Digitala Vetenskapliga Arkivet

Change search
Refine search result
123456 1 - 50 of 256
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Amara, Sofiane
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Architecture and Water.
    Corrigendum to “Using Fouggara for Heating and Cooling Buildings in Sahara” (Energy Procedia 6 (2011), 55–64)2011In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 6, p. 825-Article in journal (Other academic)
  • 2.
    Amara, Sofiane
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Architecture and Water.
    Nordell, Bo
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Architecture and Water.
    Benyoucef, B.
    Université de Tlemcen, BP 119 Tlemcen.
    Using fouggara for heating and cooling buildings in Sahara2011In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 6, p. 55-64Article in journal (Refereed)
    Abstract [en]

    In order to utilise naturally stored heat or cold from the ground, seasonal temperature variations are required. The reason is that the ground temperature is then warmer than the air temperature during winter and colder during summer. The heating and cooling demand in North Africa varies considerably with the greatest cooling demand in the East and the greatest heating demand in the West. In parts of Algeria the mean temperature difference between the coldest and warmest month is greater than 20 °C, which is favourable. In current work it was shown that the ancient Fouggara system, even today would be interesting for heating and cooling of buildings in the Sahara desert.

  • 3.
    Amara, Sofiane
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Architecture and Water.
    Nordell, Bo
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Architecture and Water.
    Benyoucef, B.
    Université de Tlemcen, BP 119 Tlemcen.
    Benmoussat, A.
    Université de Tlemcen, BP 119 Tlemcen.
    Concentration heating system with optical fiber supply2011In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 6, p. 805-814Article in journal (Refereed)
    Abstract [en]

    This paper reports on an experimental realization and field testing of a recently proposed solar fiber optic mini dish light concentrator connected to a hot water accumulator. The prototype dish is 150 cm in diameter. In repeated test the collected and concentrated sunlight was transported in a one millimeter diameter optical fiber to a selective surface in the storage tank. This surface absorbs the radiation which remains trapped inside as it heat exchanges with tank fluid which temperature can reach 70 °C.

  • 4.
    An, Lin
    et al.
    E China Univ Sci & Technol, Peoples R China.
    Yu, Xinhai
    E China Univ Sci & Technol, Peoples R China.
    Yang, Jie
    Univ Shanghai Sci & Technol, Shanghai, Peoples R China.
    Tu, Shan-Tung
    E China Univ Sci & Technol, Peoples R China.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Royal Inst Technol, Stockholm, Sweden.
    CO2 capture using a superhydrophobic ceramic membrane contactor2015In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 75, p. 2287-2292Article in journal (Refereed)
    Abstract [en]

    Wetting and fouling of membrane contactor result in performance deterioration of membrane gas absorption system for CO2 post-combustion capture of coal-fired power plants. To solve these problems, in this study, a superhydrophobic ceramic (SC) membrane contactor was fabricated by chemically modification using 1H, 1H, 2H, 2H-perfluorooctylethoxysilane (FAS) solution. The membrane contactor fabrication costs for both SC membrane and PP (polypropylene) membrane contactors per unit mass absorbed CO2 were roughly the same. However, by using the SC membrane, the detrimental effects of wetting can be alleviated by periodic drying to ensure a high CO2 removal efficiency (>90%), whereas the drying does not work for the PP membrane. The SC membrane contactor exhibited a better anti-fouling ability than the PP membrane contactor because the superhydrophobic surface featured a self-cleaning function. To ensure continuous CO2 removal with high efficiency, a method that two SC membrane contactors alternatively operate combined with periodic drying was proposed.

  • 5.
    Anbalagan, Anbarasan
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Schwede, Sebastian
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Nehrenheim, Emma
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Influence of light emitting diodes on indigenous microalgae cultivation in municipal wastewater2015In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 75, p. 786-792Article in journal (Refereed)
    Abstract [en]

    In this study, the effect of light emitting diodes (LEDs) on microalgae cultivation in municipal wastewater was examined in comparison to the fluorescent light. Two kinds of wastewater were evaluated: first one with low concentration of total phosphorous (TP) and second one with high TP concentration. The nutrient removal and biomass production using LEDs is efficient at photo-synthetically active radiation (PAR) intensity of 107-112 mu mol m(-2) s(-1) which is slightly higher than fluorescent light. Furthermore, this study demonstrates the applicability and distribution of light in wastewater where the environment is not defined. More importantly, winter and rainy periods contribute to dark condition and dilution of wastewater, intense LED light offers a feasible option for the functioning of closed micro algae based activated sludge (MAAS) process for recovery and reuse of nutrients. 

  • 6.
    Andersson, Daniel
    et al.
    Radarbolaget.
    Björsell, Niclas
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Electronics, Mathematics and Natural Sciences, Electronics.
    Ottoson, Patrik
    Radarbolaget.
    Rönnow, Daniel
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Electronics, Mathematics and Natural Sciences, Electronics.
    Sandberg, Mats
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Energy system.
    Radar Images of Leaks in Building Elements2015In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 78, p. 1726-1731Article in journal (Refereed)
    Abstract [en]

    Through leakage in the building envelope there is a penetration of air, water vapor and particles. The degree of leakage of air can be quantified by existing methods. However, the location of adventitious openings is often not known. In order to overcome the limitations in existing methods, a non-contact and non-destructive method based on ultra-wide bandwidth radar technology is suggested. A test-bed is designed that can measure with different polarization to be able to detect flaws in different directions. Initial measurements shows promising results for further development of the method of using radar images to find leaks in building elements.

  • 7.
    Avelin, Anders
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Dahlquist, Erik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Wallin, Fredrik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Effect of different renovation actions, their investment cost and future potential2017In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 143, p. 73-79Article in journal (Refereed)
    Abstract [en]

    65% of the buildings in Västerås, situated in the region of Mälardalen, Sweden were built before 1970. It is thus time for renovation. The situation is the same in most cities in Sweden and Northern Europe. The depth of renovation can be quite different. In this paper we evaluate some examples where cost is compared to energy saving effect. How to plan renovation to make use of the available capital in the cities is discussed. As a complement to direct renovation actions also behavior change with respect to energy is discussed and exemplified. The cost for energy actions in relation to other renovation aspects is discussed especially for the passive house case in Allingsås, Sweden. The passive house center calculate an extra cost for passive house standard to be 10 000 €/apartment while an external consultant has the figure 40 000 € of the total cost of 120 000 €. With this space heating can be 18 kWh/m2.year, or a reduction by 84 % with respect to space heating and 62% for overall heat and hot water demand. If you use the latter cost figure passive house standard is not motivated from an energy savings perspective while if using the lower figure it is very interesting. For the other less deep renovations we see that adding more insulation and three glass windows is motivated if the degradation has been strong, while a simpler renovation may be ok if the outer surface coating is not too bad. For these less deep renovations we see cost figures of 65 €/m2 respectively 28 €/m2 with reduction of heating and hot water demand of 56 % respectively 34 %. 

  • 8.
    Averfalk, Helge
    et al.
    Halmstad University, School of Business, Engineering and Science, The Rydberg Laboratory for Applied Sciences (RLAS).
    Werner, Sven
    Halmstad University, School of Business, Engineering and Science, The Rydberg Laboratory for Applied Sciences (RLAS).
    Essential improvements in future district heating systems2017In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 116, p. 217-225Article in journal (Refereed)
    Abstract [en]

    The major common denominator for future efficient fourth generation district heating systems is lower temperature levels in the distribution networks. Higher efficiencies are then obtained in both heat supply and heat distribution. Heat supply becomes more efficient with respect to combined heat and power, flue gas condensation, heat pumps, geothermal extraction, low temperature excess heat, and heat storage. Heat distribution becomes more efficient from lower distribution losses, less pipe expansion, lower scalding risks, and plastic pipes. The lower temperature levels will be possible since future buildings will have lower temperature demands when requiring lower heat demands. This paper aims at providing seven essential recommendations concerning design and construction strategies for future fourth generation systems. The method used is based on a critical examination of the barriers for lower temperature levels and the origins of high return temperatures in contemporary third generation systems. The two main research questions applied are: Which parts of contemporary system design are undesirable? Which possible improvements are desirable? Key results and the corresponding recommendations include temperature levels for heat distribution, recirculation, metering, supervision, thermal lengths for heat exchangers and heat sinks, hydronic balancing, and legionella. The main conclusion is that it should be possible to construct new fourth generation district heating networks according to these seven essential recommendations presented in this paper. © 2017 The Authors. Published by Elsevier

    Download full text (pdf)
    fulltext
  • 9.
    Azimoh, Chukwuma Leonard
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Klintenberg, Patrik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Wallin, Fredrik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Karlsson, Björn
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    The burden of shading and location on the sustainability of South African solar home system program2015In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 75, p. 308-313Article in journal (Refereed)
    Abstract [en]

    Most contributions on the issues of sustainability of rural electrification projects have focused on the technology and business models used to drive the projects. The issues of user education and environmental impact on the technology have received little attention, despite the fact that these challenges affect lives of projects after commissioning. The usage pattern of solar home systems (SHS) by most users that placed their solar panels close to obstructing objects, results in shading of the panels, and geographic location of households in the concession areas of the South African SHS program affects the performances of the system. The non-optimal use of SHS is mainly due to lack of user education. Therefore this paper reports on the impact of geographic location and shading of panels on the economics and technical performance of SHS. The study was done by investigating the performance of 75 WP solar panels operated at two sites in South Africa (Upington in Northern Cape Province and Thlatlaganya in Limpopo Province), the performance of an optimized shaded SHS and a non-shaded one was also investigated. The results show that both geographic location and shading compromise the performance of the systems, the energy output of a solar panel located at Upington is increased by 19% and the state of charge of the battery (SOC) increased by 6%, compared to the panel situated at Thlatlaganya village. Also the life span of the battery is increased by about one year. The SOC of the partially shaded SHS is reduced by 22% and loss of power to the load increased by 20%. The geographical location of the SHS concession areas in South Africa and lack of adherence to the manufacturer's installation specification affects the economics of SHS and the energy output vis-a-vis the sustainability of the program due to reduction in life cycle of the batteries. 

  • 10.
    Bach-Oller, Albert
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science.
    Fursujo, Erik
    RISE Bioeconomy, Drottning Kristinas väg 61, Stockholm, Sweden.
    Umeki, Kentaro
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science.
    Effect of potassium impregnation on the emission of tar and soot from biomass gasification2019In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 158, p. 619-624Article in journal (Refereed)
    Abstract [en]

    Entrained flow gasification of biomass has the potential to generate synthesis gas as a source of renewable chemicals, electricity, and heat. Nonetheless, formation of tar and soot is a major challenge for continuous operation due to the problems they cause at downstream of the gasifier. Our previous studies showed the addition of alkali in the fuel can bring significant suppression of such undesirable products.

    The present work investigated, in a drop tube furnace, the effect of potassium on tar and soot formation (as well as on its intermediates) for three different types of fuels: an ash lean stemwood, a calcium rich bark and a silicon rich straw. The study focused on an optimal method for impregnating the biomass with potassium. Experiments were conducted for different impregnation methods; wet impregnation, spray impregnation, and solid mixing to investigate different levels of contact between the fuel and the potassium.

    Potassium was shown to catalyze both homogenous and heterogeneous reactions. Wet and spray impregnation had similar effects on heterogeneous reactions (in char conversion) indicating that there was an efficient molecular contact between the potassium and the organic matrix even if potassium was in the form of precipitated salts at a micrometer scale. On the other hand, potassium in the gas phase led to much lower yields of C2 hydrocarbons, heavy tars and soot. These results revealed that potassium shifted the pathways related to tar and soot formation, reducing the likelihood of carbon to end up as soot and heavy tars by favouring the formation of lighter compounds such as benzene. A moderate interaction between the added potassium and the inherent ash forming elements were also observed: Potassium had a smaller effect when the fuel was naturally rich in silicon.

    The combined results open the door to a gasification process that incorporates recirculation of naturally occurring potassium to improve entrained flow gasification of biomass.

  • 11.
    Bai, Q.
    et al.
    School of Human Settlements and Civil Engineering, Xi'An Jiaotong University, Xi'an, China.
    Guo, Z.
    School of Human Settlements and Civil Engineering, Xi'An Jiaotong University, Xi'an, China.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yang, Xiaohu
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Jin, L.
    School of Human Settlements and Civil Engineering, Xi'An Jiaotong University, Xi'an, China.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Royal Institute of Technology (KTH), Stockholm, Sweden.
    Experimental investigation on the solidification behavior of phase change materials in open-cell metal foams2017In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 142, p. 3703-3708Article in journal (Refereed)
    Abstract [en]

    This study presented an experimental investigation on solidification behavior of fluid saturated in highly porous open-cell copper foams. Particular attention has been made on the effect of pore parameters (pore density and porosity) on the solidification behavior. A purposely-designed apparatus was built for experimental observations. Results showed that the copper foam had a great effect on solidification and the full solidification time can be saved up to 50%, especially preventing the decrease in solidification rate during the later stage of phase change. The smaller the porosity is, the faster the solidification rate will be. Pore density was found to have little influence upon the solidification rate. In addition, the local natural convection does exist but it has a slight effect on solidification, leading to the slant of the solid-liquid interface. 

  • 12.
    Basirat, Farzad
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, LUVAL.
    Niemi, Auli
    Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, LUVAL.
    Perroud, Herve
    Universit´e de Montpellier.
    Lofi, Johanna
    Universit´e de Montpellier.
    Denchik, Nataliya
    Universit´e de Montpellier.
    Lods, Gerard
    Universit´e de Montpellier.
    Pezard, Philippe
    Universit´e de Montpellier.
    Fagerlund, Fritjof
    Sharma, Prabhakar
    Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, LUVAL.
    Modeling Gas Transport in the Shallow Subsurface in Maguelone Field Experiment2013In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, p. 337-345Article in journal (Refereed)
    Abstract [en]

    In this paper, TOUGH2/EOS7CA model is used to simulate the shallow injection-monitoring experiment carried outat Maguelone, France, during 2012 and 2013. The ultimate objective of the work is to improve our understanding ofgas transport in the shallow subsurface as well as to develop and validate the model to monitor it. This workrepresents first results towards modelling the nitrogen and CO2 injection experiments carried out. The pressure datafrom the first injection experiments in summer 2012 is used as basis for comparison. Work is presently going on toincorporate the experimental data into the numerical simulation further.

  • 13. Behrens, H.
    et al.
    Ghergut, J.
    Bensabat, J.
    Niemi, A.
    Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, LUVAL.
    Sauter, M.
    Merging single-well and inter-well tracer testsinto one forced gradient dipole test, at the Heletz site within the MUSTANG project.2014In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102Article in journal (Refereed)
  • 14.
    Benavente-Araoz, F.
    et al.
    KTH Royal Institute of Technology, Stockholm, Sweden.
    Lundblad, A.
    KTH Royal Institute of Technology, Stockholm, Sweden.
    Campana, Pietro Elia
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Zhang, Y.
    KTH Royal Institute of Technology, Stockholm, Sweden.
    Cabrera, S.
    UMSA Universidad Mayor de San Andrés, Bolivia.
    Lindbergh, G.
    KTH Royal Institute of Technology, Stockholm, Sweden.
    Loss-of-load probability analysis for optimization of small off-grid PV-battery systems in Bolivia2017In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 142, p. 3715-3720Article in journal (Refereed)
    Abstract [en]

    This study evaluates the use of energy storage technologies coupled to renewable energy sources in rural electrification as a way to address the energy access challenge. Characteristic energy demanding applications will differently affect the operating conditions for off-grid renewable energy systems. This paper discusses and evaluates simulated photovoltaic power output and battery state of charge profiles, using estimated climate data and electricity load profiles for the Altiplanic highland location of Patacamaya in Bolivia to determine the loss of load probability as optimization parameter. Simulations are performed for three rural applications: household, school, and health center. Increase in battery size prevents risk of electricity blackouts while increasing the energy reliability of the system. Moreover, increase of PV module size leads to energy excess conditions for the system reducing its efficiency. The results obtained here are important for the application of off-grid PV-battery systems design in rural electrification projects, as an efficient and reliable source of electricity.

  • 15.
    Bhutani, Naveen
    et al.
    ABB Corporate Research Center, Bangalore, India .
    Lindberg, Carl-Fredrik
    ABB AB Corporate Research, Sweden .
    Starr, Kevin
    ABB Process Automation Services, United States.
    Horton, Robert
    ABB Process Automation Services, United States.
    Energy assessment of Paper Machines2012In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 14, p. 955-963Article in journal (Refereed)
    Abstract [en]

    There is a large value in making Pulp and Paper mills more energy efficient. ABB has developed an energy assessment service where opportunities to save energy in the paper machine are identified. The energy assessment is done by quantifying energy flows, benchmarking energy users, data mining and steam sensitivity analysis and by experiments and additional measurements at the paper machine. Energy quantification helped in identifying main energy consumer, benchmarking was useful to assess the gap between operating performance and best performance whereas data mining and steam sensitivity analysis helped in studying the impact of key operating variables on performance of paper machines. After the assessment an action plan was presented to the mill for energy efficiency improvement together with a return on investment.

  • 16.
    Blackman, Corey
    et al.
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Bales, Chris
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Thorin, Eva
    Techno-economic evaluation of solar-assisted heating and cooling systems with sorption module integrated solar collectors2015In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 70, p. 409-417Article in journal (Refereed)
    Abstract [en]

    Currently the use of solar energy for heating and cooling isn't widespread. In order to reduce primary energy consumption in the built environment along with improving the thermal performance of the current building stock, retrofit solutions are required to utilise renewable energy. Using solar energy to reduce primary energy consumption is seen as a possible solution. With the precipitous fall in the prices of crystalline solar photovoltaic modules, utilising this technology to reduce electrical energy consumption for cooling is an attractive solution. Recently, a sorption module integrated collector has been developed in order to improve cost-effectiveness and simplify solar thermal heating and cooling systems. A techno-economic analysis has been performed to evaluate solar photovoltaic cooling and solar thermal cooling systems for residential renewable energy retrofit. The analysis is based on potential energy and cost savings according to simulated heating and cooling loads under climatic conditions of Madrid, Spain. Simplified models were used to determine heating and cooling demands and the solar energy contribution to heating and cooling loads. Additionally, given the sorption collector's unique capacity to store solar energy thermally and provide cooling at night an analysis has been carried out to identify the combined benefit of solar-assisted heating and cooling via photovoltaics during the day and solar sorption at night. For system sizes between 5m(2) and 20m(2) solar fractions between 16% and 64% could be achieved which translated to annual energy cost savings between (sic)153 to (sic)615. (C) 2015 The Authors. Published by Elsevier Ltd.

  • 17.
    Bonner, Richard F.
    et al.
    Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics.
    Mamchych, Tetyana I.
    RFB Consulting, Sweden.
    Classifying Households by the (Sobolev) Norms of their Electricity Consumption2014In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 61, p. 1870-1873Article in journal (Refereed)
    Abstract [en]

    Numerical time series, but especially periodic such, are characterized up to pertinent symmetries by families of norms. The electricity consumption by a household, recorded daily during a month’s time, say, may then be encoded in a sequence of numbers; for example, as follows: the mean daily consumption, the mean daily variation of the consumption, the variation of the variation, the variation of the variation of the variation, etc. Now, replacing each of these numbers by the digits 0, 1, or 2, to say that a number is “low”, “medium”, or “high”, in relation to a collection of households, one naturally partitions the collection by the strings of these three digits; the household labeled 102   has then medium daily consumption, low daily variation, but high variation of variation, etc. We generally discuss this innocent idea and examine it in three ways: by way of toy examples, through its mathematical model (in detail presented elsewhere) and by accordingly classifying some actual electricity consumption data.

  • 18.
    Boulfrad, Yacine
    et al.
    Aalto University.
    Lindroos, Jeanette
    Aalto University.
    Inglese, Alessandro
    Aalto University.
    Yli-Koski, Marko
    Aalto University.
    Savin, Hele
    Aalto University.
    Reduction of Light-induced Degradation of Boron-doped Solar-grade Czochralski Silicon by Corona Charging2013In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 38, p. 531-535Article in journal (Refereed)
    Abstract [en]

    Abstract This study aims at the reduction of light-induced degradation of boron-doped solar-grade Czochralski silicon wafers by corona charging. The method consists of deposition of negative charges on both surface sides of wafer and keeping the wafer in dark for 24 hours to allow the diffusion of positively-charged interstitial copper towards the surfaces. This method proves to be useful to reduce or eliminate light-induced degradation caused by copper. The degradation was significantly reduced in both intentionally (copper-contaminated) and “clean” samples. The amount of the negative charge was found to be proportional to the reduction strength

    Download full text (pdf)
    fulltext
  • 19. Brown, S.
    et al.
    Martynov, S.
    Mahgerefteh, H.
    Fairweather, M.
    Woolley, R.M
    Wareing, C.J.
    Falle, S.
    Rutters, H.
    Niemi, A.
    Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, LUVAL.
    Zhang, Y.C.
    Chen, S.
    Bensabat, J.
    Shah, N.
    CO2QUEST: Techno-economic Assessment of CO2 Quality Effect on Its Storage and Transport2014In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102Article in journal (Refereed)
  • 20.
    Budt, M.
    et al.
    Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT, Germany.
    Wolf, D.
    Heliocentris Industry GmbH, R and D Clean Energy Solutions, Germany.
    Span, R.
    Thermodynamics, Ruhr-University Bochum, Germany.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Compressed air energy storage - An option for medium to large scale electricalenergy storage2016In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 88, p. 698-702Article in journal (Refereed)
    Abstract [en]

    This contribution presents the theoretical background of compressed air energy storage, examples for large scale application of this technology, chances and obstacles for its future development, and areas of research aiming at the development of commercially viable plants in the medium to large scale range.

  • 21.
    Bulut, Mehmet Börühan
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Wallin, Fredrik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Buildings as components of smart grids - Perspectives of different stakeholders2014In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 61, p. 1630-1633Article in journal (Refereed)
    Abstract [en]

    This paper provides the perceptions of the energy and buildings sectors, municipalities and researchers in Sweden about active buildings that provide smart grid services to their inhabitants. As part of this study, we conducted 23 semi-structured interviews with key stakeholders to present the perspectives of stakeholders that are involved in the development process. Our study shows that there are several barriers to development of active buildings and points out the importance of energy policy mechanisms to support the development. It is necessary to introduce new measures in order to financially encourage the stakeholders and motivate the end-users to invest in smart grid technologies. The elimination of the intersectoral barriers and the promotion of cooperation amongst stakeholders could pave the way for a more efficient and smarter grid.

  • 22.
    Calikus, Ece
    et al.
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research.
    Nowaczyk, Sławomir
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research.
    Pinheiro Sant'Anna, Anita
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research.
    Byttner, Stefan
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research.
    Ranking Abnormal Substations by Power Signature Dispersion2018In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 149, p. 345-353Article in journal (Refereed)
    Abstract [en]

    The relation between heat demand and outdoor temperature (heat power signature) is a typical feature used to diagnose abnormal heat demand. Prior work is mainly based on setting thresholds, either statistically or manually, in order to identify outliers in the power signature. However, setting the correct threshold is a difficult task since heat demand is unique for each building. Too loose thresholds may allow outliers to go unspotted, while too tight thresholds can cause too many false alarms.

    Moreover, just the number of outliers does not reflect the dispersion level in the power signature. However, high dispersion is often caused by fault or configuration problems and should be considered while modeling abnormal heat demand.

    In this work, we present a novel method for ranking substations by measuring both dispersion and outliers in the power signature. We use robust regression to estimate a linear regression model. Observations that fall outside of the threshold in this model are considered outliers. Dispersion is measured using coefficient of determination R2 which is a statistical measure of how close the data are to the fitted regression line.

    Our method first produces two different lists by ranking substations using number of outliers and dispersion separately. Then, we merge the two lists into one using the Borda Count method. Substations appearing on the top of the list should indicate higher abnormality in heat demand compared to the ones on the bottom. We have applied our model on data from substations connected to two district heating networks in the south of Sweden. Three different approaches i.e. outlier-based, dispersion-based and aggregated methods are compared against the rankings based on return temperatures. The results show that our method significantly outperforms the state-of-the-art outlier-based method. © 2018 The Authors. Published by Elsevier Ltd.

    Download full text (pdf)
    fulltext
  • 23.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Leduc, S.
    IIASA, Laxenburg, Austria.
    Kim, M
    Korea Univ., Seul, Korea.
    Liu, J.
    Beijing Forestry Univ, Peoples R China.
    Kraxner, F.
    IIASA, Laxenburg, Austria.
    McCallum, I.
    IIASA, Laxenburg, Austria.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH Royal Inst Technol, Stockholm.
    Optimal grassland locations for sustainable photovoltaic water pumping systems in China2015In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 75, p. 301-307Article in journal (Refereed)
    Abstract [en]

    Grassland is of strategic importance for food security of China because of the high number of livestock raised in those areas. Grassland degradation due to climate change and overgrazing is thus regarded as severe environmental and economic threat for a sustainable future development of China. Photovoltaic water pumping (PVWP) systems for irrigation can play an important role for the conservation of grassland areas, halting degradation, improving its productivity and farmers' income and living conditions. The aim of this paper is to identify the technically suitable grassland areas for the implementation of PVWP systems by assessing spatial data on land cover and slope, precipitation, potential evapotranspiration and water stress index. Furthermore, the optimal locations for installing PVWP systems have been assessed using a spatially explicit renewable energy systems optimization model based on the minimization of the cost of the whole supply chain. The results indicate that the PVWP-supported grassland areas show high potential in terms of improving forage productivity to contribute to supplying the local demand. Nevertheless, the optimal areas are highly sensitive to several environmental and economic parameters such as ground water depth, forage water requirements, forage price and CO2 emission costs. These parameters need to be carefully considered in the planning process to meet the forage yield potentials.

  • 24.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Quan, S. J.
    Georgia Institute of Technology, USA.
    Robbio, F. I.
    ABB AB, Västerås, Sweden.
    Lundblad, Anders
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH Royal Institute of Technology, Sweden.
    Zhang, Y.
    KTH Royal Institute of Technology, Sweden.
    Ma, T.
    KTH Royal Institute of Technology, Sweden.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH Royal Institute of Technology, Sweden.
    Spatial optimization of residential urban district - Energy and water perspectives2016In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 88, p. 38-43Article in journal (Refereed)
    Abstract [en]

    Many cities around the world have reached a critical situation when it comes to energy and water supply, threatening the urban sustainable development. The aim of this paper is to develop a spatial optimization model for the planning of residential urban districts with special consideration of renewables and water harvesting integration. In particular, the paper analyses the optimal configuration of built environment area, PV area, wind turbines number and relative occupation area, battery and water harvester storage capacities, as a function of electricity and water prices. The optimization model is multi-objective which uses a genetic algorithm to minimize the system life cycle costs, and maximize renewables and water harvesting reliability. The developed model can be used for spatial optimization design of new urban districts. It can also be employed for analyzing the performances of existing urban districts under an energy-water-economic viewpoint. Assuming a built environment area equal to 75% of the total available area, the results show that the reliability of the renewables and water harvesting system cannot exceed the 6475 and 2500 hours/year, respectively. The life cycle costs of integrating renewables and water harvesting into residential districts are mainly sensitive to the battery system specific costs since most of the highest renewables reliabilities are guaranteed through the energy storage system.

  • 25.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yang, Z.
    KTH Royal Institute of Technology, Sweden.
    Anders, Lundblad
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH Royal Institute of Technology, Sweden.
    An Open-source Platform for Simulation and Optimization of Clean Energy Technologies2017In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 105, p. 946-952Article in journal (Refereed)
    Abstract [en]

    This paper is to describe an open-source code for optimization of clean energy technologies. The model covers the whole chain of energy systems including mainly 6 areas: renewable energies, clean energy conversion technologies, mitigation technologies, intelligent energy uses, energy storage, and sustainability. Originally developed for optimization of renewable water pumping systems for irrigation, the open-source model is written in Matlab® and performs simulation, optimization, and design of hybrid power systems for off-grid and on-grid applications. The model uses genetic algorithm (GA) as optimization technique to find the best mix among power sources, storage systems, and back-up sources to minimize life cycle cost, and renewable power system reliability. 

  • 26.
    Campana, Pietro Elia
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Zhu, Y.
    Chengdu University, China.
    Brugiati, Elena
    Università Degli Studi di Perugia, Italy.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    PV water pumping for irrigation equipped with a novel control system for water savings2014In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 61, p. 949-952Article in journal (Refereed)
    Abstract [en]

    Typically, PV water pumping (PVWP) systems for irrigation are normally designed based on the worst conditions, such as high water demand and low solar irradiation. Therefore, the installed PVWP systems become oversized in most of time. Since the conventional control systems don't optimize the water supply, the water losses are increased. To remedy the problems related to the operation of the oversized systems, a novel control system is proposed. The control unit interacts between water demand and water supply in order to pump only the amount required by crops. Moreover, the novel control system substitutes the conventional protection approach with a method based on the ground water resources availability and response. The novel control system represents an innovative solution for water savings in PV watering applications.

  • 27.
    Campillo, Javier
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Dahlquist, Erik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Vassileva, Iana
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Technology capacity assessment tool for developing city action plans to increase efficiency in mid-sized cities in Europe2016In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 88, p. 16-22Article in journal (Refereed)
    Abstract [en]

    Transition towards energy efficient cities requires an effective upgrade of all the different areas of urban energy production, distribution and use. The paper presents a method for collecting the information required for analysing the technical variation of strengths and weaknesses in infrastructure capabilities in European medium-sized cities, as well as to help identify best practices and tools for enhancing the energy performance of city energy systems.

  • 28.
    Castro Flores, José Fiacro
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology. École des Mines de Nantes - EMN, Energy Systems and Environment - DSEE.
    Lacarrière, Bruno
    École des Mines de Nantes - EMN, Energy Systems and Environment - DSEE.
    Chiu, NingWei Justin
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
    Martin, Viktoria
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Assessing the techno-economic impact of low-temperature subnets in conventional district heating networks2017In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 116, no C, p. 260-272Article in journal (Refereed)
    Abstract [en]

    The 4th generation Low-Temperature District Heating (LTDH) is envisioned as a more efficient and environmentally friendly solution to provide heating services to the building stock. Specifically, in countries already with a large share of well-established DH systems, conventional DH and LTDH technologies will be operating simultaneously in the near future. Newly built or refurbished buildings have lower heat demands, which in combination with LTDH brings potential savings compared to conventional DH. This work explores the advantages in DH operation by connecting these loads via LTDH subnets to a conventional DH system, supplied by a Combined Heat and Power (CHP) plant. A techno-economic analysis was performed, through modelling and simulation, by estimating the annual DH operating costs and revenues achieved by the reduction in return temperatures that LTDH would bring. The savings are related to: (1) the reduction in distribution heat losses in the return pipe; and (2) lower pumping power demand. Likewise, additional revenues are assessed from: (3) improved Power-to-Heat ratio for electricity production; and (4) enhanced heat recovery through Flue Gas Condensation (FGC). The annual savings per kWh of delivered heat are estimated as a function of the penetration percentage of ‘energy efficient’ loads over the conventional DH network. Key outcomes show the trade-offs between the potential savings in operating costs and the reduction in heat demand: relative losses in this scenario are maintained at 13.1% compared to 15.3% expected with conventional DH; and relative pumping power demand decreased as well. In other words, the costs of supplying heat decrease, even though the total heat supplied is reduced.

  • 29. Chai, Jiale
    et al.
    Huang, Pei
    City University of Hong Kong.
    Sun, Yongjun
    Life-cycle analysis of nearly zero energy buildings under uncertainty and degradation impacts for performance improvements2019In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 158, p. 2762-2767Article in journal (Refereed)
    Abstract [en]

    Sizing the nZEB systems properly is crucial for nZEBs to achieve the desired performances. The energy demand prediction uncertainties and the components’ degradation are two major factors affecting the nZEB systems sizing. The energy demand prediction has been studied by many researchers, but the impacts of degradation are still neglected in most studies. Neglecting degradation may lead to a system design that can perform as expected only in the beginning several years. This paper, therefore, proposes an uncertainty-based life-cycle performance analysis (LCPA) method to study the impacts of degradation on the nZEBs longitudinal performance. Based on the LCPA method, this study also proposes a two-stage method to enhance the nZEB system sizing. The study can enhance the designers’ understanding of the components’ degradation impacts. Case studies show that an nZEB might not achieve zero energy targets after years due to degradation. The proposed two-stage design method can effectively mitigate this problem.

    Download full text (pdf)
    fulltext
  • 30.
    Chen, Jingjing
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science. State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University.
    Ji, Xiaoyan
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science.
    Lu, Xiaohua
    Key Laboratory of Material and Chemical Engineering, Nanjing Tech University, Nanjing .
    Wang, Changsong
    State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, Nanjing .
    Mechanism Study of Heat Transfer Enhancement Using Twisted Hexagonal Tube with Slurry from Biogas Plant2017In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 142, p. 880-885Article in journal (Refereed)
    Abstract [en]

    Waste-heat recovery from discharged slurries is important to improve the biogas production efficiency but still remains challenge duo to the special properties of slurries in anaerobic digestion process. In this work, numerical study was carried out to investigate the flow field, and heat transfer performance of slurry from biogas plant in the twisted hexagonal and other twisted tubes was simulated with computer fluid dynamic (CFD) for the first time. The numerical method was validated with experimental data from the literature. The heat transfer performance and flow resistance of twisted hexagon tube were calculated and compared with other types of twisted tubes. The enhancement factor of the twisted hexagonal tube reached to 2 and kept optimum at turbulence flow region compared to the twisted tubes with square and elliptical cross section. Meanwhile, the mechanism of heat transfer enhancement with different twisted tubes was further studied, and the optimal field synergy and minimum local circulation flow near the wall are the main reasons for the high performance and low flow resistance of the twisted hexagonal tube.

  • 31.
    Chen, Jingjing
    et al.
    State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, Nanjing.
    Ma, Chunyan
    State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, Nanjing.
    Ji, Xiaoyan
    Lu, Xiaohua
    Key Laboratory of Material and Chemical Engineering, Nanjing Tech University, Nanjing .
    Wang, Changsong
    State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, Nanjing .
    Mechanism Study of Waste Heat Recovery from Slurry by Surface Scraped Heat Exchanger2017In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 105, p. 1109-1115Article in journal (Refereed)
    Abstract [en]

    Waste-heat recovery from discharged slurries can improve the net raw biogas production in bio-methane process in order to meet the demand of a new generation of anaerobic digestion. In order to achieve a high efficient waste-heat recovery, in this work, a mathematical model of waste-heat recovery process with surface scraped heat exchanger (SSHE) was proposed with the consideration of the shear rate and temperature-dependent rheological behaviour. The convective heat transfer performance of SSHE was calculated numerically where slurry was considered. The contribution of waste heat recovery from the slurry to biogas production by SSHE and general shell-and-tube heat exchanger (STHE) were firstly calculated quantitatively, and the increase of net raw biogas production could be over 13.5% by SSHE with need of heat exchange area less than a quarter of STHE's, which showed a great potential to increase the net raw biogas production in bio-methane process with low equipment investments and more compactible structure.

  • 32.
    Chen, S.
    et al.
    Academy of Chinese Energy Strategy, China University of Petroleum-Beijing, Changping, Beijing, China.
    Li, M.
    Academy of Chinese Energy Strategy, China University of Petroleum-Beijing, Changping, Beijing, China.
    Zhang, Q.
    Academy of Chinese Energy Strategy, China University of Petroleum-Beijing, Changping, Beijing, China.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Study on the Oil Import/Export Quota Allocation Mechanism in China by Using a Dynamic Game-Theoretic Model2017In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 105, p. 3856-3861Article in journal (Refereed)
    Abstract [en]

    With the rapid progress of oil market reform in China, independent refineries (small companies) get more and more oil import/export quotas, which will bring big impacts on the whole market and society. However, whether the impacts are positive or negative is highly dependent on the quota allocation mechanism and prices in global/domestic market markets. Therefore, in the present study, considering the game relationships among the six agents including state-owned companies, independent refineries, domestic and foreign oil product consumers, and domestic and foreign crude oil producers, in order to calculate the detailed impacts, a game-theoretic analysis model was developed. The impacts of different quota mechanism are analyzed and compared, and the optimal quota mechanism in different price scenarios is obtained based on the developed model. 

  • 33.
    Chen, Yifeng
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science. Key Laboratory of Material and Chemical Engineering, Nanjing Tech University, Nanjing, China.
    Ji, Xiaoyan
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science.
    Yang, Zhuhong
    Key Laboratory of Material and Chemical Engineering, Nanjing Tech University, Nanjing, China.
    Lu, Xiaohua
    Key Laboratory of Material and Chemical Engineering, Nanjing Tech University, Nanjing, China.
    Novel Solvent for CO2 Capture2019In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 158, p. 5124-5129Article in journal (Refereed)
    Abstract [en]

    To develop novel solvent for CO2 capture, CO2 absorption performance using the aqueous of polyethylene glycol 200 (PEG200) and choline-2-pyrrolidinecarboxylic acid ([Cho][Pro]) was studied and evaluated systematically in this work, in which the critical properties of PEG200 were estimated with group contribution method, and other thermo-physical properties were determined experimentally or taken from literatures directly and then correlated with empirical equations. The CO2 solubility in PEG200 was measured and represented with the Henry’s law and Poynting correction, while the measured CO2 solubility in PEG200/H2O was correlated with RK-NRTL model. [Cho][Pro] was used as the chemical ingredient to enhance the absorption capacity and rate of CO2 in [Cho][Pro]/PEG200/H2O, and the corresponding properties and CO2 solubility were studied. The kinetic parameters, such as enhancement factor (E), reaction rate constant (k), and activation energy (Ea) of CO2 in [Cho][Pro]/PEG200/H2O were estimated from the new experimental data measured in this work and compared with the commercialized aqueous MEA solution. The process simulation and pilot-testing based on [Cho][Pro]/PEG200/H2O will be performed in the future.

  • 34.
    Dahl Schlanbusch, Reidun
    et al.
    SINTEF, Norway.
    Mamo Fufa, Selamawit
    SINTEF, Norway.
    Häkkinen, Tarja
    VTT Technical Research Centre of Finland, Finland.
    Vares, Sirje
    VTT Technical Research Centre of Finland, Finland.
    Birgisdottir, Harpa
    Aalborg University, Denmark.
    Ylmér, Peter
    RISE, SP – Sveriges Tekniska Forskningsinstitut.
    Experiences with LCA in the Nordic Building Industry – Challenges, Needs and Solutions2016In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 96, p. 82-93Article in journal (Refereed)
    Abstract [en]

    “NORNET - Innovative use of LCA in the development of sustainable building and refurbishment strategies” is a Nordic network aiming at extended and improved use of LCA in the Nordic building sector. The NORNET LCA network has studied the challenges and needs of the Nordic building industry in the development in Building Life Cycle Assessment (LCA). The study applied a semi-structured interview technique with 57 interviewees from the Danish, Finnish, Norwegian and Swedish building sector. The study was conducted using a combination of in-depth phone interviews, email interviews and an online multiple-choice questionnaire. The interviewees represented different stakeholders in the Nordic building industry with varying knowledge of LCA, including building product manufacturers, entrepreneurs, building owners, architects, consultants, organizations and research institutes. The interviewees emphasized the need for a better understanding of the relative significance of different factors and building parts and the need to refine and harmonize the existing building LCA tools and databases. The results from this study provides valuable insight in how the Nordic Building Industry experiences the use of LCA. The results also raises awareness of the issues that are needed to be addressed in order for the industry to accelerate and expand the application of LCA in the near future.

    Download full text (pdf)
    fulltext
  • 35.
    Dahlquist, Erik
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Naqvi, Muhammad
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Thorin, Eva
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Kyprianidis, Konstantinos
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Comparison of Gas Quality from Black Liquor and Wood Pellet Gasification Using Modelica Simulation and Pilot Plant Results2017In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 105, p. 992-998Article in journal (Refereed)
    Abstract [en]

    There is a potential to integrate biomass gasification with pulp & paper and CHP plants in order to complement the existing systems with production of chemicals, such as methane, hydrogen, and methanol etc. To perform system analysis of such integration, it is important to gain knowledge of relevant input data on expected synthesis gas composition by gasifying different types of feed stock. In this paper, the synthesis gas quality from wood pellets gasification (WPG) has been compared with black liquor gasification (BLG) through modeling and experimental results at pilot scale. In addition, the study develops regression models like Partial Least Squares (PLS) made from the experimental data. The regression models are then combined with dynamic models developed in Modelica for the investigation of dynamic energy and material balances for integrated plants. The data presented in this study could be used as input to relevant analysis using e.g. ASPEN plus and similar system analysis tools. 

  • 36.
    Danielski, Itai
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Ecotechnology and Sustainable Building Engineering.
    Fröling, Morgan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Ecotechnology and Sustainable Building Engineering.
    Diagnosis of buildings' thermal performance - a quantitative method using thermography under non-steady state heat flow2015In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 83, p. 320-329Article in journal (Refereed)
    Abstract [en]

    This study describes a quantitative method using thermography to measure the thermal performance of complete building envelope elements that are subjected to non-steady state heat flow. The method presumes that thermal properties of external walls, like conductivity, could still be obtained by a linear regression over values of independent measurements. And therefore could be used during fluctuating indoor and outdoor thermal conditions. The method is divided into two parts. First, the convection heat transfer coefficient is measured by heat flux meters (HFM) and thermography. And then, the overall heat transfer coefficient of a complete building element is measured by thermography to include all non-uniformities.

    In this study the thermal performance of a 140 mm thick laminated timber wall was measured. The wall was subjected to the outdoor weather conditions in Östersund, Sweden during January and February. The measurement values were found to have a large disparity as expected due to the rapid change in weather conditions. But still a linear regression with low confidence interval was obtained. The thermography results from a small uniform wall segment were validated with HFM measurements and 4% difference was found, which suggest that the two methods could be equally effective. Yet, thermography has the advantage of measuring surface temperature over large area of building element. The overall heat transfer coefficient of a large wall area was found to be 11% higher in comparison to the HFM measurements. This indicates that thermography could provide a more representative result as it captures areas of imperfections, point and linear thermal bridges.

    Download full text (pdf)
    Diagnosis of buildings’ thermal performance
  • 37.
    Danish, Muhammad
    et al.
    E China Univ Sci & Technol, Peoples R China.
    Naqvi, Muhammad
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Farooq, Usman
    Gujarat Univ, Gujrat, Pakistan.
    Naqvi, Salman
    Univ Teknol PETRONAS, Univ Teknol PETRONAS, Malaysia.
    Characterization of South Asian agricultural residues for potential utilization in future 'energy mix'2015In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 75, p. 2974-2980Article in journal (Refereed)
    Abstract [en]

    This paper characterizes various locally available agricultural residues in South Asian region to evaluate their potential as feedstock for renewable energy production and contributing toward solving energy crisis and environmental issues. The thermo-chemical characterization has been performed in order to determine if the residues have potential to be used in biomass conversion technologies producing combined heat and power. The characterization methods for comparing different agricultural residues include proximate and ultimate analysis, heating value, ash content, thermo gravimetric analysis (TGA) and structural composition analysis (SCA). Widely available agricultural wastes in South Asian region were selected for the characterization i.e. bagasse, almond shell, corn cob, cotton stalks, wheat straw, sawdust, corn leaf, rice husk, rice straw, and corn straw. The analysis showed that the corn cob had the highest moisture content that will result in low energy efficiency of the thermal conversion technology due to energy requirement for drying. Whereas almond shell had the lowest moisture content. Ash and volatile contents were found to be highest in rice straw and almond shell respectively. The thermo gravimetric analysis showed that most of the agricultural residues can be easily decomposed and represent potential feedstock for biomass flexible combined heat and power systems through pyrolysis or gasification. (C) 2015 Published by Elsevier Ltd.

  • 38.
    Daraei, Mahsa
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Thorin, Eva
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Avelin, Anders
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Dotzauer, Erik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Evaluation of potential fossil fuel free energy system: Scenarios for optimization of a regional integrated system2017In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 142, p. 964-970Article in journal (Refereed)
    Abstract [en]

    Population growth and urbanization have led to increases in energy demand and consequently, greenhouse gas emissions. Therefore, the availability of the fossil fuel as the main source of energy supply has been changed. Utilization of renewable resources including solar, wind, and hydropower together with distributed energy systems could eliminate the dependency on fossil fuel energy sources. In this paper, energy use and supply trends have been studied for the Counties of Västmanland and Södermanland in Sweden in order to develop a scenario for the regional energy system in 2030. The aim is to use the scenario for evaluation of the impacts of regional renewable energy resources on the production planning of CHP plants. The scenario shows that there is not enough potential for electricity production from renewable resources such as solar, wind, and hydropower to fulfill the estimated demand in 2030. Around 75% of electricity needs in Västmanland and 89% of power demands in Södermanland need to be met by imported electricity to these regions. Efficiency improvements and a more complex energy system integrating also with other energy resources like biomass, waste and industrial waste heat are necessary to develop a sustainable energy system.

  • 39.
    Davidsson, H.
    et al.
    Lund University, Sweden.
    Bernardo, R.
    Lund University, Sweden.
    Gomes, J.
    Solarus AB, Älvkarleby, Sweden.
    Gentile, N.
    Lund University, Sweden.
    Gruffmanc, C.
    ÅF AB, Gävle, Sweden .
    Chea, L.
    Universidade Eduardo Mondlane, Maputo, Mozambique .
    Karlsson, Björn
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Construction of laboratories for solar energy research in developing countries2014In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 57, p. 982-988Article in journal (Refereed)
    Abstract [en]

    A large number of photovoltaic systems have been installed in developing countries around the world during numerous projects. The goal is often to improve the quality of life in rural areas often lacking electricity. Many of these installations provide important services such as lighting and charging of various devices. However, when the projects are finished, there is a large risk that maintenance is not carried out properly and that malfunctions are never repaired. This situation can leave an otherwise well- functioning system unusable. A key problem is that there are not enough trained technicians that can maintain and repair the system locally. One reason for this is the lack of practical education in many developing countries. Furthermore, the availability of spare parts is essential for long term effectiveness. During 2011 a group of researchers from Lund University in Sweden built a small scale laboratory in Maputo, Mozambique, with local researchers. The project was successful and today the laboratory functions both as a teaching facility and as a measurement station for solar energy research for licentiates, masters and Ph.D. students. The main goal now is to widen the project in order to incorporate more universities in developing countries. We are now looking for new interested partners in developing countries who believe that such a laboratory could strengthen their ability to teach practical work and to perform research at a local university. Partners for planning and executing the project are also needed.

  • 40. Davidsson, Henrik
    et al.
    Bernardo, Ricardo
    Gomes, João
    Solarus AB.
    Gentile, Niko
    Gruffman, Christian
    Chea, Luis
    Karlsson, Björn
    Mälardalens högskola.
    Construction of laboratories for solar energy research in developing countries2014In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 57, p. 982-988Article in journal (Refereed)
    Abstract [en]

    A large number of PV-systems have been installed in developing countries around the world duringnumerous projects. The aim is often to improve the quality of life in rural areas, often lacking electricity.Many of these installations provide important services such as lighting and charging of different devices.However, when the projects are finished, there is a large risk that maintenance is not carried out properlyand that malfunctions are never repaired. This situation can leave an otherwise well functioning systemunusable. A key problem is that there are not enough trained technicians that can maintain and repair thesystem locally. One reason to this is the lack of practical education in many developing countries.Furthermore, the availability of spare parts is essential for the long term effectiveness.During 2011 a group of researchers from Lund University in Sweden built a small scale laboratory inMaputo, Mozambique, together with local researchers. The project was successful and today thelaboratory functions both as a teaching facility and as a measurement station for solar energy research forlicentiates, masters and PhD students.The main goal is now to widen the project in order to incorporate more universities in developingcountries. We are now looking for new interested partners in developing countries that believe that such alaboratory could strengthen their possibility to teach practical work and to perform research at the localuniversity. Partners for planning and executing the project are also needed.

    Download full text (pdf)
    fulltext
  • 41.
    Dibdiakova, Janka
    et al.
    Norwegian Institute of Bioeconomy Research, Ås, Norway..
    Liang, Wang
    Sintef Energy Research, , Norway.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Heating Value and Ash Content of Downy Birch Forest Biomass2017In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 105, p. 1302-1308Article in journal (Refereed)
    Abstract [en]

    Biomass from forestry sector provides an important contribution to meet the government's targets for increasing bioenergy production and utilization. Characterization of forest residues is critical for exploiting and utilizing them for energy production purpose. In present work, stem wood, stem bark, branches, top of trees from downy birch forest were sampled from different sites in South Norway and subjected to heating value and ash content measurement. Properties of different parts of trees vertically along the tree trunk and radially along the branch and crown level were assessed via the statistical model. The heating value of stem wood was in range 18.14-18.57 MJ/kg, of stem bark 18.50-18.72 MJ/kg and of branch wood 18.21-18.50 MJ/kg. The vertical dependence of heating value of downy birch stem wood was similar to that of stem bark. Regular decreasing of heating value towards the tree top was observed. Significantly higher heating value at level p<0.05∗of stem bark than the one of stem wood was observed. The ash content of downy birch branch wood did vary axially along the branch whereas there are only slight differences of ash content of branch within the crown. The stem bark has the highest ash content in range 2.0-2.5%, followed by branch wood in range of 1.0-1.6% and the lowest for stem wood in range of 0.3-0.5%.

    Download full text (pdf)
    fulltext
  • 42.
    Dibdiakova, Janka
    et al.
    Norwegian Forest & Landscape Inst, Norway.
    Wang, Liang
    Sintef Energy Res, Trondheim, Norway.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Characterization of ashes from Pinus Sylvestris forest biomass2015In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 75, p. 186-191Article in journal (Refereed)
    Abstract [en]

    Efficient and profitable biomass combustion is often limited by ash related operational problems. Knowledge of the ash melting and sintering is of important, in terms of predict and reduce ash-related problems in biomass-fired boilers. In this study, chemical composition and melting behaviors of ashes from the four parts of P. sylvestris trees were investigated. The four parts from Pinus sylvestris trees are stem wood, bark, branch base and twigs. A simultaneous thermal analyzer (STA) was used to characterize the melting behavior of selected biomass fuels in oxidizing atmosphere. Ash melting process was identified as the distinctive endothermic peaks on recorded DSC curves. The results showed that the stem wood of pine contains higher contents of most of the ash forming matters than other tree parts. Chemical composition of ashes from four parts of the pine tree is dominated by element Ca, K, Mg, Mn, P and Si. The K, Na and P contents in the twigs are significantly higher than that of stem wood, bark, and branch base indicating high tendency of ash melting and slagging. STA experiments indicated that the melting process of the studied fuel ashes start in the temperature range of 930-965 degrees C. Scanning electron microscopy (SEM) equipped with an energy dispersive X-ray spectrometry (EDX). Analyses results showed that the stem wood ash remains loose structure even after 1000 degrees C sintering treatment. But the ashes originated from top branch show sign of sintering at 1000 degrees C. The obtained results of present work can be considered as useful information within an industry interest for a prediction of the forest biomass ash melting behavior. 

  • 43.
    Efstathiadis, T.
    et al.
    Aristotle Univ Thessaloniki, Greece.
    Kalfas, A. I.
    Aristotle Univ Thessaloniki, Greece.
    Seferlis, P.
    Aristotle Univ Thessaloniki, Greece.
    Kyprianidis, Konstantinos
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Rivarolo, M.
    Univ Genoa, Italy.
    Geometry Optimization of Power Production Turbine For A Low Enthalpy (<= 100 degrees C) ORC System2015In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 75, p. 1624-1630Article in journal (Refereed)
    Abstract [en]

    The present paper is examining the geometry optimization of a power production turbine, in the range of 100kW(el), for a low enthalpy Organic Rankine cycle system (<= 100 degrees C). In the last years, accelerated consumption of fossil fuels has caused many serious environmental problems such as global warming, ozone layer destruction and atmospheric pollution. It is this reason that a growing trend towards exploiting low-enthalpy content energy sources has commenced and led to a renewed interest in small-scale turbines for Organic Rankine Cycle applications. The design concept for such turbines can be quite different from either standard gas or steam turbine designs. The limited enthalpic content of many energy sources imposes the use of organic working media, with unusual properties for the turbine. A versatile cycle design and optimization requires the parameterization of the main turbine design. There are many potential applications of this power-generating turbine, including geothermal and concentrate solar thermal fields or waste heat of steam turbine exhausts. An integrated model of equations has been developed, thus creating a model to assess the performance of an organic cycle for various working fluids such as R134a and isobutane-isopentane mixture. The most appropriate working fluid has been chosen, taking its influence on both cycle efficiency and the specific volume ratio into consideration. This choice is of particular importance at turbine extreme operating conditions, which are strongly related to the turbine size. In order to assess the influence of various design parameters, a turbine design tool has been developed and applied to define the geometry of blades in a preliminary stage. Finally, as far as the working fluid is concerned, the mixture of 85% isopentane-15% isobutane has been chosen as the most suitable fluid for the low enthalpy ORC system, since its output net power is 10% higher compared to the output net power of R134a. 

  • 44.
    Elhami, Ehsan
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Geosciences and Environmental Engineering.
    Ask, Maria
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Geosciences and Environmental Engineering.
    Erlström, Mikael
    Geological Survey of Sweden.
    Mattsson, Hans
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Physical Properties of Core Samples from the Swedish Part of the Southern Baltic Sea: Implications for CO2 Storage2016In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 97, p. 356-363Article in journal (Refereed)
    Abstract [en]

    This paper presents the results from a series of physical measurements conducted on core samples from the Swedish part of the southern Baltic Sea. The samples consist of 16 Cambrian sandstone samples (potential reservoir rock) and 9 Ordovician limestone samples (potential caprock). The two rock types reveal contrasting properties; axial P-wave velocity and density for the sandstone samples are 3.14±0.95km/s and 2.26±0.12 gr/cm3, respectively while for the limestone samples they are 6.09±0.22km/s and 2.58±0.08 gr/cm3, respectively. The scatter of the evaluated properties indicates aleatory variability and epistemic uncertainty in the properties which can be better addressed by further tests on more samples.

    Download full text (pdf)
    fulltext
  • 45.
    Fagerlund, Fritjof
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, LUVAL.
    Niemi, Auli
    Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, LUVAL.
    Bensabat, Jacob
    Shtivelman, Vladimir
    Interwell field test to determine in-situ CO2 trapping in a deep saline aquifer: Modelling study of the effects of test design and geological parameters2013In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 40, p. 554-563Article in journal (Refereed)
    Abstract [en]

    An interwell field test to determine residual phase and dissolution trapping of CO2 is being designed at Heletz, Israel. Effects of test-design options and geological parameters were investigated using numerical modelling. It was found that the interwell distance has large influence on the feasibility of the test both in terms of creation of a zone of residually trapped CO2 and detection of the time when such zone has been created. The optimal distance is site-specific and depends on formation properties. Alternating CO2 and brine injections slightly increased residual trapping, but did not facilitate creation of a well-defined zone of trapping.

    Download full text (pdf)
    fulltext
  • 46. Freitas, Iuri
    et al.
    Zhang, Xingxing
    Dalarna University, School of Technology and Business Studies, Energy Technology.
    Green building rating systems in Swedish market: A comparative analysis between LEED, BREEAM SE, GreenBuilding and Miljöbyggnad2018In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 153, p. 402-407Article in journal (Refereed)
    Abstract [en]

    In Sweden, there are four most commonly used green building rating systems, which are LEED, BREEAM SE, GreenBuilding and Miljöbyggnad. In this study, each of them is analyzed under the aspects of certification process, implementation cost, educational needs and the variety of categories. SWOT method is further applied to extract the strengths, weaknesses, opportunities and threats of each of the rating system in a direct and indirect manner, making it clearer to choose among various options when considering the individual needs of each project in practice. 

    Download full text (pdf)
    fulltext
  • 47.
    Frost, Anna. E.
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Maher, Azaza
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Li, Hailong
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Wallin, Fredrik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Patterns and temporal resolution in commercial and industrial typical load profiles2017In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 105, p. 2684-2689Article in journal (Refereed)
    Download full text (pdf)
    fulltext
  • 48.
    Gao, X.
    et al.
    School of Human Settlements and Civil Engineering, Xi'An Jiaotong University, Xi'an, China.
    Wei, P.
    School of Human Settlements and Civil Engineering, Xi'An Jiaotong University, Xi'an, China.
    Xie, Y.
    School of Human Settlements and Civil Engineering, Xi'An Jiaotong University, Xi'an, China.
    Zhang, S.
    School of Human Settlements and Civil Engineering, Xi'An Jiaotong University, Xi'an, China.
    Niu, Z.
    School of Human Settlements and Civil Engineering, Xi'An Jiaotong University, Xi'an, China.
    Lou, Y.
    School of Human Settlements and Civil Engineering, Xi'An Jiaotong University, Xi'an, China.
    Yang, Xiaohu
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Royal Institute of Technology (KTH), Stockholm, Sweden; School of Human Settlements and Civil Engineering, Xi'An Jiaotong University, Xi'an, China.
    Jin, L.
    School of Human Settlements and Civil Engineering, Xi'An Jiaotong University, Xi'an, China.
    Yan, Jinyue
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Royal Institute of Technology (KTH), Stockholm, Sweden.
    Experimental investigation of the cubic thermal energy storage unit with coil tubes2017In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 142, p. 3709-3714Article in journal (Refereed)
    Abstract [en]

    This study presented experimental investigations on the thermal performance of a thermal energy storage (TES) unit with coil tubes. A designed test rig was built and the melting heat transfer characteristics (melting front and temperature distribution) inside the TES unit were examined. The effects of charging flow rate on the overall phase change process were examined. The results showed that natural convection accelerated the thermal energy transport in the melt phase in the top region, but weakened the heat transfer in the bottom region; this resulted in the unmelt PCM at the bottom. The melting heat transfer was overall enhanced by the increase in inlet flow rate, indicating that the full charging time can be shortened by a larger flow rate. 

  • 49.
    Ghaviha, Nima
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Bohlin, Markus
    SICS Swedish ICT, Sweden.
    Wallin, Fredrik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Dahlquist, Erik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Optimal Control of an EMU Using Dynamic Programming2015In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 75, p. 1913-1919Article in journal (Refereed)
    Abstract [en]

    A model is developed for minimizing the energy consumption of an electric multiple unit through optimized driving style, based on Hamilton-Jacobi-Bellman equation and Bellman's backward approach. Included are the speed limits, track profile (elevations), different driving modes and the train load. This paper includes aspects like the power loss in the auxiliary systems, time management, validation of the model regarding energy calculations and a study on discretization and the accuracy of the model. The model will be used as a base for a new driver advisory system. 

  • 50.
    Ghaviha, Nima
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Campillo, Javier
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Bohlin, Markus
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Dahlquist, Erik
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Review of Application of Energy Storage Devices in Railway Transportation2017In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 105, p. 4561-4568Article in journal (Refereed)
    Abstract [en]

    Regenerative braking is one of the main reasons behind the high levels of energy efficiency achieved in railway electric traction systems. During regenerative braking, the traction motor acts as a generator and restores part of the kinetic energy into electrical energy. To use this energy, it should be either fed back to the power grid or stored on an energy storage system for later use. This paper reviews the application of energy storage devices used in railway systems for increasing the effectiveness of regenerative brakes. Three main storage devices are reviewed in this paper: batteries, supercapacitors and flywheels. Furthermore, two main challenges in application of energy storage systems are briefly discussed. 

123456 1 - 50 of 256
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf