Digitala Vetenskapliga Arkivet

Ändra sökning
Avgränsa sökresultatet
1 - 13 av 13
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Dai, Wenbin
    et al.
    Department of Automation Shanghai Jiao Tong University Shanghai, China .
    Nishi, Hiroaki
    Keio University, Yokohama, Japan.
    Vyatkin, Valeriy
    Luleå tekniska universitet, Institutionen för system- och rymdteknik, Datavetenskap.
    Huang, Victor
    Sage Technology Resources, Cupertino, California United States.
    Shi, Yang
    Huawei Technologies Co, Ltd, China.
    Guan, Xinping
    Shanghai Jiao Tong University, Shanghai, China.
    Industrial Edge Computing: Enabling Embedded Intelligence2019Ingår i: IEEE Industrial Electronics Magazine, ISSN 1932-4529, E-ISSN 1941-0115, Vol. 13, nr 4, s. 48-56, artikel-id 8941000Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The term industrial edge computing is used to describe a distributed platform that integrates communication, computation, and storage resources for performing real-time applications that can be directly accessed from the cloud. A step toward the industrial Internet revolution, industrial edge computing is designed to facilitate agile connectivity, real-time control, and data optimization, while enabling intelligent applications, ensuring tight security, and protecting privacy. Industrial edge computing makes use of what is known as edge computing nodes (ECNs), which bridge the gap between the physical world and the digital world by acting as smart gateways for assets, services, and systems. The IEEE P2805 Standards are being developed for defining protocols for self-management, data acquisition, and machine learning through cloud-edge collaboration on ECNs.

  • 2.
    Delsing, Jerker
    Luleå tekniska universitet, Institutionen för system- och rymdteknik, EISLAB.
    Local Cloud Internet of Things Automation: Technology and Business Model Features of Distributed Internet of Things Automation Solutions2017Ingår i: IEEE Industrial Electronics Magazine, ISSN 1932-4529, E-ISSN 1941-0115, Vol. 11, nr 4, s. 8-21Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The hype concerning digitalization is increasing the demand for new generations of automation systems. Concepts like Reference Architecture Model Industry 4.0 (RAMI 4.0) give us models but do not tell us how to facilitate actual implementations. This article discusses the transition from legacy automation technology as defined by ISA-95 to highly distributed Internet of Things (IoT)- and system of systems (SoS)- based automation systems that fully utilize Internet technologies, thus enabling the implementation of Industry 4.0 and RAMI 4.0 models. Distributed IoT automation systems have a number of general requirements concerning real-time performance, security, engineering cost, scalability, and interoperability. Meeting these requirements is necessary to enable possibilities for a realworld implementation of IoT automation. A key concept is local automation clouds. The discussion is based on a particular example of such an automation integration platform, the Arrowhead Framework.

  • 3.
    Hellström, Henrik
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Datavetenskap, Nätverk och systemteknik.
    Luvisotto, Michele
    Jansson, R.
    Pang, Zhibo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Elkraftteknik. KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Teknisk informationsvetenskap.
    Software-Defined Wireless Communication for Industrial Control: A Realistic Approach2019Ingår i: IEEE Industrial Electronics Magazine, ISSN 1932-4529, E-ISSN 1941-0115, Vol. 13, nr 4, s. 31-37, artikel-id 8939293Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Wireless communication for industrial applications of fers multiple advantages over traditional wired communicat ion, such a s reduced installation and maintenance costs, increased flexibility, and better suitability for harsh conditions and mobile environments. However, many industrial applications feature high-performance requirements for latency and reliability, challenges which are difficult are to meet over the wireless channel. Currently available wireless technologies struggle to achieve these requirements, leaving a gap between industry demands and state-of-the-art performance. To close this gap, traditional solutions that rely on general-purpose chipsets could be replaced with dedicated solutions for industrial applications. In this article, we discuss the feasibility of designing an industrial wireless solution based on software-defined radio (SDR), the obtained results, and the role of softwarization in the future of industrial communication.

  • 4.
    Huang, Victor K. L.
    et al.
    Sage Technol Resources, Richmond, VA USA.;Sage Technol Resources, IT Automot Sect Elect Vehicles, Richmond, VA USA.;Six Silicon Valley, Richmond, VA USA.;IES, Richmond, VA USA.;IES Stand Tech Comm, Richmond, VA USA.;IES IEEE Stand Assoc, Richmond, VA USA.;IEEE Commun Soc, Richmond, VA USA.;IEEE Tech Engn Management Soc, Richmond, VA USA..
    Pang, Zhibo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Teknisk informationsvetenskap. ABB Corp Res, Wireless Commun, Västerås, Sweden;Tsinghua Univ, Beijing, Peoples R China.;Univ Sydney, Sydney, NSW, Australia.;Zhejiang Univ, Hangzhou, Zhejiang, Peoples R China.;Beijing Univ Posts & Telecommun, Beijing, Peoples R China..
    Chen, Cheng-Jen (Allen)
    IES Stand Tech Comm, Richmond, VA USA..
    Tsang, Kim Fung
    City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China.;Internet Things Comm, Smart City Consortium, Hong Kong, Hong Kong, Peoples R China..
    New Trends in the Practical Deployment of Industrial Wireless2018Ingår i: IEEE Industrial Electronics Magazine, ISSN 1932-4529, E-ISSN 1941-0115, Vol. 12, nr 2, s. 50-58Artikel i tidskrift (Refereegranskat)
  • 5.
    Jiang, Xiaolin
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Nätverk och systemteknik.
    Pang, Zhibo
    ABB Corp Res Ctr, Wireless Commun, Vasteras, Sweden..
    Luvisotto, Michele
    ABB Corp Res Ctr, Vasteras, Sweden..
    Pan, Fei
    Univ Elect Sci & Technol China, Natl Key Lab Sci & Technol Commun, Commun & Informat Syst, Chengdu, Sichuan, Peoples R China..
    Candell, Richard
    NIST, Gaithersburg, MD 20899 USA..
    Fischione, Carlos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Nätverk och systemteknik. Synopsys, Mountain View, CA USA.;United Technol Res Ctr, E Hartford, CT 06108 USA..
    Using a Large Data Set to Improve Industrial Wireless Communications Latency, Reliability, and Security2019Ingår i: IEEE Industrial Electronics Magazine, ISSN 1932-4529, E-ISSN 1941-0115, Vol. 13, nr 1, s. 6-12Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Trealize the Industry 4.0 vision and enable mobile connectivity and flexible deployment in harsh industrial environments, wireless communication is essential. But before wireless communications technology can be widely deployed for critical control applications, first it must be assessed, and that requires a comprehensive characterization of the wireless channel. This can be done by analyzing large amounts of wireless data collected from different industrial environments. In this article, we discuss the possibilities offered by a recently published industrial wireless data set. This data set is more exhaustive than measurements previously reported. We show two cases of how those data have been applied to improve latency performance and to investigate the feasibility of physical-layer security techniques for wireless communication in industrial environments.

  • 6.
    Mumtaz, Shahid
    et al.
    Inst Telecomunicacoes Aveiro, Aveiro, Portugal.;Ericsson, Karlskrona, Sweden.;Huawei Res Labs, Karlskrona, Sweden..
    Alsohaily, Ahmed
    Univ Toronto, Wireless Lab, Dept Elect & Comp Engn, Toronto, ON M5S 1A1, Canada.;Next Generat Mobile Networks Alliance, Frankfurt, Germany.;Telus, Technol strategy team, Vancouver, BC, Canada..
    Pang, Zhibo
    KTH. Asea Brown Boveri Corp Res, Baden, Switzerland..;Tsinghua Univ, Beijing, Peoples R China.;Beijing Univ Posts & Telecommun, Beijing, Peoples R China..
    Rayes, Ammar
    Cisco Syst, San Jose, CA USA..
    Tsang, Kim Fung
    City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China..
    Rodriguez, Jonathan
    Ctr Commun Syst Res, Surrey, England.;Inst Telecomunicacoes, Lisbon, Portugal..
    Massive Internet of Things for Industrial Applications2017Ingår i: IEEE Industrial Electronics Magazine, ISSN 1932-4529, E-ISSN 1941-0115, Vol. 11, nr 1, s. 28-33Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This article provides an overview of the development and standardizations of connectivity solutions for enabling the Industrial Internet of Things (IIoT). It also highlights key IIoT connectivity technologies and platforms that have the potential of driving the next industrial revolution. In addition, the article addresses the main challenges standing in the way of realizing the full potential of the IIoT, namely attaining secure connectivity and managing a vastly fragmented ecosystem of connectivity solutions and platforms. Finally, IIoT connectivity challenges are illustrated by the example of future building automation.

  • 7.
    Pan, Fei
    et al.
    Univ Elect Sci & Technol China, Natl Key Lab Sci & Technol Commun, Chengdu, Sichuan, Peoples R China..
    Pang, Zhibo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elkraftteknik. KTH, Skolan för elektroteknik och datavetenskap (EECS), Teknisk informationsvetenskap. ABB Corp Res, Wireless Commun, Västerås, Sweden.;Tsinghua Univ, Beijing, Peoples R China.;Zhejiang Univ, Hangzhou, Zhejiang, Peoples R China.;Beijing Univ Posts & Telecommun, Beijing, Peoples R China..
    Luvisotto, Michele
    ABB Corp Res Ctr, Vasteras, Sweden..
    Xiao, Ming
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Teknisk informationsvetenskap.
    Wen, Hong
    Univ Waterloo, Elect & Comp Engn Dept, Waterloo, ON, Canada.;Univ Elect Sci & Technol China, Chengdu, Sichuan, Peoples R China..
    Physical-Layer Security for Industrial Wireless Control Systems2018Ingår i: IEEE Industrial Electronics Magazine, ISSN 1932-4529, E-ISSN 1941-0115, Vol. 12, nr 4, s. 18-27Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Wireless networks for industrial control systems are promising because of their reduced cost, flexible structure, and improved long-term reliability. However, wireless control systems are vulnerable to probing-free attacks (PFAs), which are not possible in wired control systems. Thus, wireless control systems must be made as secure as wired systems. Physical (PHY)-layer security technology (PHY-Sec) may be a new strategy for securing industrial wireless control systems. Among all PHY-Sec technologies, PHY-layer authentication is the first step for PHYSec in industrial wireless control systems. This article discusses the principles of PHY-Sec, its application to wireless control systems, and potential research directions.

  • 8.
    Pang, Zhibo
    et al.
    KTH. ABB Corp Res, Sweden; Tsinghua Univ, Peoples R China; Beijing Univ Posts & Telecommun, Peoples R China.
    Luvisotto, Michele
    Dzung, Dacfey
    Wireless High-Performance Communications The Challenges and Opportunities of a New Target2017Ingår i: IEEE Industrial Electronics Magazine, ISSN 1932-4529, E-ISSN 1941-0115, Vol. 11, nr 3, s. 20-25Artikel i tidskrift (Refereegranskat)
  • 9.
    Rabkowski, Jacek
    et al.
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Peftitsis, Dimosthenis
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Nee, Hans-Peter
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Silicon Carbide Power Transistors: A New Era in Power Electronics Is Initiated2012Ingår i: IEEE Industrial Electronics Magazine, ISSN 1932-4529, E-ISSN 1941-0115, Vol. 6, nr 2, s. 17-26Artikel i tidskrift (Refereegranskat)
  • 10. Vyatkin, Valeriy
    The IEC 61499 standard and its semantics2009Ingår i: IEEE Industrial Electronics Magazine, ISSN 1932-4529, E-ISSN 1941-0115, Vol. 3, nr 4, s. 40-48Artikel i tidskrift (Refereegranskat)
  • 11. Vyatkin, Valeriy
    et al.
    Salčič, Zoran A.
    Department of Electrical and Computer Engineering, University of Auckland.
    Roop, Partha S.
    Department of Electrical and Computer Engineering, University of Auckland.
    Fitzgerald, John S.
    Glidepath.
    Now that's smart!2007Ingår i: IEEE Industrial Electronics Magazine, ISSN 1932-4529, E-ISSN 1941-0115, Vol. 1, nr 4, s. 17-29Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In order to encapsulate knowledge into function blocks, have more configurability of devices and features and apply models as a network of function blocks, the function block architecture of IEC 61499 has bee developed. IEC 61499 provides a new degree of flexibility in managing embedded control and information processing systems. IEC 61499 can also be used in a network of function blocks wherein an application is distributed across different computing devices. IEC 61499 provides a mechanism for creating new device types as a set of resource types and function block libraries and uses an Open XML-based device management protocol, which in turn enables configurability of compliant devices by compliant software tools. As such, IEC 61499 is a far better solution that existing PLC systems, not to mention the fact that it allows creation and deletion of resources which are containers for applications. IEC 61499 function blocks have enabled features such as reconfigurability, PnP, independence of target execution platforms and independence of control strategy.

  • 12.
    Zhan, Ming
    et al.
    KTH. Royal Inst Technol, Stockholm, Sweden.;ABB Corp Res Ctr, Vasteras, Sweden.;Southwest Univ, Coll Elect & Informat Engn, Chongqing, Peoples R China..
    Pang, Zhibo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elkraftteknik. KTH, Skolan för elektroteknik och datavetenskap (EECS), Teknisk informationsvetenskap. KTH, Stockholm, Sweden.;Tsinghua Univ, Beijing, Peoples R China.;Zhejiang Univ, Hangzhou, Zhejiang, Peoples R China.;Beijing Univ Posts & Telecommun, Beijing, Peoples R China..
    Xiao, Ming
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Teknisk informationsvetenskap. Royal Inst Technol, Commun Theory, Sch Elect Engn & Comp Sci, Stockholm, Sweden..
    Luvisotto, Michele
    ABB Corp Res Ctr, Vasteras, Sweden..
    Dzung, Dacfey
    ABB Corp Res, Ind & Util Commun, Baden, Switzerland..
    Wireless High-Performance Communications Improving Effectiveness and Creating Ultrahigh Reliability with Channel Coding2018Ingår i: IEEE Industrial Electronics Magazine, ISSN 1932-4529, E-ISSN 1941-0115, Vol. 12, nr 3, s. 32-37Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    To meet a set of stringent requirements for wireless control in critical applications, the described wireless high-performance (WirelessHP) communication system represents a breakthrough regarding microsecondlevel latency, but the proof of ultrahigh reliability is still lacking. To this aim, we propose the incorporation of channel coding in its physical layer. Building on a customized protocol stack and a hardware demonstrator, we prove the effectiveness of channel coding and suggest further research in this area.

  • 13.
    Zoitl, Alois
    et al.
    Vienna University of Technology, Automation and Control Institute (ACIN).
    Vyatkin, Valeriy
    IEC 61499 architecture for distributed automation: The "glass half full" view2009Ingår i: IEEE Industrial Electronics Magazine, ISSN 1932-4529, E-ISSN 1941-0115, Vol. 3, nr 4, s. 7-22Artikel i tidskrift (Refereegranskat)
1 - 13 av 13
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf