) is a major surface protein that functions as an adhesin, attaching S. mutans to the saliva-coated tooth enamel surface (Koga et al., 1990; Kelly et al., 1995). Antibodies against SpaP and GbpB block adherence and co-adhesion, respectively, thus disrupting colonization of the oral cavity by S. mutans (Ma et al., 1990; 1998; Taubman and Nash, 2006).

    The terminology AgI/II derives from the identification of two major cell wall antigens I and II in S. mutans by Russell et al. (1980), and the subsequent recognition that AgII was a component of AgI. Following the discovery of AgI/II, it became apparent that genes encoding orthologous proteins were widely dispersed among the streptococci (Jenkinson and Demuth, 1997). The viridans Streptococcus AgI/II adhesins range in composition from 1310 to 1653 amino acid (aa) residues, while the Streptococcus agalactiae AgI/II proteins are smaller (826–932 aa residues) (Tettelin et al., 2005). The widespread distribution of these AgI/II protein genes across the streptococci is perhaps not surprising, given the complex streptococcal communities that exist on surfaces of the oro- and naso-pharynx and within the bacterial soup of saliva. It is interesting, though, that the AgI/II family polypeptide genes have not yet been discovered in Streptococcus pneumoniae, which might be by the fact that S. pneumoniae forms a distinct evolutionary cluster (Kilian et al., 2008).

  • 18.
    Brandis, Gerrit
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Bergman, Jessica M.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Hughes, Diarmaid
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Autoregulation of the tufB operon in Salmonella2016In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 100, no 6, p. 1004-1016Article in journal (Refereed)
    Abstract [en]

    In Salmonella enterica and related species, translation elongation factor EF-Tu is encoded by two widely separated but near-identical genes, tufA and tufB. Two thirds of EF-Tu is expressed from tufA with the remaining one third coming from tufB. Inactivation of tufA is partly compensated by a doubling in the amount of EF-TuB but the mechanism of this up-regulation is unknown. By experimental evolution selecting for improved growth rate in a strain with an inactive tufA we selected six different noncoding or synonymous point mutations close to the tufB start codon. Based on these results we constructed a total of 161 different point mutations around the tufB start codon, as well as tufB 3'-truncations, and measured tufB expression using tufB-yfp transcriptional and translational fusions. The expression data support the presence of two competing stem-loop structures that can form in the 5'-end of the tufB mRNA. Formation of the 'closed' structure leads to Rho-dependent transcriptional termination of the tufB mRNA. We propose a model in which translational speed is used as a sensor for EF-Tu concentration and where the expression of tufB is post-transcriptionally regulated. This model describes for the first time how expression of the most abundant Salmonella protein is autoregulated.

  • 19.
    Brandis, Gerrit
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Cao, Sha
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Hughes, Diarmaid
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Co-evolution with recombination affects the stability of mobile genetic element insertions within gene families of Salmonella2018In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 108, no 6, p. 697-710Article in journal (Refereed)
    Abstract [en]

    Bacteria can have multiple copies of a gene at separate locations on the same chromosome. Some of these gene families, including tuf (translation elongation factor EF-Tu) and rrl (ribosomal RNA), encode functions critically important for bacterial fitness. Genes within these families are known to evolve in concert using homologous recombination to transfer genetic information from one gene to another. This mechanism can counteract the detrimental effects of nucleotide sequence divergence over time. Whether such mechanisms can also protect against the potentially lethal effects of mobile genetic element insertion is not well understood. To address this we constructed two different length insertion cassettes to mimic mobile genetic elements and inserted these into various positions of the tuf and rrl genes. Wemeasured rates of recombinational repair that removed the inserted cassette and studied the underlying mechanism. Our results indicate that homologous recombination can protect the tuf and rrl genes from inactivation by mobile genetic elements, but forinsertions within shorter gene sequences the efficiency of repair is very low. Intriguingly, we found that physical distance separating genes on the chromosome directly affects the rate of recombinational repair suggesting that relative location will influence the ability of homologous recombination to maintain homogeneity.

  • 20.
    Brandis, Gerrit
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Wrande, Marie
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Microbiology.
    Liljas, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Structure and Molecular Biology.
    Hughes, Diarmaid
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Fitness-compensatory mutations in rifampicin-resistant RNA polymerase2012In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 85, no 1, p. 142-151Article in journal (Refereed)
    Abstract [en]

    Mutations in rpoB (RNA polymerase beta-subunit) can cause high-level resistance to rifampicin, an important first-line drug against tuberculosis. Most rifampicin-resistant (RifR) mutants selected in vitro have reduced fitness, and resistant clinical isolates of M. tuberculosis frequently carry multiple mutations in RNA polymerase genes. This supports a role for compensatory evolution in global epidemics of drug-resistant tuberculosis but the significance of secondary mutations outside rpoB has not been demonstrated or quantified. Using Salmonella as a model organism, and a previously characterized RifR mutation (rpoB R529C) as a starting point, independent lineages were evolved with selection for improved growth in the presence and absence of rifampicin. Compensatory mutations were identified in every lineage and were distributed between rpoA, rpoB and rpoC. Resistance was maintained in all strains showing that increased fitness by compensatory mutation was more likely than reversion. Genetic reconstructions demonstrated that the secondary mutations were responsible for increasing growth rate. Many of the compensatory mutations in rpoA and rpoC individually caused small but significant reductions in susceptibility to rifampicin, and some compensatory mutations in rpoB individually caused high-level resistance. These findings show that mutations in different components of RNA polymerase are responsible for fitness compensation of a RifR mutant. 

  • 21. Bru, Samuel
    et al.
    Marc Martinez-Lainez, Joan
    Hernandez-Ortega, Sara
    Quandt, Eva
    Torres-Torronteras, Javier
    Marti, Ramon
    Canadell, David
    Arino, Joaquin
    Sharma, Sushma
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Jimenez, Javier
    Clotet, Josep
    Polyphosphate is involved in cell cycle progression and genomic stability in Saccharomyces cerevisiae2016In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 101, no 3, p. 367-380Article in journal (Refereed)
    Abstract [en]

    Polyphosphate (polyP) is a linear chain of up to hundreds of inorganic phosphate residues that is necessary for many physiological functions in all living organisms. In some bacteria, polyP supplies material to molecules such as DNA, thus playing an important role in biosynthetic processes in prokaryotes. In the present study, we set out to gain further insight into the role of polyP in eukaryotic cells. We observed that polyP amounts are cyclically regulated in Saccharomyces cerevisiae, and those mutants that cannot synthesise (vtc4 Delta) or hydrolyse polyP (ppn1 Delta, ppx1 Delta) present impaired cell cycle progression. Further analysis revealed that polyP mutants show delayed nucleotide production and increased genomic instability. Based on these findings, we concluded that polyP not only maintains intracellular phosphate concentrations in response to fluctuations in extracellular phosphate levels, but also muffles internal cyclic phosphate fluctuations, such as those produced by the sudden demand of phosphate to synthetize deoxynucleotides just before and during DNA duplication. We propose that the presence of polyP in eukaryotic cells is required for the timely and accurate duplication of DNA.

  • 22. Bryan, Samantha J.
    et al.
    Burroughs, Nigel J.
    Shevela, Dmitriy
    Department of Mathematics and Natural Science, University of Stavanger, Stavanger, Norway.
    Yu, Jianfeng
    Rupprecht, Eva
    Liu, Lu-Ning
    Mastroianni, Giulia
    Xue, Quan
    Llorente-Garcia, Isabel
    Leake, Mark C.
    Eichacker, Lutz A.
    Schneider, Dirk
    Nixon, Peter J.
    Mullineaux, Conrad W.
    Localisation and interaction of the Vipp1 protein in cyanobacteria2014In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 94, p. 1179-1195Article in journal (Refereed)
    Abstract [en]

    The Vipp1 protein is essential in cyanobacteria and chloroplasts for the maintenance of photosynthetic function and thylakoid membrane architecture. To investigate its mode of action we generated strains of the cyanobacteria Synechocystis sp. PCC6803 and Synechococcus sp. PCC7942 in which Vipp1 was tagged with green fluorescent protein at the C-terminus and expressed from the native chromosomal locus. There was little perturbation of function. Live-cell fluorescence imaging shows dramatic relocalisation of Vipp1 under high light. Under low light, Vipp1 is predominantly dispersed in the cytoplasm with occasional concentrations at the outer periphery of the thylakoid membranes. High light induces Vipp1 coalescence into localised puncta within minutes, with net relocation of Vipp1 to the vicinity of the cytoplasmic membrane and the thylakoid membranes. Pull-downs and mass spectrometry identify an extensive collection of proteins that are directly or indirectly associated with Vipp1 only after high-light exposure. These include not only photosynthetic and stress-related proteins but also RNA-processing, translation and protein assembly factors. This suggests that the Vipp1 puncta could be involved in protein assembly. One possibility is that Vipp1 is involved in the formation of stress-induced localised protein assembly centres, enabling enhanced protein synthesis and delivery to membranes under stress conditions.

  • 23.
    Cava, Felipe
    et al.
    Centro de Biología Molecular 'Severo Ochoa' CSIC-UAM, Campus de Cantoblanco, Madrid, Spain.
    de Pedro, Miguel A
    Centro de Biología Molecular 'Severo Ochoa' CSIC-UAM, Campus de Cantoblanco, Madrid, Spain.
    Schwarz, Heinz
    Max Plank Institut für Entwicklungsbiologie, Tübingen, Germany.
    Henne, Anke
    Goettingen Genomics Laboratory, Institute for Microbiology and Genetics, Germany.
    Berenguer, José
    Centro de Biología Molecular 'Severo Ochoa' CSIC-UAM, Campus de Cantoblanco, Madrid, Spain.
    Binding to pyruvylated compounds as an ancestral mechanism to anchor the outer envelope in primitive bacteria2004In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 52, no 3, p. 677-690Article in journal (Refereed)
    Abstract [en]

    Electron microscopy of isolated cell walls of the ancient bacterium Thermus thermophilus revealed that most of the peptidoglycan (PG) surface, apart from the septal region, was shielded against specific alphaPG antibodies. On the other hand, an antiserum raised against S-layer-attached cell wall fragments (alphaSAC) bound to most of the surface except for the septal regions. Treatments with alpha-amylase and pronase E made the entire cell wall surface uniformly accessible to alphaPG and severely decreased the binding of alphaSAC. We concluded that a layer of strongly bound secondary cell wall polymers (SCWPs) covers most of the cell wall surface in this ancient bacterium. A preliminary analysis revealed that such SCWPs constitute 14% of the cell wall and are essentially composed of sugars. Enzyme treatments of the cell walls revealed that SCWP was required in vitro for the binding of the S-layer protein through the S-layer homology (SLH) motif. The csaB gene was necessary for the attachment of the S-layer-outer membrane (OM) complex to the cell wall in growing cells of T. thermophilus. In vitro experiments confirmed that cell walls from a csaB mutant bound to the S-layer with a much lower affinity ( approximately 1/10) than that of the wild type. CsaB was found to be required for pyruvylation of components of the SCWP and for immunodetection with alpha-SAC antiserum. Therefore, the S-layer-OM complex of T. thermophilus binds to the cell wall through the SLH motif of the S-layer protein via a strong interaction with a highly immunogenic pyruvylated component of the SCWP. Immuno-cross-reactive compounds were detected with alphaSAC on cell walls of other Thermus spp. and in the phylogenetically related microorganism Deinococcus radiodurans. These results imply that the interaction between the SLH motif and pyruvylated components of the cell wall arose early during bacterial evolution as an ancestral mechanism for anchoring proteins and outer membranes to the cell walls of primitive bacteria.

  • 24.
    Cava, Felipe
    et al.
    CBM ‘Severo Ochoa’ CSIC-UAM, Madrid, Spain.
    Laptenko, Oleg
    Department of Cell Biology, UMDNJ-SOM, Stratford, USA.
    Borukhov, Sergei
    Department of Cell Biology, UMDNJ-SOM, Stratford, USA.
    Chahlafi, Zahra
    CBM ‘Severo Ochoa’ CSIC-UAM, Madrid, Spain.
    Blas-Galindo, Emilio
    CBM ‘Severo Ochoa’ CSIC-UAM, Madrid, Spain.
    Gómez-Puertas, Paulino
    CBM ‘Severo Ochoa’ CSIC-UAM, Madrid, Spain.
    Berenguer, José
    CBM ‘Severo Ochoa’ CSIC-UAM, Madrid, Spain.
    Control of the respiratory metabolism of Thermus thermophilus by the nitrate respiration conjugative element NCE2007In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 64, no 3, p. 630-646Article in journal (Refereed)
    Abstract [en]

    The strains of Thermus thermophilus that contain the nitrate respiration conjugative element (NCE) replace their aerobic respiratory chain by an anaerobic counterpart made of the Nrc-NADH dehydrogenase and the Nar-nitrate reductase in response to nitrate and oxygen depletion. This replacement depends on DnrS and DnrT, two homologues to sensory transcription factors encoded in a bicistronic operon by the NCE. DnrS is an oxygen-sensitive protein required in vivo to activate transcription on its own dnr promoter and on that of the nar operon, but not required for the expression of the nrc operon. In contrast, DnrT is required for the transcription of these three operons and also for the repression of nqo, the operon that encodes the major respiratory NADH dehydrogenase expressed during aerobic growth. Thermophilic in vitro assays revealed that low DnrT concentrations allows the recruitment of the T. thermophilus RNA polymerase sigma(A) holoenzyme to the nrc promoter and its transcription, whereas higher DnrT concentrations are required to repress transcription on the nqo promoter. In conclusion, our data show a complex autoinducible mechanism by which DnrT functions as the transcriptional switch that allows the NCE to take the control of the respiratory metabolism of its host during adaptation to anaerobic growth.

  • 25.
    Cava, Felipe
    et al.
    CBM ‘Severo Ochoa’ CSIC-UAM, Madrid, Spain.
    Zafra, Olga
    CBM ‘Severo Ochoa’ CSIC-UAM, Madrid, Spain.
    Berenguer, José
    CBM ‘Severo Ochoa’ CSIC-UAM, Madrid, Spain.
    A cytochrome c containing nitrate reductase plays a role in electron transport for denitrification in Thermus thermophilus without involvement of the bc respiratory complex2008In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 70, no 2, p. 507-518Article in journal (Refereed)
    Abstract [en]

    The bc(1) respiratory complex III constitutes a key energy-conserving respiratory electron transporter between complex I (type I NADH dehydrogenase) and II (succinate dehydrogenase) and the final nitrogen oxide reductases (Nir, Nor and Nos) in most denitrifying bacteria. However, we show that the expression of complex III from Thermus thermophilus is repressed under denitrification, and that its role as electron transporter is replaced by an unusual nitrate reductase (Nar) that contains a periplasmic cytochrome c (NarC). Several lines of evidence support this conclusion: (i) nitrite and NO are as effective signals as nitrate for the induction of Nar; (ii) narC mutants are defective in anaerobic growth with nitrite, NO and N2O; (iii) such mutants present decreased NADH oxidation coupled to these electron acceptors; and (iv) complementation assays of the mutants reveal that the membrane-distal heme c of NarC was necessary for anaerobic growth with nitrite, whereas the membrane-proximal heme c was not. Finally, we show evidence to support that Nrc, the main NADH oxidative activity in denitrification, interacts with Nar through their respective membrane subunits. Thus, we propose the existence of a Nrc-Nar respiratory super-complex that is required for the development of the whole denitrification pathway in T. thermophilus.

  • 26. Charpentier, E
    et al.
    Novak, R
    Tuomanen, E
    Regulation of growth inhibition at high temperature, autolysis, transformation and adherence in Streptococcus pneumoniae by clpC.2000In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 37, no 4, p. 717-26Article in journal (Refereed)
    Abstract [en]

    The ClpC ATPase is a subfamily of HSP100/Clp molecular chaperones-regulators of proteolysis. By screening a library of loss of function mutants for the ability to survive treatment with penicillin, we identified the gene clpC. The corresponding protein was identified as a ClpC ATPase, sharing strong peptide sequence identity with ClpC of Bacillus subtilis, Listeria monocytogenes and Lactococcus lactis. Northern blot experiments showed that expression of clpC was induced in response to high temperature (40-42 degrees C) versus 37 degrees C, suggesting that ClpC is a heat shock protein. Insertional duplication mutagenesis of clpC resulted in increased tolerance to high temperature; a result in contrast to other bacterial Clp proteases. The clpC-deficient mutant formed long chains and failed to undergo lysis after treatment with penicillin or vancomycin. The effect of the clpC mutation extended to deficiency of adherence to the human type II alveolar cells. Finally, the clpC disruption resulted in decreased genetic transformation. Western blot analysis demonstrated that the mutant failed to express pneumolysin and the choline-binding proteins LytA, CbpA, CbpE, CbpF, CbpJ. These results suggest that the heat shock protein ClpC plays an essential complex pleiotropic role in pneumococcal physiology, including cell growth under heat stress, cell division, autolysis, adherence and transformation.

  • 27.
    Cisneros, David A.
    et al.
    Molecular Genetics Unit, Department of Microbiology, Institut Pasteur, 75015, Paris, France; CNRS ERL3526, 75015 Paris, France..
    Pehau-Arnaudet, Gerard
    Francetic, Olivera
    Heterologous assembly of type IV pili by a type II secretion system reveals the role of minor pilins in assembly initiation2012In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 86, no 4, p. 805-818Article in journal (Refereed)
    Abstract [en]

    In Gram-negative bacteria, type IV pilus assembly (T4PS) and type II secretion (T2SS) systems polymerize inner membrane proteins called major pilins or pseudopilins respectively, into thin filaments. Four minor pilins are required in both systems for efficient fibre assembly. Escherichia coli K-12 has a set of T4PS assembly genes that are silent under standard growth conditions. We studied the heterologous assembly of the E. coli type IV pilin PpdD by the Klebsiella oxytoca T2SS called the Pul system. PpdD pilus assembly in this context depended on the expression of the K. oxytoca minor pseudopilin genes pulHIJK or of the E. coli minor pilin genes ppdAB-ygdB-ppdC. The E. coli minor pilins restored assembly of the major pseudopilin PulG in a pulHIJK mutant, but not the secretion of the T2SS substrate pullulanase. Thus, minor pilins and minor pseudopilins are functionally interchangeable in initiating major pilin assembly, further extending the fundamental similarities between the two systems. The data suggest that, in both systems, minor pilins activate the assembly machinery through a common self-assembly mechanism. When produced together, PulG and PpdD assembled into distinct homopolymers, establishing major pilins as key determinants of pilus elongation and structure.

  • 28.
    Croxatto, Antony
    et al.
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Pride, John
    Hardman, Andrea
    Williams, Paul
    Cámara, Miguel
    Milton, Debra L.
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    A distinctive dual-channel quorum-sensing system operates in Vibrio anguillarum2004In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 52, no 6, p. 1677-1689Article in journal (Refereed)
    Abstract [en]

    Many bacterial cells communicate using diffusible signal molecules to monitor cell population density via a process termed quorum sensing. In marine Vibrio species, the Vibrio harveyi-type LuxR protein is a key player in a quorum-sensing phosphorelay cascade, which controls the expression of virulence, symbiotic and survival genes. Previously, we characterized Vibrio anguillarum homologues of LuxR (VanT) and LuxMN (VanMN) and, in this study, we have identified homologues of LuxPQ (VanPQ) and LuxOU (VanOU). In contrast to other Vibrio species, vanT was expressed at low cell density and showed no significant induction as the cell number increased. In addition, although the loss of VanO increased vanT expression, the loss of VanU, unexpectedly, decreased it. Both VanN and VanQ were required for repression of vanT even in a vanU mutant, suggesting an alternative route for VanNQ signal transduction other than via VanU. VanT negatively regulated its own expression by binding and repressing the vanT promoter and by binding and activating the vanOU promoter. The signal relay results in a cellular response as expression of the metalloprotease, empA, was altered similar to that of vanT in all the mutants. Consequently, the V. anguillarum quorum-sensing phosphorelay systems work differently from those of V. harveyi and may be used to limit rather than induce vanT expression.

  • 29.
    Desmarais, Samantha M
    et al.
    Department of Bioengineering, Stanford University, Stanford, CA, USA.
    De Pedro, Miguel A
    CBM ‘Severo Ochoa’ CSIC-UAM, Madrid, Spain.
    Cava, Felipe
    Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). CBM ‘Severo Ochoa’ CSIC-UAM, Madrid, Spain.
    Huang, Kerwyn Casey
    Department of Bioengineering, Stanford University, Stanford, CA, USA ; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
    Peptidoglycan at its peaks: how chromatographic analyses can reveal bacterial cell wall structure and assembly2013In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 89, no 1, p. 1-13Article in journal (Refereed)
    Abstract [en]

    The peptidoglycan (PG) cell wall is a unique macromolecule responsible for both shape determination and cellular integrity under osmotic stress in virtually all bacteria. A quantitative understanding of the relationships between PG architecture, morphogenesis, immune system activation and pathogenesis can provide molecular-scale insights into the function of proteins involved in cell wall synthesis and cell growth. High-performance liquid chromatography (HPLC) has played an important role in our understanding of the structural and chemical complexity of the cell wall by providing an analytical method to quantify differences in chemical composition. Here, we present a primer on the basic chemical features of wall structure that can be revealed through HPLC, along with a description of the applications of HPLC PG analyses for interpreting the effects of genetic and chemical perturbations to a variety of bacterial species in different environments. We describe the physical consequences of different PG compositions on cell shape, and review complementary experimental and computational methodologies for PG analysis. Finally, we present a partial list of future targets of development for HPLC and related techniques.

  • 30. Devesse, Laurence
    et al.
    Smirnova, Irina
    Lönneborg, Rosa
    Stockholm University, Sweden.
    Kapp, Ulrike
    Brzezinski, Peter
    Leonard, Gordon A.
    Dian, Cyril
    Crystal structures of DntR inducer binding domains in complex with salicylate offer insights into the activation of LysR-type transcriptional regulators2011In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 81, no 2, p. 354-367Article in journal (Refereed)
    Abstract [en]

    Activation of LysR-type transcription factors (LTTRs) is thought to result from conformational changes that occur when inducer molecules bind to their Inducer Binding Domains (IBDs). However, the exact nature of these changes remains to be fully elucidated. We present the crystal structures of two truncated constructs of the LTTR DntR in their apo-forms and in complex with its natural inducer molecule, salicylate. These provide a fuller picture of the conformational changes that can occur in LTTR IBDs and offer insights that may be relevant when considering the mechanism of activation of LTTRs. Two of the crystal structures show that DntR IBDs can bind up to two inducer molecules. The full extent of conformational changes observed is achieved only when inducer molecules are bound in both binding sites identified. Point mutations disrupting the putative secondary binding site produce DntR variants with a reduced response to salicylate in a whole cell system, suggesting that this site is functionally relevant.

  • 31. Devesse, Laurence
    et al.
    Smirnova, Irina
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Lönneborg, Rosa
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Kapp, Ulrike
    Brzezinski, Peter
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Leonard, Gordon A.
    Dian, Cyril
    Crystal structures of DntR inducer binding domains in complex with salicylate offer insights into the activation of LysR-type transcriptional regulators2011In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 81, no 2, p. 354-367Article in journal (Refereed)
    Abstract [en]

    Activation of LysR-type transcription factors (LTTRs) is thought to result from conformational changes that occur when inducer molecules bind to their Inducer Binding Domains (IBDs). However, the exact nature of these changes remains to be fully elucidated. We present the crystal structures of two truncated constructs of the LTTR DntR in their apo- forms and in complex with its natural inducer molecule, salicylate. These provide a fuller picture of the conformational changes that can occur in LTTR IBDs and offer insights that may be relevant when considering the mechanism of activation of LTTRs. Two of the crystal structures show that DntR IBDs can bind up to two inducer molecules. The full extent of conformational changes observed is achieved only when inducer molecules are bound in both binding sites identified. Point mutations disrupting the putative secondary binding site produce DntR variants with a reduced response to salicylate in a whole cell system, suggesting that this site is functionally relevant.

  • 32. Dorazi, Robert
    et al.
    Götz, Dorothee
    Munro, Stacey
    Bernander, Rolf
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Molecular Evolution.
    White, Malcolm F.
    Equal rates of repair of DNA photoproducts in transcribed and non-transcribed strands in Sulfolobus solfataricus2007In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 63, no 2, p. 521-529Article in journal (Refereed)
    Abstract [en]

    The nucleotide excision repair (NER) pathway removes bulky lesions such as photoproducts from DNA. In both bacteria and eukarya, lesions located in transcribed strands are repaired significantly faster than those located in non-transcribed strands due to damage signalling by stalled RNA polymerase molecules: a phenomenon known as transcription-coupled repair (TCR). TCR requires a mechanism for coupling the detection of stalled RNA polymerase molecules to the NER pathway, provided in bacteria by the Mfd protein. In the third domain of life, archaea, the pathway of NER is not well defined, there are no Mfd homologues and the existence of TCR has not been investigated. In this report we looked at rates of removal of photoproducts in three different operons of the crenarchaeon Sulfolobus solfataricus following UV irradiation. We found no evidence for significantly faster repair in the transcribed strands of these three operons. The rate of global genome repair in S. solfataricus is relatively rapid, and this may obviate the requirement for a specialized TCR pathway. Significantly faster repair kinetics were observed in the presence of visible light, consistent with the presence of a gene for photolyase in the genome of S. solfataricus.

  • 33.
    Dörr, Tobias
    et al.
    Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA ; Department of Microbiology and Immunobiology, Harvard Medical School and HHMI, Boston, MA, USA .
    Cava, Felipe
    Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). 3 Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain.
    Lam, Hubert
    Discovery Research, Sanofi Pasteur, Cambridge, MA, USA.
    Davis, Brigid M
    Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA ; Department of Microbiology and Immunobiology, Harvard Medical School and HHMI, Boston, MA, USA .
    Waldor, Matthew K
    Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA ; Department of Microbiology and Immunobiology, Harvard Medical School and HHMI, Boston, MA, USA .
    Substrate specificity of an elongation-specific peptidoglycan endopeptidase and its implications for cell wall architecture and growth of Vibrio cholerae2013In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 89, no 5, p. 949-962Article in journal (Refereed)
    Abstract [en]

    The bacterial cell wall consists of peptidoglycan (PG), a sturdy mesh of glycan strands cross-linked by short peptides. This rigid structure constrains cell shape and size, yet is sufficiently dynamic to accommodate insertion of newly synthesized PG, which was long hypothesized, and recently demonstrated, to require cleavage of the covalent peptide cross-links that couple previously inserted material. Here, we identify several genes in Vibrio cholerae that collectively are required for growth - particularly elongation - of this pathogen. V. cholerae encodes three putative periplasmic proteins, here denoted ShyA, ShyB, and ShyC, that contain both PG binding and M23 family peptidase domains. While none is essential individually, the absence of both ShyA and ShyC results in synthetic lethality, while the absence of ShyA and ShyB causes a significant growth deficiency. ShyA is a D,d-endopeptidase able to cleave most peptide chain cross-links in V. cholerae's PG. PG from a ∆shyA mutant has decreased average chain length, suggesting that ShyA may promote removal of short PG strands. Unexpectedly, ShyA has little activity against muropeptides containing pentapeptides, which typically characterize newly synthesized material. ShyA's substrate-dependent activity may contribute to selection of cleavage sites in PG, whose implications for the process of side-wall growth are discussed.

  • 34.
    Edqvist, Petra J
    et al.
    Umeå University, Faculty of Medicine, Molecular Biology (Faculty of Medicine).
    Bröms, Jeanette E
    Umeå University, Faculty of Science and Technology, Molecular Biology (Faculty of Science and Technology).
    Betts, Helen J
    Forsberg, Ake
    Umeå University, Faculty of Science and Technology, Molecular Biology (Faculty of Science and Technology).
    Pallen, Mark J
    Francis, Matthew S
    Umeå University, Faculty of Science and Technology, Molecular Biology (Faculty of Science and Technology). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Tetratricopeptide repeats in the type III secretion chaperone, LcrH: their role in substrate binding and secretion.2006In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 59, no 1, p. 31-44Article in journal (Refereed)
    Abstract [en]

    Non-flagellar type III secretion systems (T3SSs) transport proteins across the bacterial cell and into eukaryotic cells. Targeting of proteins into host cells requires a dedicated translocation apparatus. Efficient secretion of the translocator proteins that make up this apparatus depends on molecular chaperones. Chaperones of the translocators (also called class-II chaperones) are characterized by the possession of three tandem tetratricopeptide repeats (TPRs). We wished to dissect the relations between chaperone structure and function and to validate a structural model using site-directed mutagenesis. Drawing on a number of experimental approaches and focusing on LcrH, a class-II chaperone from the Yersinia Ysc-Yop T3SS, we examined the contributions of different residues, residue classes and regions of the protein to chaperone stability, chaperone-substrate binding, substrate stability and secretion and regulation of Yop protein synthesis. We confirmed the expected role of the conserved canonical residues from the TPRs to chaperone stability and function. Eleven mutations specifically abrogated YopB binding or secretion while three mutations led to a specific loss of YopD secretion. These are the first mutations described for any class-II chaperone that allow interactions with one translocator to be dissociated from interactions with the other. Strikingly, all mutations affecting the interaction with YopB mapped to residues with side chains projecting from the inner, concave surface of the modelled TPR structure, defining a YopB interaction site. Conversely, all mutations preventing YopD secretion affect residues that lie on the outer, convex surface of the triple-TPR cluster in our model, suggesting that this region of the molecule represents a distinct interaction site for YopD. Intriguingly, one of the LcrH double mutants, Y40A/F44A, was able to maintain stable substrates inside bacteria, but unable to secrete them, suggesting that these two residues might influence delivery of substrates to the secretion apparatus.

  • 35.
    Ettema, Thijs J. G.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Evolution.
    Lindas, Ann-Christin
    Hjort, Karin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Poplawski, Andrzej B.
    Kaessmann, Henrik
    Grogan, Dennis W.
    Kelman, Zvi
    Andersson, Anders F.
    Pelve, Erik A.
    Lundgren, Magnus
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Microbiology.
    Svärd, Staffan G.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Microbiology.
    Rolf Bernander (1956-2014): pioneer of the archaeal cell cycle Obituary2014In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 92, no 5, p. 903-909Article in journal (Refereed)
    Abstract [en]

    On 19 January 2014 Rolf (Roffe') Bernander passed away unexpectedly. Rolf was a dedicated scientist; his research aimed at unravelling the cell biology of the archaeal domain of life, especially cell cycle-related questions, but he also made important contributions in other areas of microbiology. Rolf had a professor position in the Molecular Evolution programme at Uppsala University, Sweden for about 8 years, and in January 2013 he became chair professor at the Department of Molecular Biosciences, The Wenner-Gren Institute at Stockholm University in Sweden. Rolf was an exceptional colleague and will be deeply missed by his family and friends, and the colleagues and co-workers that he leaves behind in the scientific community. He will be remembered for his endless enthusiasm for science, his analytical mind, and his quirky sense of humour.

  • 36. Ettema, Thijs J. G.
    et al.
    Lindas, Ann-Christin
    Hjort, Karin
    Poplawski, Andrzej B.
    Kaessmann, Henrik
    Grogan, Dennis W.
    Kelman, Zvi
    Andersson, Anders F.
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Pelve, Erik
    Lundgren, Magnus
    Svard, Staffan G.
    Rolf Bernander (1956-2014): pioneer of the archaeal cell cycle (vol 92, pg 903, 2014)2014In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 93, no 3, p. 582-582Article in journal (Refereed)
  • 37.
    Ettema, Thijs J. G.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Molecular Evolution.
    Lindås, Ann-Christin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Molecular Evolution.
    Bernander, Rolf
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Molecular Evolution.
    An actin-based cytoskeleton in archaea2011In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 80, no 4, p. 1052-1061Article in journal (Refereed)
    Abstract [en]

    In eukaryotic and bacterial cells, spatial organization is dependent upon cytoskeletal filaments. Actin is a main eukaryotic cytoskeletal element, involved in key processes such as cell shape determination, mechanical force generation and cytokinesis. We describe an archaeal cytoskeleton which forms helical structures within Pyrobaculum calidifontis cells, as shown by in situ immunostaining. The core components include an archaeal actin homologue, Crenactin, closely related to the eukaryotic counterpart. The crenactin gene belongs to a conserved gene cluster denoted Arcade (actin-related cytoskeleton in Archaea involved in shape determination). The phylogenetic distribution of arcade genes is restricted to the crenarchaeal Thermoproteales lineage, and to Korarchaeota, and correlates with rod-shaped and filamentous cell morphologies. Whereas Arcadin-1, -3 and -4 form helical structures, suggesting cytoskeleton-associated functions, Arcadin-2 was found to be localized between segregated nucleoids in a cell subpopulation, in agreement with possible involvement in cytokinesis. The results support a crenarchaeal origin of the eukaryotic actin cytoskeleton and, as such, have implications for theories concerning the origin of the eukaryotic cell.

  • 38. Ettema, Thijs J. G.
    et al.
    Lindås, Ann-Christin
    Hjort, Karin
    Poplawski, Andrzej B.
    Kaessmann, Henrik
    Grogan, Dennis W.
    Kelman, Zvi
    Andersson, Anders F.
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO), Gene Technology.
    Pelve, Erik A.
    Lundgren, Magnus
    Svard, Staffan G.
    Rolf Bernander (1956-2014): pioneer of the archaeal cell cycle Obituary2014In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 92, no 5, p. 903-909Article in journal (Refereed)
    Abstract [en]

    On 19 January 2014 Rolf (Roffe') Bernander passed away unexpectedly. Rolf was a dedicated scientist; his research aimed at unravelling the cell biology of the archaeal domain of life, especially cell cycle-related questions, but he also made important contributions in other areas of microbiology. Rolf had a professor position in the Molecular Evolution programme at Uppsala University, Sweden for about 8 years, and in January 2013 he became chair professor at the Department of Molecular Biosciences, The Wenner-Gren Institute at Stockholm University in Sweden. Rolf was an exceptional colleague and will be deeply missed by his family and friends, and the colleagues and co-workers that he leaves behind in the scientific community. He will be remembered for his endless enthusiasm for science, his analytical mind, and his quirky sense of humour.

  • 39.
    Forslund, Anna-Lena
    et al.
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Kuoppa, Kerstin
    Svensson, Kerstin
    Salomonsson, Emelie
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Johansson, Anders
    Byström, Mona
    Oyston, Petra C. F.
    Michell, Stephen L.
    Titball, Richard W.
    Noppa, Laila
    Frithz-Lindsten, Elisabet
    Forsman, Mats
    Forsberg, Åke
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Direct repeat-mediated deletion of a type IV pilin gene results in major virulence attenuation of Francisella tularensis2006In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 59, no 6, p. 1818-1830Article in journal (Refereed)
    Abstract [en]

    Francisella tularensis, the causative agent of tularaemia, is a highly infectious and virulent intracellular pathogen. There are two main human pathogenic subspecies, Francisella tularensis ssp. tularensis (type A), and Francisella tularensis ssp. holarctica (type B). So far, knowledge regarding key virulence determinants is limited but it is clear that intracellular survival and multiplication is one major virulence strategy of Francisella. In addition, genome sequencing has revealed the presence of genes encoding type IV pili (Tfp). One genomic region encoding three proteins with signatures typical for type IV pilins contained two 120 bp direct repeats. Here we establish that repeat-mediated loss of one of the putative pilin genes in a type B strain results in severe virulence attenuation in mice infected by subcutaneous route. Complementation of the mutant by introduction of the pilin gene in cis resulted in complete restoration of virulence. The level of attenuation was similar to that of the live vaccine strain and this strain was also found to lack the pilin gene as result of a similar deletion event mediated by the direct repeats. Presence of the pilin had no major effect on the ability to interact, survive and multiply inside macrophage-like cell lines. Importantly, the pilin-negative strain was impaired in its ability to spread from the initial site of infection to the spleen. Our findings indicate that this putative pilin is critical for Francisella infections that occur via peripheral routes.

  • 40. Fox, K L
    et al.
    Yildirim, Håkan H
    Södertörn University, School of Life Sciences.
    Deadman, M E
    Schweda, Elke K H
    Södertörn University, School of Life Sciences.
    Moxon, E R
    Hood, D W
    Novel lipopolysaccharide biosynthetic genes containing tetranucleotide repeats in Haemophilus influenzae, identification of a gene for adding O-acetyl groups2005In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 58, no 1, p. 207-216Article in journal (Refereed)
    Abstract [en]

    Many of the genes for lipopolysaccharide (LPS) biosynthesis in Haemophilus influenzae are phase variable. The mechanism of this variable expression involves slippage of tetranucleotide repeats located within the reading frame of these genes. Based on this, we hypothesized that tetranucleotide repeat sequences might be used to identify as yet unrecognized LPS biosynthetic genes. Synthetic oligonucleotides (20 bases), representing all previously reported LPS-related tetranucleotide repeat sequences in H. influenzae, were used to probe a collection of 25 genetically and epidemiologically diverse strains of non-typeable H. influenzae. A novel gene identified through this strategy was a homologue of oafA, a putative O-antigen LPS acetylase of Salmonella typhimurium, that was present in all 25 non-typeable H. influenzae, 19 of which contained multiple copies of the tetranucleotide 5'-GCAA. Using lacZ fusions, we showed that these tetranucleotide repeats could mediate phase variation of this gene. Structural analysis of LPS showed that a major site of acetylation was the distal heptose (HepIII) of the LPS inner-core. An oafA deletion mutant showed absence of O-acetylation of HepIII. When compared with wild type, oafA mutants displayed increased susceptibility to complement-mediated killing by human serum, evidence that O-acetylation of LPS facilitates resistance to host immune clearance mechanisms. These results provide genetic and structural evidence that H. influenzae oafA is required for phase variable O-acetylation of LPS and functional evidence to support the role of O-acetylation of LPS in pathogenesis.

  • 41.
    Francis, Matthew
    et al.
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Aili, Margareta
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Wiklund, Magda-Lena
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Wolf-Watz, Hans
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    A study of the YopD-LcrH interaction from Yersinia pseudotuberculosis reveals a role for hydrophobic residues within the amphipathic domain of YopD2000In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 38, no 1, p. 85-102Article in journal (Refereed)
    Abstract [en]

    The enteropathogen Yersinia pseudotuberculosis is a model system used to study the molecular mechanisms by which Gram-negative pathogens translocate effector proteins into target eukaryotic cells by a common type III secretion machine. Of the numerous proteins produced by Y. pseudotuberculosis that act in concert to establish an infection, YopD (Yersiniaouter protein D) is a crucial component essential for yop regulation and Yop effector translocation. In this study, we describe the mechanisms by which YopD functions to control these processes. With the aid of the yeast two-hybrid system, we investigated the interaction between YopD and the cognate chaperone LcrH. We confirmed that non-secreted LcrH is necessary for YopD stabilization before secretion, presumably by forming a complex with YopD in the bacterial cytoplasm. At least in yeast, this complex depends upon the N-terminal domain and a C-terminal amphipathic α-helical domain of YopD. Introduction of amino acid substitutions within the hydrophobic side of the amphipathic α-helix abolished the YopD–LcrH interaction, indicating that hydrophobic, as opposed to electrostatic, forces of attraction are important for this process. Suppressor mutations isolated within LcrH could compensate for defects in the amphipathic domain of YopD to restore binding. Isolation of LcrH mutants unable to interact with wild-type YopD revealed no single domain responsible for YopD binding. The YopD and LcrH mutants generated in this study will be relevant tools for understanding YopD function during a Yersinia infection.

  • 42.
    Francis, Matthew S.
    et al.
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Aili, Margareta
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Wiklund, Magda-Lena
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Wolf-Watz, Hans
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    A study of the YopD-LcrH interaction from Yersinia pseudotuberculosis reveals a role for hydrophobic residues within the amphipathic domain of YopD2000In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 38, no 1, p. 85-102Article in journal (Refereed)
    Abstract [en]

    The enteropathogen Yersinia pseudotuberculosis is a model system used to study the molecular mechanisms by which Gram-negative pathogens translocate effector proteins into target eukaryotic cells by a common type III secretion machine. Of the numerous proteins produced by Y. pseudotuberculosis that act in concert to establish an infection, YopD (Yersinia outer protein D) is a crucial component essential for yop regulation and Yop effector translocation. In this study, we describe the mechanisms by which YopD functions to control these processes. With the aid of the yeast two-hybrid system, we investigated the interaction between YopD and the cognate chaperone LcrH. We confirmed that non-secreted LcrH is necessary for YopD stabilization before secretion, presumably by forming a complex with YopD in the bacterial cytoplasm. At least in yeast, this complex depends upon the N-terminal domain and a C-terminal amphipathic alpha-helical domain of YopD. Introduction of amino acid substitutions within the hydrophobic side of the amphipathic alpha-helix abolished the YopD-LcrH interaction, indicating that hydrophobic, as opposed to electrostatic, forces of attraction are important for this process. Suppressor mutations isolated within LcrH could compensate for defects in the amphipathic domain of YopD to restore binding. Isolation of LcrH mutants unable to interact with wild-type YopD revealed no single domain responsible for YopD binding. The YopD and LcrH mutants generated in this study will be relevant tools for understanding YopD function during a Yersinia infection.

  • 43.
    Francis, Matthew S
    et al.
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Lloyd, Scott A
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Wolf-Watz, Hans
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    The type III secretion chaperone LcrH co-operates with YopD to establish a negative, regulatory loop for control of Yop synthesis in Yersinia pseudotuberculosis2001In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 42, no 4, p. 1075-1093Article in journal (Refereed)
    Abstract [en]

    The enteropathogen Yersinia pseudotuberculosis is a model system used to study the molecular mechanisms by which Gram-negative pathogens secrete and subsequently translocate antihost effector proteins into target eukaryotic cells by a common type III secretion system (TTSS). In this process, YopD (Yersinia outer protein D) is essential to establish regulatory control of Yop synthesis and the ensuing translocation process. YopD function depends upon the non-secreted TTSS chaperone LcrH (low-calcium response H), which is required for presecretory stabilization of YopD. However, as a new role for TTSS chaperones in virulence gene regulation has been proposed recently, we undertook a detailed analysis of LcrH. A lcrH null mutant constitutively produced Yops, even when this strain was engineered to produce wild-type levels of YopD. Furthermore, the YopD-LcrH interaction was necessary to regain the negative regulation of virulence associated genes yops). This finding was used to investigate the biological significance of several LcrH mutants with varied YopD binding potential. Mutated LcrH alleles were introduced in trans into a lcrH null mutant to assess their impact on yop regulation and the subsequent translocation of YopE, a Rho-GTPase activating protein, across the plasma membrane of eukaryotic cells. Two mutants, LcrHK20E, E30G, I31V, M99V, D136G and LcrHE30G lost all regulatory control, even though YopD binding and secretion and the subsequent translocation of YopE was indistinguishable from wild type. Moreover, these regulatory deficient mutants showed a reduced ability to bind YscY in the two-hybrid assay. Collectively, these findings confirm that LcrH plays an active role in yop regulation that might be mediated via an interaction with the Ysc secretion apparatus. This chaperone-substrate interaction presents an innovative means to establish a regulatory hierarchy in Yersinia infections. It also raises the question as to whether or not LcrH is a true chaperone involved in stabilization and secretion of YopD or a regulatory protein responsible for co-ordinating synthesis of Yersinia virulence determinants. We suggest that LcrH can exhibit both of these activities.

  • 44.
    Francis, Matthew S
    et al.
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Wolf-Watz, Hans
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    YopD of Yersinia pseudotuberculosis is translocated into the cytosol of HeLa epithelial cells: evidence of a structural domain necessary for translocation.1998In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 29, no 3, p. 799-813Article in journal (Refereed)
    Abstract [en]

    Yersinia pseudotuberculosis YopB and YopD proteins are essential for translocation of Yop effector proteins into the target cell cytosol. YopB is suggested to mediate pore formation in the target cell plasma membrane, allowing translocation of Yop effector proteins, although the function of YopD is unclear. To investigate the role in translocation for YopD, a mutant strain in Y. pseudotuberculosis was constructed containing an in frame deletion of essentially the entire yopD gene. As shown recently for the Y. pestis YopD protein, we found that the in vitro low calcium response controlling virulence gene expression was negatively regulated by YopD. This yopD null mutant (YPIII/pIB621) was also non-cytotoxic towards HeLa cell monolayers, supporting the role for YopD in the translocation process. Although other constituents of the Yersinia translocase apparatus (YopB, YopK and YopN) are not translocated into the host cell cytosol, fractionation of infected HeLa cells allowed us to identify the cytosolic localization of YopD by the wild-type strain (YPIII/pIB102), but not by strains defective in either YopD or YopB. YopD was also identified by immunofluorescence in the cytoplasm of HeLa cell monolayers infected with a multiple yop mutant strain (YPIII/pIB29MEKA). These results demonstrate a dual function for YopD in negative regulation of Yop production and Yop effector translocation, including the YopD protein itself. To investigate whether an amphipathic domain near the C-terminus of YopD is involved in the translocation process, a mutant strain (YPIII/pIB155deltaD278-292) was constructed that is devoid of this region. Phenotypically, this small in frame deltayopD278-292 deletion mutant was indistinguishable from the yopD null mutant. The truncated YopD protein and Yop effectors were not translocated into the cytosol of HeLa cell monolayers infected with this mutant. The comparable regulatory and translocation phenotypes displayed by the small in frame deltayopD278-292 deletion and deltayopD null mutants suggest that regulation of Yop synthesis and Yop translocation are intimately coupled. We present an intriguing scenario to the Yersinia infection process that highlights the need for polarized translocation of YopD to specifically establish translocation of Yop effectors. These observations are contrary to previous suggestions that members of the translocase apparatus were not translocated into the host cell cytosol.

  • 45.
    Frithz-Lindsten, Elisabet
    et al.
    Department of Microbiology, Defence Research Establishment, S-901 82, Umeå, Sweden.
    Holmström, Anna
    Department of Microbiology, Defence Research Establishment, S-901 82, Umeå, Sweden.
    Jacobsson, Lars
    Department of Microbiology, Defence Research Establishment, S-901 82, Umeå, Sweden.
    Soltani, Mehnam
    Department of Microbiology, Defence Research Establishment, S-901 82, Umeå, Sweden.
    Olsson, Jan
    Department of Microbiology, Defence Research Establishment, S-901 82, Umeå, Sweden.
    Rosqvist, Roland
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Forsberg, Åke
    Department of Microbiology, Defence Research Establishment, S-901 82, Umeå, Sweden.
    Functional conservation of the effector protein translocators PopB/YopB and PopD/YopD of Pseudomonas aeruginosa and Yersinia pseudotuberculosis.1998In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 29, no 5, p. 1155-1165Article in journal (Refereed)
    Abstract [en]

    Virulent Yersinia species cause systemic infections in rodents, and Y. pestis is highly pathogenic for humans. Pseudomonas aeruginosa, on the other hand, is an opportunistic pathogen, which normally infects only compromised individuals. Surprisingly, these pathogens both encode highly related contact-dependent secretion systems for the targeting of toxins into eukaryotic cells. In Yersinia, YopB and YopD direct the translocation of the secreted Yop effectors across the target cell membrane. In this study, we have analysed the function of the YopB and YopD homologues, PopB and PopD, encoded by P. aeruginosa. Expression of the pcrGVHpopBD operon in defined translocation-deficient mutants (yopB/yopD) of Yersinia resulted in complete complementation of the cell contact-dependent, YopE-induced cytotoxicity of Y. pseudotuberculosis on HeLa cells. We demonstrated that the complementation fully restored the ability of Y. pseudotuberculosis to translocate the effector molecules YopE and YopH into the HeLa cells. Similar to YopB, PopB induced a lytic effect on infected erythrocytes. The lytic activity induced by PopB could be prevented if the erythrocytes were infected in the presence of sugars larger than 3 nm in diameter, indicating that PopB induced a pore of similar size compared with that induced by YopB. Our findings show that the contact-dependent toxin-targeting mechanisms of Y. pseudotuberculosis and P. aeruginosa are conserved at the molecular level and that the translocator proteins are functionally interchangeable. Based on these similarities, we suggest that the translocation of toxins such as ExoS, ExoT and ExoU by P. aeruginosa across the eukaryotic cell membrane occurs via a pore induced by PopB.

  • 46. Hammar, M
    et al.
    Arnqvist, Anna
    Bian, Z
    Olsén, A
    Normark, S
    Expression of two csg operons is required for production of fibronectin- and congo red-binding curli polymers in Escherichia coli K-12.1995In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 18, no 4, p. 661-70Article in journal (Refereed)
    Abstract [en]

    Two divergently transcribed operons in Escherichia coli required for the expression of fibronectin- and Congo red-binding curli polymers were identified and characterized by transposon mutagenesis, sequencing and transcriptional analyses, as well as for their ability to produce the curli subunit protein. The csgBA operon encodes CsgA, the major subunit protein of the fibre, and CsgB, a protein with sequence homology to CsgA. A non-polar csgB mutant is unaffected in its production of CsgA, but the subunit protein is not assembled into insoluble fibre polymers. A third open reading frame, orfC, positioned downstream of csgA may affect some functional property of curli since an insertion in this putative gene abolishes the autoagglutinating ability typical of curliated cells without affecting the production of the fibre. The promoter for the oppositely transcribed csgDEFG operon was identified by primer extension and shown, like the csgBA promoter, to be dependent upon the alternate stationary phase-specific sigma factor sigma s in wild-type cells, but not in mutants lacking the nucleoid associated protein H-NS. Insertions in csgD abolish completely trancription from the csgBA promoter. Therefore, any regulatory effect on the csgBA promoter might be secondary to events controlling the csgDEFG promoter and/or activation of CsgD. Insertions in csgE, csgF and csgG abolish curli formation but allow CsgA expression suggesting that one or more of these gene products are involved in secretion/assembly of the CsgA subunit protein. No amino acid sequence homologies were found between the CsgE, CsgF and CsgG proteins and secretion/assembly proteins for other known bacterial fibres, suggesting that the formation of curli follows a novel pathway.

  • 47.
    Hammarlöf, Disa L
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology.
    Hughes, Diarmaid
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology.
    Mutants of the RNA-processing enzyme RNase E reverse the extreme slow-growth phenotype caused by a mutant translation factor EF-Tu2008In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 70, no 5, p. 1194-1209Article in journal (Refereed)
    Abstract [en]

    Salmonella enterica with mutant EF-Tu (Gln125Arg) has a low level of EF-Tu, a reduced rate of protein synthesis and an extremely slow growth rate. Eighty independent suppressor mutations were selected that restored normal growth. In some cases (n = 7) suppression was due to mutations in tufA but, surprisingly, in most cases (n = 73) to mutations in rne, the gene coding for RNase E. These rne mutations alone had only modest effects on growth rate. Fifty different suppressor mutations were isolated in rne, all located in or close to the N-terminal endonucleolytic half of RNase E. Steady state levels of several mRNAs were lower in the mutant tuf strain but restored to wild-type levels in the tuf-rne double mutant. In contrast, the half-lives of mRNAs were unaffected by the tuf mutation. We propose a model where the tuf mutation causes the ribosome following RNA polymerase to pause, possibly in a codon-specific manner, exposing unshielded nascent message to RNase E cleavage. Normal growth rate can be restored by increasing EF-Tu activity or by reducing RNase E activity. Accordingly, RNase E is suggested to act at two distinct stages in the life of mRNA: early, on the nascent transcript; late, on the complete mRNA.

  • 48. He, Lin
    et al.
    Söderbom, Fredrik
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Microbiology.
    Wagner, Gerhart
    Binnie, Uta
    Binns, Nigel
    Masters, Millicent
    PcnB is required for the rapid degradation of RNAI, the antisense RNA that controls the copy number of ColE1-related plasmids1993In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 9, no 6, p. 1131-1142Article in journal (Refereed)
    Abstract [en]

    The replication of ColE1-related plasmids is controlled by an unstable antisense RNA, RNAI, which can interfere with the successful processing of the RNAII primer of replication. We show here that a host protein, PcnB, supports replication by promoting the decay of RNAI. In bacterial strains deleted for PcnB a stable, active form of RNAI, RNAI*, which appears to be identical to the product of 5'-end processing by RNAase E, accumulates. This leads to a reduction in plasmid copy number. We show, using a GST-PcnB fusion protein, that PcnB does not interfere with RNAI/RNAII binding in vitro. The fusion protein, like PcnB, has polyadenylating activity and is able to polyadenylate RNAI (and also another antisense RNA, CopA) in vitro.

  • 49. Hjort, K
    et al.
    Bernander, R
    Cell cycle regulation in the hyperthermophilic crenarchaeon Sulfolobus acidocaldarius.2001In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 40, no 1, p. 225-34Article in journal (Refereed)
    Abstract [en]

    The regulation and co-ordination of the cell cycle of the hyperthermophilic crenarchaeon Sulfolobus acidocaldarius was investigated with antibiotics. We provide evidence for a core regulation involving alternating rounds of chromosome replication and genome segregation. In contrast, multiple rounds of replication of the chromosome could occur in the absence of an intervening cell division event. Inhibition of the elongation stage of chromosome replication resulted in cell division arrest, indicating that pathways similar to checkpoint mechanisms in eukaryotes, and the SOS system of bacteria, also exist in archaea. Several antibiotics induced cell cycle arrest in the G2 stage. Analysis of the run-out kinetics of chromosome replication during the treatments allowed estimation of the minimal rate of replication fork movement in vivo to 250 bp s-1. An efficient method for the production of synchronized Sulfolobus populations by transient daunomycin treatment is presented, providing opportunities for studies of cell cycle-specific events. Possible targets for the antibiotics are discussed, including topoisomerases and protein glycosylation.

  • 50.
    Hjort, Karin
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Nicoloff, Hervé
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Andersson, Dan I.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Unstable tandem gene amplification generates heteroresistance (variation in resistance within a population) to colistin in Salmonella enterica2016In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 102, no 2, p. 274-289Article in journal (Refereed)
    Abstract [en]

    Heteroresistance, a phenomenon where subpopulations of a bacterial isolate exhibit different susceptibilities to an antibiotic, is a growing clinical problem where the underlying genetic mechanisms in most cases remain unknown. We isolated colistin resistant mutants in Escherichia coli and Salmonella enterica serovar Typhimurium at different concentrations of colistin. Genetic analysis showed that genetically stable pmrAB point mutations were responsible for colistin resistance during selection at high drug concentrations for both species and at low concentrations for E. coli. In contrast, for S. Typhimurium mutants selected at low colistin concentrations, amplification of different large chromosomal regions conferred a heteroresistant phenotype. All amplifications included the pmrD gene, which encodes a positive regulator that up-regulates proteins that modify lipid A, and as a result increase colistin resistance. Inactivation and over-expression of the pmrD gene prevented and conferred resistance, respectively, demonstrating that the PmrD protein is required and sufficient to confer resistance. The heteroresistance phenotype is explained by the variable gene dosage of pmrD in a population, where sub-populations with different copy number of the pmrD gene show different levels of colistin resistance. We propose that variability in gene copy number of resistance genes can explain the heteroresistance observed in clinically isolated pathogenic bacteria.

123 1 - 50 of 143
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf