Change search
Refine search result
12 1 - 50 of 74
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Aitola, Kerttu
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Sveinbjörnsson, Kári
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Correa-Baena, Juan-Pablo
    Ecole Polytech Fed Lausanne, Lab Photomol Sci, EPFL SB ISIC LSPM, CH G1 523,Chemin Alamb,Stn 6, CH-1015 Lausanne, Switzerland..
    Kaskela, Antti
    Aalto Univ, Sch Sci, Dept Appl Phys, POB 15100, FI-00076 Aalto, Finland..
    Abate, Antonio
    Ecole Polytech Fed Lausanne, Lab Photon & Interfaces, Inst Chem Sci & Engn, EPFL SB ISIC LPI, CH G1 526,Stn 6, CH-1015 Lausanne, Switzerland..
    Tian, Ying
    Aalto Univ, Sch Sci, Dept Appl Phys, POB 15100, FI-00076 Aalto, Finland..
    Johansson, Erik M. J.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Graetzel, Michael
    Ecole Polytech Fed Lausanne, Lab Photon & Interfaces, Inst Chem Sci & Engn, EPFL SB ISIC LPI, CH G1 526,Stn 6, CH-1015 Lausanne, Switzerland..
    Kauppinen, Esko I.
    Aalto Univ, Sch Sci, Dept Appl Phys, POB 15100, FI-00076 Aalto, Finland..
    Hagfeldt, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry. Ecole Polytech Fed Lausanne, Lab Photomol Sci, EPFL SB ISIC LSPM, CH G1 523,Chemin Alamb,Stn 6, CH-1015 Lausanne, Switzerland..
    Boschloo, Gerrit
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Carbon nanotube-based hybrid hole-transporting material and selective contact for high efficiency perovskite solar cells2016In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 9, no 2, p. 461-466Article in journal (Refereed)
    Abstract [en]

    We demonstrate a high efficiency perovskite solar cell with a hybrid hole-transporting material-counter electrode based on a thin single-walled carbon nanotube (SWCNT) film and a drop-cast 2,2,7,-7-tetrakis(N, N-di-p-methoxyphenylamine)-9,90-spirobifluorene (Spiro-OMeTAD) hole-transporting material (HTM). The average efficiency of the solar cells was 13.6%, with the record cell yielding 15.5% efficiency. The efficiency of the reference solar cells with spin-coated Spiro-OMeTAD hole-transportingmaterials (HTMs) and an evaporated gold counter electrode was 17.7% (record 18.8%), that of the cells with only a SWCNT counter electrode (CE) without additional HTM was 9.1% (record 11%) and that of the cells with gold deposited directly on the perovskite layer was 5% (record 6.3%). Our results show that it is possible to manufacture high efficiency perovskite solar cells with thin film (thickness less than 1 mu m) completely carbon-based HTMCEs using industrially upscalable manufacturing methods, such as press-transferred CEs and drop-cast HTMs.

  • 2.
    Akhtar, Farid
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för material- och miljökemi (MMK).
    Liu, Qingling
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för material- och miljökemi (MMK).
    Hedin, Niklas
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för material- och miljökemi (MMK).
    Bergstroem, Lennart
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för material- och miljökemi (MMK).
    Erratum: Strong and binder free structured zeolite sorbents with very high CO2-over-N-2 selectivities and high capacities to adsorb CO2 rapidly (vol 5, pg 7664, 2012)2012In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 5, no 12, p. 9947-Article in journal (Refereed)
  • 3.
    Akhtar, Farid
    et al.
    Department of Materials and Environmental Chemistry, Stockholm University.
    Liu, Qingling
    Department of Materials and Environmental Chemistry, Stockholm University.
    Hedin, Niklas
    Department of Materials and Environmental Chemistry, Stockholm University.
    Bergström, Lennart
    Department of Materials and Environmental Chemistry, Stockholm University.
    Strong and binder free structured zeolite sorbents with very high CO 2-over-N 2 selectivities and high capacities to adsorb CO 2 rapidly2012In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 5, no 6, p. 7664-7673Article in journal (Refereed)
    Abstract [en]

    Mechanically strong monoliths of zeolite NaKA with a hierarchy of pores displayed very high CO2-over-N2 selectivity. The zeolite monoliths were produced by pulsed current processing (PCP) without the use of added binders and with a preserved microporous crystal structure. Adsorption isotherms of CO2 and N2 were determined and used to predict the co-adsorption of CO2 and N2 using ideal adsorbed solution theory (IAST). The IAST predictions showed that monolithic adsorbents of NaKA could reach an extraordinarily high CO2-over-N2 selectivity in a binary mixture with a composition similar to flue gas (15 mol% CO2 and 85 mol% N2 at 25 °C and 101 kPa). Structured NaKA monoliths with a K+ content of 9.9 at% combined a CO2-over-N2 selectivity of >1100 with a high CO2 adsorption capacity (4 mmol g−1) and a fast adsorption kinetics (on the order of one minute). Estimates of a figure of merit (F) based on IAST CO2-over-N2 selectivity, and time-dependent CO2 uptake capacity, suggest that PCP-produced structured NaKA with a K+ content of 9.9 at% offers a performance far superior to 13X adsorbents, in particular at short cycle times.

  • 4.
    Akhtar, Farid
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Liu, Qingling
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Hedin, Niklas
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Bergström, Lennart
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Strong and binder free structured zeolite sorbents with very high CO2-over-N-2 selectivities and high capacities to adsorb CO2 rapidly2012In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 5, no 6, p. 7664-7673Article in journal (Refereed)
    Abstract [en]

    Mechanically strong monoliths of zeolite NaKA with a hierarchy of pores displayed very high CO2-over-N-2 selectivity. The zeolite monoliths were produced by pulsed current processing (PCP) without the use of added binders and with a preserved microporous crystal structure. Adsorption isotherms of CO2 and N-2 were determined and used to predict the co-adsorption of CO2 and N-2 using ideal adsorbed solution theory (IAST). The IAST predictions showed that monolithic adsorbents of NaKA could reach an extraordinarily high CO2-over-N-2 selectivity in a binary mixture with a composition similar to flue gas (15 mol% CO2 and 85 mol% N2 at 25 degrees C and 101 kPa). Structured NaKA monoliths with a K+ content of 9.9 at% combined a CO2-over-N-2 selectivity of >1100 with a high CO2 adsorption capacity (4 mmol g(-1)) and a fast adsorption kinetics (on the order of one minute). Estimates of a figure of merit (F) based on IAST CO2-over-N-2 selectivity, and time-dependent CO2 uptake capacity, suggest that PCP-produced structured NaKA with a K+ content of 9.9 at% offers a performance far superior to 13X adsorbents, in particular at short cycle times.

  • 5.
    Ardo, Shane
    et al.
    Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA;Univ Calif Irvine, Dept Chem Engn & Mat Sci, Irvine, CA 92697 USA;US DOE, Off Energy Efficiency & Renewable Energy EERE, Fuel Cell Technol Off, EE-3F,1000 Independence Ave SW, Washington, DC 20585 USA.
    Rivas, David Fernandez
    Univ Twente, MESA Inst Nanotechnol, Mesoscale Chem Syst Grp, Enschede, Netherlands.
    Modestino, Miguel A.
    NYU, Dept Chem & Biomol Engn, Brooklyn, NY 11201 USA.
    Greiving, Verena Schulze
    Univ Twente, Dept Sci Technol & Policy Studies, Enschede, Netherlands.
    Abdi, Fatwa F.
    Helmholtz Zentrum Berlin Mat & Energie GmbH, Inst Solar Fuels, Berlin, Germany.
    Llado, Esther Alarcon
    Amolf Inst, Ctr Nanophoton, Amsterdam, Netherlands.
    Artero, Vincent
    Univ Grenoble Alpes, CNRS, CEA, Lab Chim & Biol Metaux, Grenoble, France.
    Ayers, Katherine
    Proton OnSite, Wallingford, CT 06492 USA.
    Battaglia, Corsin
    Empa, Swiss Fed Labs Mat Sci & Technol, Dubendorf, Switzerland.
    Becker, Jan-Philipp
    Forschungszentrum Julich, IEK Photovolta 5, Julich, Germany.
    Bederak, Dmytro
    Univ Groningen, Zernike Inst Adv Mat, Nijenborgh 4, NL-9747 AG Groningen, Netherlands.
    Berger, Alan
    Air Prod & Chem Inc, Allentown, PA 18195 USA.
    Buda, Francesco
    Leiden Univ, Leiden Inst Chem, Leiden, Netherlands.
    Chinello, Enrico
    Ecole Polytech Fed Lausanne, LAPD, Lausanne, Switzerland.
    Dam, Bernard
    Delft Univ Technol, MECS, Dept Chem Engn, Maasweg 9, NL-2629 HZ Delft, Netherlands.
    Di Palma, Valerio
    Eindhoven Univ Technol, Dept Appl Phys, Eindhoven, Netherlands.
    Edvinsson, Tomas
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Fujii, Katsushi
    Univ Kitakyushu, Inst Environm Sci & Technol, Wakamatsu Ku, Kitakyushu, Fukuoka, Japan.
    Gardeniers, Han
    Univ Twente, MESA Inst Nanotechnol, Mesoscale Chem Syst Grp, Enschede, Netherlands.
    Geerlings, Hans
    Delft Univ Technol, MECS, Dept Chem Engn, Maasweg 9, NL-2629 HZ Delft, Netherlands.
    Hashemi, S. Mohammad H.
    Ecole Polytech Fed Lausanne, Opt Lab LO, Lausanne, Switzerland.
    Haussener, Sophia
    Ecole Polytech Fed Lausanne, LRESE, Lausanne, Switzerland.
    Houle, Frances
    Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynthesis & Chem Sci Di, Berkeley, CA 94720 USA.
    Huskens, Jurriaan
    Univ Twente, MESA Inst Nanotechnol, Mol Nanofabricat Grp, Enschede, Netherlands.
    James, Brian D.
    Strateg Anal Inc, Arlington, VA 22203 USA.
    Konrad, Kornelia
    Univ Twente, Dept Sci Technol & Policy Studies, Enschede, Netherlands.
    Kudo, Akihiko
    Tokyo Univ Sci, Fac Sci, Dept Appl Chem, Tokyo 1628601, Japan.
    Kunturu, Pramod Patil
    Univ Twente, MESA Inst Nanotechnol, Mol Nanofabricat Grp, Enschede, Netherlands.
    Lohse, Detlef
    Univ Twente, MESA Inst Nanotechnol, Phys Fluids Grp, Enschede, Netherlands.
    Mei, Bastian
    Univ Twente, MESA Inst Nanotechnol, Photocatalyt Synth Grp, Enschede, Netherlands.
    Miller, Eric L.
    Moore, Gary F.
    Arizona State Univ, Sch Mol Sci, Biodesign Ctr Appl Struct Discovery CASD, Tempe, AZ 85287 USA.
    Muller, Jiri
    Inst Energiteknikk, Kjeller, Norway.
    Orchard, Katherine L.
    Univ Cambridge, Dept Chem, Cambridge, England.
    Rosser, Timothy E.
    Univ Cambridge, Dept Chem, Cambridge, England.
    Saadi, Fadl H.
    CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA.
    Schuttauf, Jan-Willem
    Swiss Ctr Elect & Microtechnol CSEM, PV Ctr, Neuchatel, Switzerland.
    Seger, Brian
    Tech Univ Denmark DTU, Dept Phys, Lyngby, Denmark.
    Sheehan, Stafford W.
    Catalyt Innovat, Fall River, MA 02723 USA.
    Smith, Wilson A.
    Delft Univ Technol, MECS, Dept Chem Engn, Maasweg 9, NL-2629 HZ Delft, Netherlands.
    Spurgeon, Joshua
    Univ Louisville, Conn Ctr Renewable Energy Res, Louisville, KY 40292 USA.
    Tang, Maureen H.
    Drexel Univ, Chem & Biol Engn, Philadelphia, PA 19104 USA.
    van de Krol, Roel
    Helmholtz Zentrum Berlin Mat & Energie GmbH, Inst Solar Fuels, Berlin, Germany.
    Vesborg, Peter C. K.
    Tech Univ Denmark DTU, Dept Phys, Lyngby, Denmark.
    Westerik, Pieter
    Univ Twente, MESA Inst Nanotechnol, Mesoscale Chem Syst Grp, Enschede, Netherlands.
    Pathways to electrochemical solar-hydrogen technologies2018In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 11, no 10, p. 2768-2783Article, review/survey (Refereed)
    Abstract [en]

    Solar-powered electrochemical production of hydrogen through water electrolysis is an active and important research endeavor. However, technologies and roadmaps for implementation of this process do not exist. In this perspective paper, we describe potential pathways for solar-hydrogen technologies into the marketplace in the form of photoelectrochemical or photovoltaic-driven electrolysis devices and systems. We detail technical approaches for device and system architectures, economic drivers, societal perceptions, political impacts, technological challenges, and research opportunities. Implementation scenarios are broken down into short-term and long-term markets, and a specific technology roadmap is defined. In the short term, the only plausible economical option will be photovoltaic-driven electrolysis systems for niche applications. In the long term, electrochemical solar-hydrogen technologies could be deployed more broadly in energy markets but will require advances in the technology, significant cost reductions, and/ or policy changes. Ultimately, a transition to a society that significantly relies on solar-hydrogen technologies will benefit from continued creativity and influence from the scientific community.

  • 6. Beckmann, K.
    et al.
    Uchtenhagen, Hannes
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Photochemistry and Molecular Science.
    Berggren, Gustav
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Photochemistry and Molecular Science.
    Anderlund, Magnus F.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Photochemistry and Molecular Science.
    Thapper, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Photochemistry and Molecular Science.
    Messinger, J.
    Styring, Stenbjörn
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Photochemistry and Molecular Science.
    Kurz, P.
    Formation of stoichiometrically O-18-labelled oxygen from the oxidation of O-18-enriched water mediated by a dinuclear manganese complex: a mass spectrometry and EPR study2008In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 1, no 6, p. 668-676Article in journal (Refereed)
    Abstract [en]

    Oxygen formation was detected for the oxidations of various multinuclear manganese complexes by oxone (HSO5-) in aqueous solution. To determine to what extent water was the source of the evolved O-2, (H2O)-O-18 isotope-labelling experiments coupled with membrane inlet mass spectrometry (MIMS) were carried out. We discovered that during the reaction of oxone with [Mn-2(OAc)(2)(bpmp)](+) (1), stoichiometrically labelled oxygen (O-18(2)) was formed. This is the first example of a homogeneous reaction mediated by a synthetic manganese complex where the addition of a strong chemical oxidant yields O-18(2) with labelling percentages matching the theoretically expected values for the case of both O-atoms originating from water. Experiments using lead acetate as an alternative oxidant supported this finding. A detailed investigation of the reaction by EPR spectroscopy, MIMS and Clark-type oxygen detection enabled us to propose potential reaction pathways.

  • 7.
    Bertoni, M. I.
    et al.
    Massachusetts Institute of Technology, Cambridge, USA .
    Fenning, D. P.
    Massachusetts Institute of Technology, Cambridge, USA .
    Rinio, Markus
    Fraunhofer ISE, Laboratory and Servicecenter, Auf der Reihe 2, Gelsenkirchen, Germany .
    Rose, V.
    USA.
    Holt, M.
    USA.
    Maser, J.
    USA.
    Buonassisi, Tonio
    USA.
    Nanoprobe X-ray fluorescence characterization of defects in large-area solar cells2011In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 4, p. 4252-4257Article in journal (Refereed)
    Abstract [en]

    The performance of centimeter-sized energy devices is regulated by inhomogeneously distributednanoscale defects. To improve device efficiency and reduce cost, accurate characterization of thesenanoscale defects is necessary. However, the multiscale nature of this problem presentsa characterization challenge, as non-destructive techniques often specialize in a single decade of lengthscales, and have difficulty probing non-destructively beneath the surface of materials with sub-micronspatial resolution. Herein, we push the resolution limits of synchrotron-based nanoprobe X-rayfluorescence mapping to 80 nm, to investigate a recombination-active intragranular defect in industrialsolar cells. Our nano-XRF measurements distinguish fundamental differences between benign anddeleterious dislocations in solar cell devices: we observe recombination-active dislocations to containa high degree of nanoscale iron and copper decoration, while recombination-inactive dislocationsappear clean. Statistically meaningful high-resolution measurements establish a connection betweencommercially relevant materials and previous fundamental studies on intentionally contaminatedmodel defect structures, pointing the way towards optimization of the industrial solar cell process.Moreover, this study presents a hierarchical characterization approach that can be broadly extended toother nanodefect-limited energy systems with the advent of high-resolution X-ray imaging beamlines

  • 8.
    Bubnova, Olga
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Towards polymer-based organic thermoelectric generators2012In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 5, no 11, p. 9345-9362Article in journal (Refereed)
    Abstract [en]

    In response to the thread of environmental and ecological degradation along with projected fossil fuel depletion the active search for efficient renewable energy conversion technologies has been attempted in various research areas including the field of thermoelectrics. Despite the availability of considerable amounts of waste and natural heat stored in warm fluids (andlt;250 degrees C) a lack of environmentally friendly materials with high natural abundance, low manufacturing cost and high thermoelectric efficiency impedes the widespread use of thermoelectric generators for energy harvesting on a large scale. In this perspective, we examine the possibility of using organic conducting polymers in thermoelectric applications. We provide an overview of the background and the key concepts of organic thermoelectrics and illustrate some of the first prototypes of polymer-based organic thermoelectric generators.

  • 9. Chen, Lin
    et al.
    Wang, Mei
    Han, Kai
    Zhang, Peili
    Gloaguen, Frederic
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    A super-efficient cobalt catalyst for electrochemical hydrogen production from neutral water with 80 mV overpotential2014In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 7, no 1, p. 329-334Article in journal (Refereed)
    Abstract [en]

    Self-assembled molecular iron and cobalt catalysts (MP4N2, M = Fe, Co) bearing a multihydroxy-functionalized tetraphosphine ligand electrocatalyze H-2 generation from neutral water on a mercury electrode at -1.03 and -0.50 V vs. NHE, respectively. Complex CoP4N2 displays extremely low overpotential (E-onset = 80 mV) while maintaining high activity and good stability. Bulk electrolysis of CoP4N2 in a neutral phosphate buffer solution at -1.0 V vs. NHE produced 9.24 x 10(4) mol H-2 per mol cat. over 20 h, with a Faradaic efficiency close to 100% and without apparent deactivation.

  • 10. Cheng, Ming
    et al.
    Yang, Xichuan
    Li, Shifeng
    Wang, Xiuna
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Efficient dye-sensitized solar cells based on an iodine-free electrolyte using L-cysteine/L-cystine as a redox couple2012In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 5, no 4, p. 6290-6293Article in journal (Refereed)
    Abstract [en]

    A new iodine-free electrolyte based on amino acids L-cysteine/L-cystine as a redox couple has been designed and synthesized. DSSCs fabricated with the conventional I-/I-3(-) redox couple gave efficiencies of 8.1% and 6.3% under optimized experimental conditions based on ruthenium dye, N719, and metal-free organic dye, TH202, respectively. Based on the same dyes, the DSSCs employing the new L-cysteine/L-cystine redox couple showed comparable efficiencies of 7.7% and 5.6%, respectively. However, higher incident-photon-to-electron (IPCE) conversion efficiencies and larger J(sc) values were found for devices with the L-cysteine/L-cystine redox couple than with I-/I-3(-). From an electrochemical impedance spectroscopic study, we found that the charge recombination between the conduction band electrons in the TiO2 film and the electrolyte containing the L-cysteine/L-cystine redox couple is restrained.

  • 11. Cong, Jiayan
    et al.
    Yang, Xichuan
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Iodine/iodide-free redox shuttles for liquid electrolyte-based dye-sensitized solar cells2012In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 5, no 11, p. 9180-9194Article, review/survey (Refereed)
    Abstract [en]

    Dye-sensitized solar cells have attracted intense academic interest over the past two decades. For a long time, the development of new redox systems has fallen far behind that of the sensitizing dyes and other materials. However, the field has received renewed attention recently. In particular, in 2011, the Gratzel group published a record DSC efficiency of 12.3% by using a new Co-complex-based electrolyte. In this review, we will provide an overview of iodine/iodide-free redox systems for liquid electrolytes, and reveal that the design of an efficient redox system should combine with appropriate sensitizing dyes which is the pivotal challenge for highly efficient DSCs.

  • 12.
    Cui, Daqing
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Low, Jeanett
    Spahiu, Kastriot
    Environmental behaviors of spent nuclear fuel and canister materials2011In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 4, no 7, p. 2537-2545Article in journal (Refereed)
    Abstract [en]

    The world's first spent nuclear fuel repository concept (Swedish KBS-3) is illustrated and the results of experiments on environmental behaviors of spent fuel and canister materials under a potential canister breaching at early stage of disposal are reported. In a deoxygenated synthetic groundwater (2 mM NaHCO(3)) under radiation (gamma 0.9 Gy h(-1)), inventory fraction leaching rates of fission-products ((137)Cs, (90)Sr and (99)Tc) and actinides ((238)U, (237)Np) from a spent fuel segment were found to be around 10(-6) and 10(-7) per day, respectively. A cast-iron canister surface was found to be able to immobilize (238)U, (90)Sr, (99)Tc and (237)Np dissolved from spent fuel, but a copper surface could not. In the presence of the oxidative species generated from water radiolysis, the corrosion rates of waste canister materials, copper and cast-iron were found to be 1 and 30 mm per year, respectively. The observation of insignificant dissolution of spent fuel in the leaching solution equilibrated with 0.1 atm H(2) is explained by the reducing effects of H(2) in the presence of fission-product alloy particles (Mo-Tc-Ru-Rh-Pd) as catalysts and dissolved Fe(II) in groundwater. The coating effect of ferric precipitates on spent nuclear fuel dissolution is also discussed.

  • 13. Datta, Shuvo Jit
    et al.
    Oleynikov, Peter
    Moon, Won Kyung
    Ma, Yanhang
    Mayoral, Alvaro
    Kim, Hyuncheol
    Dejoie, Catherine
    Song, Mee Kyung
    Terasaki, Osamu
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Shanghai Tech University, China.
    Yoon, Kyung Byung
    Removal of Sr-90 from highly Na+-rich liquid nuclear waste with a layered vanadosilicate2019In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 12, no 6, p. 1857-1865Article in journal (Refereed)
    Abstract [en]

    Capture of trace amounts (parts per trillion or ppt level) of Sr-90 from highly Na+-rich (5 M or 115 000 parts per million) liquid wastes produced from reprocessing of spent nuclear fuel rods is crucial for continuous operation of nuclear power plants. However, no sorbents have shown such abilities. We now report that a novel layered vanadosilicate, SGU-7, with the unit cell parameters of a = 23.58 A, b = 30.04 A, c = 12.31 A, b = 100.28, and space group of P12(1)/a1, can effectively capture Sr-90 from a 5 M Na+ solution containing 6.2 ppt of Sr-90. It also effectively captures 1-ppb level Ra-226 from 2 M NaCl solution, and Cs+ and Sr2+ from groundwater, demonstrating that it can be immediately used to remedy groundwater and soil contaminated with Ra-226, Sr-90, and Cs-137.

  • 14.
    Duan, Lele
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Tong, Lianpeng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Xu, Yunhua
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Visible light-driven water oxidation-from molecular catalysts to photoelectrochemical cells2011In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 4, no 9, p. 3296-3313Article in journal (Refereed)
    Abstract [en]

    This perspective article reports the most significant advances in the field of water oxidation-from molecular water oxidation catalysts (WOCs) to photoelectrochemical cells. Different series of catalysts that can be applied in visible light-driven water oxidation catalysis are discussed in details and several key aspects of their catalytic mechanisms are introduced. In order to construct a water oxidation electrode from molecular catalysts, proper immobilization methods have to be employed. Herein, we present one section about how to attach catalysts onto an electrode/material surface. Finally, the state of the art photoelectrochemical cells that achieve visible light-driven water splitting are described.

  • 15. Faunce, Thomas A.
    et al.
    Lubitz, Wolfgang
    Rutherford, A. W. Bill
    MacFarlane, Douglas
    Moore, Gary F.
    Yang, Peidong
    Nocera, Daniel G.
    Moore, Tom A.
    Gregory, Duncan H.
    Fukuzumi, Shunichi
    Yoon, Kyung Byung
    Armstrong, Fraser A.
    Wasielewski, Michael R.
    Styring, Stenbjörn
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Energy and environment policy case for a global project on artificial photosynthesis2013In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 6, no 3, p. 695-698Article in journal (Other academic)
  • 16. Faunce, Thomas
    et al.
    Styring, Stenbjörn
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Wasielewski, Michael R.
    Brudvig, Gary W.
    Rutherford, A. William
    Messinger, Johannes
    Lee, Adam F.
    Hill, Craig L.
    deGroot, Huub
    Fontecave, Marc
    MacFarlane, Doug R.
    Hankamer, Ben
    Nocera, Daniel G.
    Tiede, David M.
    Dau, Holger
    Hillier, Warwick
    Wang, Lianzhou
    Amal, Rose
    Artificial photosynthesis as a frontier technology for energy sustainability2013In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 6, no 4, p. 1074-1076Article in journal (Other academic)
  • 17. Faunce, Thomas
    et al.
    Styring, Stenbjörn
    Wasielewski, Michael R.
    Brudvig, Gary W.
    Rutherford, A. William
    Messinger, Johannes
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Lee, Adam F.
    Hill, Craig L.
    deGroot, Huub
    Fontecave, Marc
    MacFarlane, Doug R.
    Hankamer, Ben
    Nocera, Daniel G.
    Tiede, David M.
    Dau, Holger
    Hillier, Warwick
    Wang, Lianzhou
    Amal, Rose
    Artificial photosynthesis as a frontier technology for energy sustainability2013In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 6, no 4, p. 1074-1076Article in journal (Other academic)
  • 18.
    Felekidis, Nikolaos
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Complex Materials and Devices. Linköping University, Faculty of Science & Engineering.
    Wang, E.
    Chalmers University of Technology, Göteborg, Sweden.
    Kemerink, Martijn
    Linköping University, Department of Physics, Chemistry and Biology, Complex Materials and Devices. Linköping University, Faculty of Science & Engineering. Eindhoven University of Technology, Netherlands.
    Open circuit voltage and efficiency in ternary organic photovoltaic blends2016In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 9, no 1, p. 257-266Article in journal (Refereed)
    Abstract [en]

    Organic bulk heterojunction solar cells based on ternary blends of two donor absorbers and one acceptor are investigated by experiments and modeling. The commonly observed continuous tunability of the open circuit voltage V-OC with the donor1 : donor2 ratio can quantitatively be explained as quasi-Fermi level splitting due to photocreated charges filling a joint density of states that is broadened by Gaussian disorder. On this basis, a predictive model for the power conversion efficiency that accounts for the composition-dependent absorption and the shape of the current-voltage characteristic curve is developed. When all other parameters, most notably the fill factor, are constant, we find that for state-of-the-art absorbers, having a broad and strong absorption spectrum, ternary blends offer no advantage over binary ones. For absorbers with a more narrow absorption spectrum ternary blends of donors with complementary absorption spectra, offer modest improvements over binary ones. In contrast, when, upon blending, transport and/or recombination kinetics are improved, leading to an increased fill factor, ternaries may offer significant advantages over binaries.

  • 19.
    Freitag, Marina
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Daniel, Quentin
    KTH Royal Inst Technol, Sch Chem Sci & Engn, Dept Chem, S-10044 Stockholm, Sweden..
    Pazoki, Meysam
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Sveinbjörnsson, Kári
    Zhang, Jinbao
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Sun, Licheng
    KTH Royal Inst Technol, Sch Chem Sci & Engn, Dept Chem, S-10044 Stockholm, Sweden.;Dalian Univ Technol, DUT KTH Joint Educ & Res Ctr Mol Devices, State Key Lab Fine Chem, Dalian 116024, Peoples R China..
    Hagfeldt, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Boschloo, Gerrit
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    High-efficiency dye-sensitized solar cells with molecular copper phenanthroline as solid hole conductor2015In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 8, no 9, p. 2634-2637Article in journal (Refereed)
    Abstract [en]

    Copper phenanthroline complexes in the solid phase can act as efficient molecular hole transporting material (HTM) for hybrid solar cells. We prepared solid-state dye-sensitized solar cells with the organic dye LEG4 and bis(2,9-dimethyl-1,10-phenanthroline)copper(I/II) (Cu(dmp)(2)) and achieved power conversion efficiencies of more than 8% under 1000 W m(-2) AM1.5G illumination, with open-circuit potentials of more than 1.0 V. The successful application of a copper-complex based HTM paves the way for low-cost and efficient hybrid solar cells, as well as for other opto-electronic devices.

  • 20.
    Freitag, Marina
    et al.
    Uppsala Univ, Dept Chem Angstrom Lab, Sweden..
    Quentin, Daniel
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Pazoki, Meysam
    Uppsala Univ, Dept Chem Angstrom Lab, Sweden..
    Sveinbjornsson, Kari
    Uppsala Univ, Dept Chem Angstrom Lab, Sweden..
    Zhang, Jinbao
    Uppsala Univ, Dept Chem Angstrom Lab, Sweden..
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), Dalian, China.
    Hagfeldt, Anders
    Uppsala Univ, Dept Chem Angstrom Lab, Sweden..
    Boschloo, Gerrit
    Uppsala Univ, Dept Chem Angstrom Lab, Sweden..
    High-efficiency dye-sensitized solar cells with molecular copper phenanthroline as solid hole conductor2015In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 8, no 9, p. 2634-2637Article in journal (Refereed)
    Abstract [en]

    Copper phenanthroline complexes in the solid phase can act as efficient molecular hole transporting material (HTM) for hybrid solar cells. We prepared solid-state dye-sensitized solar cells with the organic dye LEG4 and bis(2,9-dimethyl-1,10-phenanthroline)copper(I/II) (Cu(dmp)(2)) and achieved power conversion efficiencies of more than 8% under 1000 W m(-2) AM1.5G illumination, with open-circuit potentials of more than 1.0 V. The successful application of a copper-complex based HTM paves the way for low-cost and efficient hybrid solar cells, as well as for other opto-electronic devices.

  • 21.
    Gao, Feng
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Ren, Shenqiang
    University of Kansas, USA.
    Wang, Jianpu
    University of Cambridge, England.
    The renaissance of hybrid solar cells: progresses, challenges, and perspectives2013In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 6, no 7, p. 2020-2040Article, review/survey (Refereed)
    Abstract [en]

    Solution-processed hybrid solar cells, a blend of conjugated polymers and semiconducting nanocrystals, are a promising candidate for next-generation energy-conversion devices. The renaissance of this field in recent years has yielded a much deeper understanding of optoelectronic interactions in organic–inorganic hybrid systems. In this article, we review the state-of-the-art progress in hybrid bulk heterojunction solar cells, covering new materials design, interfacial interaction, and processing control. Furthermore, critical challenges that determine photovoltaic performance and prospects for future directions are discussed.

  • 22.
    Hammarström, Leif
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Photochemistry and Molecular Science, Chemical Physics.
    Styring, Stenbjörn
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Photochemistry and Molecular Science, Molecular Biomimetics.
    Proton-coupled electron transfer of tyrosines in Photosystem II and model systems for artificial photosynthesis: the role of a redox-active link between catalyst and photosensitizer2011In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 4, no 7, p. 2379-2388Article in journal (Refereed)
    Abstract [en]

    Water oxidation in Photosystem II is dependent on a particular amino acid residue, Tyrosine(Z). This is a redox intermediate in steady state oxygen evolution and transfers electrons from the water splitting CaMn4 cluster to the central chlorophyll radical P-680(+). This Perspective discusses the functional principles of Tyrosine(Z) as a proton-coupled redox active link, as well as mechanistic studies of synthetic model systems and implications for artificial photosynthesis. Experimental studies of temperature dependence and kinetic isotope effects are important tools to understand these reactions. We emphasize the importance of proton transfer distance and hydrogen bond dynamics that are responsible for variation in the rate of PCET by several orders of magnitude. The mechanistic principles discussed and their functional significance are not limited to tyrosine and biological systems, but are important to take into account when constructing artificial photosynthetic systems. Of particular importance is the role of proton transfer management in water splitting and solar fuel catalysis.

  • 23.
    House, Robert A.
    et al.
    Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England;Univ Oxford, Dept Chem, Parks Rd, Oxford OX1 3PH, England.
    Jin, Liyu
    Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England;Univ Oxford, Dept Chem, Parks Rd, Oxford OX1 3PH, England.
    Maitra, Urmimala
    Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England;Univ Oxford, Dept Chem, Parks Rd, Oxford OX1 3PH, England.
    Tsuruta, Kazuki
    Japan Synchrotron Radiat Res Inst JASRI, 1-1-1 Kouto, Sayo, Hyogo 6795198, Japan.
    Somerville, James W.
    Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England;Univ Oxford, Dept Chem, Parks Rd, Oxford OX1 3PH, England.
    Forstermann, Dominic P.
    Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England;Univ Oxford, Dept Chem, Parks Rd, Oxford OX1 3PH, England.
    Massel, Felix
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Duda, Laurent
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Roberts, Matthew R.
    Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England;Univ Oxford, Dept Chem, Parks Rd, Oxford OX1 3PH, England.
    Bruce, Peter G.
    Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England;Univ Oxford, Dept Chem, Parks Rd, Oxford OX1 3PH, England.
    Lithium manganese oxyfluoride as a new cathode material exhibiting oxygen redox2018In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 11, no 4, p. 926-932Article in journal (Refereed)
    Abstract [en]

    The quantity of charge stored in transition metal oxide intercalation cathodes for Li or Na batteries is not limited by transition metal redox reactions but can also access redox reactions on O; examples include Li1.2Ni0.13Mn0.54Co0.13O2, Li2Ru0.75Sn0.25O3, Li1.2Nb0.3Mn0.4O2, Na2RuO3 and Na2/3Mg0.28Mn0.72O2. Here we show that oxyfluorides can also exhibit charge storage by O-redox. We report the discovery of lithium manganese oxyfluoride, specifically the composition, Li1.9Mn0.95O2.05F0.95, with a high capacity to store charge of 280 mA h g(-1) (corresponding to 960 W h kg(-1)) of which almost half, 130 mA h g(-1), arises from O-redox. This material has a disordered cubic rocksalt structure and the voltage-composition curve is significantly more reversible compared with ordered Li-rich layered cathodes. Unlike lithium manganese oxides such as the ordered layered rocksalt Li2MnO3, Li1.9Mn0.95O2.05F0.95 does not exhibit O loss from the lattice. The material is synthesised using a simple, one-pot mechanochemical procedure.

  • 24.
    Hu, Liangbing
    et al.
    University of Maryland.
    Guangyuan, Zheng
    Stanford University.
    Yao, Jie
    Stanford University.
    Liu, Nian
    Stanford University.
    Weil, Ben
    Stanford University.
    Eskilsson, Martin
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology.
    Karabulut, Erdem
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology.
    Ruan, Zhichao
    Fan, Shanhui
    Bloking, Jason T.
    Stanford University.
    McGehee, Michael D.
    Stanford University Materials Sci. and Eng..
    Wågberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology.
    Cui, Yi
    Stanford University Materials Sci. and Eng..
    Transparent and conductive paper from nanocellulose fibers2013In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 6, no 2, p. 513-518Article in journal (Refereed)
    Abstract [en]

    Here we report on a novel substrate, nanopaper, made of cellulose nanofibrils, an earth abundant material. Compared with regular paper substrates, nanopaper shows superior optical properties. We have carried out the first study on the optical properties of nanopaper substrates. Since the size of the nanofibrils is much less than the wavelength of visible light, nanopaper is highly transparent with large light scattering in the forward direction. Successful depositions of transparent and conductive materials including tin-doped indium oxide, carbon nanotubes and silver nanowires have been achieved on nanopaper substrates, opening up a wide range of applications in optoelectronics such as displays, touch screens and interactive paper. We have also successfully demonstrated an organic solar cell on the novel substrate.

  • 25.
    Jacobsson, Jesper
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Photoelectrochemical water splitting: an idea heading towards obsolescence?2018In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 11, no 8, p. 1977-1979Article, review/survey (Refereed)
    Abstract [en]

    The production of hydrogen from water and sunlight is a way to address the intermittency in renewable energy production, while simultaneously generating a versatile fuel and a valuable chemical feedstock. Photoelectrochemical water splitting is one possible approach to accomplish this that has been researched since the early seventies. It has for a long time held the promise of having the potential to become the best, cheapest, and most efficient way to convert solar energy into chemical energy in the form of hydrogen, but in this paper, I argue that the time window where this could have happened has now come to an end. With the rapid development of both PV-technology and earth-abundant electrocatalysis, it will be tremendously difficult, even in the best-case scenario, for a classical photoelectrochemical water splitting device to compete with what PV-driven electrolysers can already do today. This is an insight that should influence the future of solar fuel research.

  • 26.
    Jacobsson, Jesper T.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Fjällström, Viktor
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Sahlberg, Martin Häggblad
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Edoff, Marika
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Edvinsson, Tomas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    A monolithic device for solar water splitting based on series interconnected thin film absorbers reaching over 10% solar-to-hydrogen efficiency2013In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 6, no 12, p. 3676-3683Article in journal (Refereed)
    Abstract [en]

    Efficient production of hydrogen from solar energy is anticipated to be an important component in a future sustainable post-carbon energy system. Here we demonstrate that series interconnected absorbers in a PV-electrolysis configuration based on the compound semiconductor CIGS, CuInxGa1-xSe2, are a highly interesting concept for solar water splitting applications. The band gap energy of CIGS can be adjusted to a value close to optimum for efficient absorption of the solar spectrum, but is too low to drive overall water splitting. Therefore we connect three cells in series, into a monolithic device, which provides sufficient driving force for the full reaction. Integrated with a catalyst this forms a stable PV/photo-electrochemical device, which when immersed in water reaches over 10% solar-to-hydrogen efficiency for unassisted water splitting. The results show that series interconnected device concepts, which enable use of a substantial part of the solar spectrum, provide a simple route towards highly efficient water splitting and could be used also for other solar absorbers with similar electro-optical properties. We discuss how the efficiency could be increased for this particular device, as well as the general applicability of the concepts used in this work. We also briefly discuss advantages and disadvantages of photo-electrochemical cells in relation to PV-electrolysis with respect to our results.

  • 27.
    Jacobsson, Jesper
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Viktor, Fjällström
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Marika, Edoff
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Tomas, Edvinsson
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Sustainable Solar Hydrogen Production: From Photo-Electrochemical Cells to PV-Electrolysis and Back Again2014In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706Article in journal (Refereed)
    Abstract [en]

    Sustainable hydrogen production could, in principle, be accomplished along several different routes, where some of the most promising approaches involve utilization of solar energy. Photoelectrochemical cells (PEC-cells) and PV-electrolyzers for solar hydrogen production are here analyzed and compared. The analysis is performed by theoretically designing a number of intermediate devices, successively going from PEC-cells to PV-electrolyzers. The main physical processes: absorption, charge carrier separation, charge carrier transport, and catalysis are analyzed in the different devices. This demonstrates how the two concepts are related, and how one could easily be transformed and converted into the other. The awareness of the close relationship between PEC-cells and PV-electrolyzers is not as widely recognized as it should be. Traditionally, these two approaches have often been considered as fundamentally different, and are far too seldom analyzed in the same context. We argue that the different device designs for solar hydrogen production are best seen as essentially equivalent approaches, and as topological variations of the same basic theme, and can in many cases be unified under the acronym photo driven catalytic (PDC) devices. We further argue that much is to gain by acknowledging the similarities between PEC water splitting and PV-electrolysis, and that one concept alone should not be considered without also considering the other. The analysis and discussion presented could potentially lead to an increased fruitful crossbreeding of the accumulated knowledge in the respective sub-discipline, and aid in realizing solar hydrogen production as a sustainable and economically compatible energy alternative.

  • 28.
    Jacobsson, T. Jesper
    et al.
    Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, Lab Photomol Sci, CH-1015 Lausanne, Switzerland..
    Correa-Baen, Juan-Pablo
    Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, Lab Photomol Sci, CH-1015 Lausanne, Switzerland..
    Pazoki, Meysam
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Saliba, Michael
    Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, Lab Photon & Interfaces, CH-1015 Lausanne, Switzerland..
    Schenk, Kurt
    Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland..
    Gratzel, Michael
    Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, Lab Photon & Interfaces, CH-1015 Lausanne, Switzerland..
    Hagfeldt, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry. Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, Lab Photomol Sci, CH-1015 Lausanne, Switzerland..
    Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells2016In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 9, no 5, p. 1706-1724Article in journal (Refereed)
    Abstract [en]

    Lead halide perovskites have attracted considerable interest as photoabsorbers in PV-applications over the last few years. The most studied perovskite material achieving high photovoltaic performance has been methyl ammonium lead iodide, CH3NH3PbI3. Recently the highest solar cell efficiencies have, however, been achieved with mixed perovskites where iodide and methyl ammonium partially have been replaced by bromide and formamidinium. In this work, the mixed perovskites were explored in a systematic way by manufacturing devices where both iodide and methyl ammonium were gradually replaced by bromide and formamidinium. The absorption and the emission behavior as well as the crystallographic properties were explored for the perovskites in this compositional space. The band gaps as well as the crystallographic structures were extracted. Small changes in the composition of the perovskite were found to have a large impact on the properties of the materials and the device performance. In the investigated compositional space, cell efficiencies, for example, vary from a few percent up to 20.7%. From the perspective of applications, exchanging iodide with bromide is especially interesting as it allows tuning of the band gap from 1.5 to 2.3 eV. This is highly beneficial for tandem applications, and an empirical expression for the band gap as a function of composition was determined. Exchanging a small amount of iodide with bromide is found to be highly beneficial, whereas a larger amount of bromide in the perovskite was found to cause intense sub band gap photoemission with detrimental results for the device performance. This could be caused by the formation of a small amount of an iodide rich phase with a lower band gap, even though such a phase was not observed in diffraction experiments. This shows that stabilizing the mixed perovskites will be an important task in order to get the bromide rich perovskites, which has a higher band gap, to reach the same high performance obtained with the best compositions.

  • 29.
    Jain, Sagar Motilal
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry. Swansea Univ Bay Campus, Coll Engn, SPECIFIC, Fabian Way, Swansea SA1 8EN, W Glam, Wales.
    Qiu, Zhen
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Häggman, Leif
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Mirmohades, Mohammad
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Johansson, Malin B.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Edvinsson, Tomas
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Boschloo, Gerrit
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Frustrated Lewis pair-mediated recrystallization of CH3NH3PbI3 for improved optoelectronic quality and high voltage planar perovskite solar cells2016In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 9, no 12, p. 3770-3782Article in journal (Refereed)
    Abstract [en]

    Films of the hybrid lead halide perovskite CH3NH3PbI3 were found to react with pyridine vapor at room temperature leading to complete bleaching of the film. In dry air or nitrogen atmosphere recrystallization takes place, leading to perovskite films with markedly improved optical and photovoltaic properties. The physical and chemical origin of the reversible bleaching and recrystallization mechanism was investigated using a variety of experimental techniques and quantum chemical calculations. The strong Lewis base pyridine attacks the CH3NH3PbI3. The mechanism can be understood from a frustrated Lewis pair formation with a partial electron donation of the lone-pair on nitrogen together with competitive bonding to other species as revealed by Raman spectroscopy and DFT calculations. The bleached phase consists of methylammonium iodide crystals and an amorphous phase of PbI2( pyridine)(2). After spontaneous recrystallization the CH3NH3PbI3 thin films have remarkably improved photoluminescence, and solar cell performance increased from 9.5% for as-deposited films to more than 18% power conversion efficiency for recrystallized films in solar cells with planar geometry under AM1.5G illumination. Hysteresis was negligible and open-circuit potential was remarkably high, 1.15 V. The results show that complete recrystallization can be achieved with a simple room temperature pyridine vapor treatment of CH3NH3PbI3 films leading to high quality crystallinity films with drastically improved photovoltaic performance.

  • 30.
    Khanna, Namita
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Esmieu, Charlène
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Meszaros, Livia S.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Lindblad, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Berggren, Gustav
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    In vivo activation of an [FeFe] hydrogenase using synthetic cofactors2017In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 10, no 7, p. 1563-1567Article in journal (Refereed)
    Abstract [en]

    [FeFe] hydrogenases catalyze the reduction of protons, and oxidation of hydrogen gas, with remarkable efficiency. The reaction occurs at the H-cluster, which contains an organometallic [2Fe] subsite. The unique nature of the [2Fe] subsite makes it dependent on a specific set of maturation enzymes for its biosynthesis and incorporation into the apo-enzyme. Herein we report on how this can be circumvented, and the apo-enzyme activated in vivo by synthetic active site analogues taken up by the living cell.

  • 31.
    Kim, Shi Hyeong
    et al.
    Center for Bio-Artificial Muscle and Department of Biomedical Engineering, Hanyang University, Seoul, South Korea.
    Lima, Márcio D.
    Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, USA.
    Kozlov, Mikhail E.
    Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, USA.
    Haines, Carter S.
    Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, USA.
    Spinks, Geoffrey M.
    Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, Australia.
    Aziz, Shazed
    Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, Australia.
    Choi, Changsoon
    Center for Bio-Artificial Muscle and Department of Biomedical Engineering, Hanyang University, Seoul, South Korea.
    Sim, Hyeon Jun
    Center for Bio-Artificial Muscle and Department of Biomedical Engineering, Hanyang University, Seoul, South Korea.
    Wang, Xuemin
    Department of Mechanical Engineering, University of Texas at Dallas, Richardson, USA.
    Lu, Hongbing
    Department of Mechanical Engineering, University of Texas at Dallas, Richardson, USA.
    Qian, Dong
    Department of Mechanical Engineering, University of Texas at Dallas, Richardson, USA.
    Madden, John D. W.
    Department of Electrical and Computer Engineering and Advanced Material and Process Engineering Laboratory, University of British Columbia, Vancouver, Canada.
    Baughman, Ray H.
    Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, USA.
    Kim, Seon Jeong
    Center for Bio-Artificial Muscle and Department of Biomedical Engineering, Hanyang University, Seoul, South Korea.
    Harvesting temperature fluctuations as electrical energy using torsional and tensile polymer muscles2015In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 8, p. 3336-3344Article in journal (Refereed)
    Abstract [en]

    Diverse means have been deployed for harvesting electrical energy from mechanical actuation produced by low-grade waste heat, but cycle rate, energy-per-cycle, device size and weight, or cost have limited applications. We report the electromagnetic harvesting of thermal energy as electrical energy using thermally powered torsional and tensile artificial muscles made from inexpensive polymer fibers used for fishing line and sewing thread. We show that a coiled 27 μm-diameter nylon muscle fiber can be driven by 16.7 °C air temperature fluctuations to spin a magnetic rotor to a peak torsional rotation speed of 70 000 rpm for over 300 000 heating–cooling cycles without performance degradation. By employing resonant fluctuations in air temperature of 19.6 °C, an average output electrical power of 124 W per kg of muscle was realized. Using tensile actuation of polyethylene-based coiled muscles and alternating flows of hot and cold water, up to 1.4 J of electrical energy was produced per cycle. The corresponding per cycle electric energy and peak power output, per muscle weight, were 77 J kg−1 and 28 W kg−1, respectively.

  • 32.
    Klug, Matthew T.
    et al.
    MIT, MA 02139 USA; University of Oxford, England.
    Osherov, Anna
    MIT, USA.
    Haghighirad, Amir A.
    University of Oxford, England.
    Stranks, Samuel D.
    MIT, USA;Cavendish Lab, England.
    Brown, Patrick R.
    MIT, USA.
    Bai, Sai
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering. University of Oxford, England.
    Wang, Jacob T. -W.
    University of Oxford, England.
    Dang, Xiangnan
    MIT, USA.
    Bulovic, Vladimir
    MIT, USA.
    Snaith, Henry J.
    University of Oxford, England.
    Belcher, Angela M.
    MIT USA.
    Tailoring metal halide perovskites through metal substitution: influence on photovoltaic and material properties2017In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 10, no 1, p. 236-246Article in journal (Refereed)
    Abstract [en]

    We present herein an experimental screening study that assesses how partially replacing Pb in methylammonium lead triiodide perovskite films with nine different alternative, divalent metal species, B = {Co, Cu, Fe, Mg, Mn, Ni, Sn, Sr, and Zn}, influences photovoltaic performance and optical properties. Our findings indicate the perovskite film is tolerant to most of the considered homovalent metal species with lead-cobalt compositions yielding the highest power conversion efficiencies when less than 6% of the Pb2+ ions are replaced. Through subsequent materials characterisation, we demonstrate for the first time that partially substituting Pb2+ at the B-sites of the perovskite lattice is not restricted to Group IV elements but is also possible with at least Co2+. Moreover, adjusting the molar ratio of Pb: Co in the mixed-metal perovskite affords new opportunities to tailor the material properties while maintaining stabilised device efficiencies above 16% in optimised solar cells. Specifically, crystallographic analysis reveals that Co2+ incorporates into the perovskite lattice and increasing its concentration can mediate a crystal structure transition from the cubic to tetragonal phase at room-temperature. Likewise, Co2+ substitution continually modifies the perovskite work function and band edge energies without either changing the band gap or electronically doping the intrinsic material. By leveraging this orthogonal dimension of electronic tunability, we achieve remarkably high open-circuit voltages up to 1.08 V with an inverted device architecture by shifting the perovskite into a more favourable energetic alignment with the PEDOT: PSS hole transport material.

  • 33. Koroidov, Sergey
    et al.
    Anderlund, Magnus F.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Styring, Stenbjörn
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Thapper, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Messinger, Johannes
    First turnover analysis of water-oxidation catalyzed by Co-oxide nanoparticles2015In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 8, no 8, p. 2492-2503Article in journal (Refereed)
    Abstract [en]

    Co-oxides are promising water oxidation catalysts for artificial photosynthesis devices. Presently, several different proposals exist for how they catalyze O2 formation from water. Knowledge about this process at molecular detail will be required for their further improvement. Here we present time-resolved 18O-labelling isotope-ratio membrane-inlet mass spectrometry (MIMS) experiments to study the mechanism of water oxidation in Co/methylenediphosphonate (Co/M2P) oxide nanoparticles using [Ru(bpy)3]3+ (bpy = 2,2'-bipyridine) as chemical oxidant. We show that 16O–Co/M2P-oxide nanoparticles produce 16O2 during their first turnover after simultaneous addition of H218O and [Ru(bpy)3]3+, while sequential addition with a delay of 3 s yields oxygen reflecting bulk water 18O-enrichment. This result is interpreted to show that the O–O bond formation in Co/M2P-oxide nanoparticles occurs via intramolecular oxygen coupling between two terminal Co–OHn ligands that are readily exchangeable with bulk water in the resting state of the catalyst. Importantly, our data allow the determination of the number of catalytic sites within this amorphous nanoparticular material, to calculate the TOF per catalytic site and to derive the number of holes needed for the production of the first O2 molecule per catalytic site. We propose that the mechanism of O–O bond formation during bulk catalysis in amorphous Co-oxides may differ from that taking place at the surface of crystalline materials.

  • 34.
    Koroidov, Sergey
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Anderlund, Magnus F
    Styring, Stenbjörn
    Thapper, Anders
    Messinger, Johannes
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    First turnover analysis of water-oxidation catalyzed by Co-oxide nanoparticles2015In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 8, no 8, p. 2492-2503Article in journal (Refereed)
    Abstract [en]

    Co-oxides are promising water oxidation catalysts for artificial photosynthesis devices. Presently, several different proposals exist for how they catalyze O-2 formation from water. Knowledge about this process at molecular detail will be required for their further improvement. Here we present time-resolved O-18-labelling isotope-ratio membrane-inlet mass spectrometry (MIMS) experiments to study the mechanism of water oxidation in Co/methylenediphosphonate (Co/M2P) oxide nanoparticles using [Ru(bpy)(3)](3+) (bpy = 2,2'-bipyridine) as chemical oxidant. We show that O-16-Co/M2P-oxide nanoparticles produce O-16(2) during their first turnover after simultaneous addition of (H2O)-O-18 and [Ru(bpy)(3)](3+), while sequential addition with a delay of 3 s yields oxygen reflecting bulk water O-18-enrichment. This result is interpreted to show that the O-O bond formation in Co/M2P-oxide nanoparticles occurs via intramolecular oxygen coupling between two terminal Co-OHn ligands that are readily exchangeable with bulk water in the resting state of the catalyst. Importantly, our data allow the determination of the number of catalytic sites within this amorphous nanoparticular material, to calculate the TOF per catalytic site and to derive the number of holes needed for the production of the first O-2 molecule per catalytic site. We propose that the mechanism of O-O bond formation during bulk catalysis in amorphous Co-oxides may differ from that taking place at the surface of crystalline materials.

  • 35. Kronawitter, C. X.
    et al.
    Zegkinoglou, I.
    Shen, S. -H
    Liao, P.
    Cho, I. S.
    Zandi, O.
    Liu, Y. -S
    Lashgari, Koroush
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Westin, Gunnar
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Guo, J. -H
    Himpsel, F. J.
    Carter, E. A.
    Zheng, X. L.
    Hamann, T. W.
    Koel, B. E.
    Mao, S. S.
    Vayssieres, L.
    Titanium incorporation into hematite photoelectrodes: theoretical considerations and experimental observations2014In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 7, no 10, p. 3100-3121Article in journal (Refereed)
    Abstract [en]

    A theoretical and experimental perspective on the role of titanium impurities in hematite (alpha-Fe2O3) nanostructured photoelectrodes for solar fuel synthesis devices is provided. Titanium incorporation is a known correlate to efficiency enhancement in alpha-Fe2O3 cc photoanodes for solar water oxidation; here the relevant literature and the latest advances are presented and various proposed mechanisms for enhancement are contrasted. Available experimental evidence suggests that Ti incorporation increases net electron carrier concentrations in electrodes, most likely to the extent that (synthesis-dependent) charge compensating cation vacancies are not present. However, electron conductivity increases alone cannot quantitatively account for the large associated photoelectrochemical performance enhancements. The magnitudes of the effects of Ti incorporation on electronic and magnetic properties appear to be highly synthesis-dependent, which has made difficult the development of consistent and general mechanisms explaining experimental and theoretical observations. In this context, we consider how the electronic structure correlates with Ti impurity incorporation in alpha-Fe2O3 a from the perspective of synchrotron-based soft X-ray absorption spectroscopy measurements. Measurements are performed on sets of electrodes fabricated by five relevant and unrelated chemical and physical techniques. The effects of titanium impurities are reflected in the electronic structure through several universally observed spectral characteristics, irrespective of the synthesis techniques. Absorption spectra at the oxygen K-edge show that Ti incorporation is associated with new oxygen 2p-hybridized states, overlapping with and distorting the known unoccupied Fe 3d-O 2xp band of alpha-Fe2O3. This is an indication of mixing of Ti s and d states in the conduction band of alpha-Fe2O3. cc A comparison of spectra obtained with electron and photon detection shows that the effects of Ti incorporation on the conduction band are more pronounced in the near-surface region. Titanium L-2,L-3-edge absorption spectra show that titanium is incorporated into alpha-Fe2O3 as Ti4+ by all fabrication methods, with no long-range titania order detected. Iron L-2,L-3-edge absorption spectra indicate that Ti incorporation is not associated with the formation, of any significant concentrations of Fe2+, an observation common to many prior studies on this material system.

  • 36.
    Kylberg, William
    et al.
    Empa.
    Sonar, Prashant
    ASTAR.
    Heier, Jakob
    Empa.
    Tisserant, Jean-Nicolas
    Empa.
    Müller, Christian
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Nueesch, Frank
    Empa.
    Chen, Zhi-Kuan
    ASTAR.
    Dodabalapur, Ananth
    University of Texas Austin.
    Yoon, Songhak
    Empa.
    Hany, Roland
    Empa.
    Synthesis, thin-film morphology, and comparative study of bulk and bilayer heterojunction organic photovoltaic devices using soluble diketopyrrolopyrrole molecules2011In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 4, no 9, p. 3617-3624Article in journal (Refereed)
    Abstract [en]

    Diketopyrrolopyrrole (DPP)-based organic semiconductors EH-DPP-TFP and EH-DPP-TFPV with branched ethyl-hexyl solubilizing alkyl chains and end capped with trifluoromethyl phenyl groups were designed and synthesized via Suzuki coupling. These compounds show intense absorptions up to 700 nm, and thin film-forming characteristics that sensitively depend on the solvent and coating conditions. Both materials have been used as electron donors in bulk heterojunction and bilayer organic photovoltaic (OPV) devices with fullerenes as acceptors and their performance has been studied in detail. The best power conversion efficiency of 3.3% under AM1.5G illumination (100 mW cm(-2)) was achieved for bilayer solar cells when EH-DPP-TFPV was used with C(60), after a thermal annealing step to induce dye aggregation and interdiffusion of C(60) with the donor material. To date, this is one of the highest efficiencies reported for simple bilayer OPV devices.

  • 37. Li, Xueqiang
    et al.
    Wang, Mei
    Zheng, Dehua
    Han, Kai
    Dong, Jingfeng
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Photocatalytic H-2 production in aqueous solution with host-guest inclusions formed by insertion of an FeFe-hydrogenase mimic and an organic dye into cyclodextrins2012In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 5, no 8, p. 8220-8224Article in journal (Refereed)
    Abstract [en]

    Bio-inspired noble-metal-free supramolecular systems were constructed by host-guest inclusions of an FeFe-hydrogenase mimic and an organic dye into cyclodextrins respectively, which give typically a ninefold increase in the TON, a sixteenfold enhancement in the quantum efficiency, and a threefold extension in lifetime as compared to the same system in the absence of cyclodextrin for photocatalytic H-2 production in aqueous solution.

  • 38.
    Liu, Juzhe
    et al.
    Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Sch Chem, Beijing 100191, Peoples R China..
    Ji, Yongfei
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Theoretical Chemistry and Biology.
    Nai, Jianwei
    Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Sch Chem, Beijing 100191, Peoples R China..
    Niu, Xiaogang
    Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Sch Chem, Beijing 100191, Peoples R China..
    Luo, Yi
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology. Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China..
    Guo, Lin
    Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Sch Chem, Beijing 100191, Peoples R China..
    Yang, Shihe
    Hong Kong Univ Sci & Technol, Dept Chem, Kowloon, Hong Kong, Peoples R China.;Peking Univ, Shenzhen Grad Sch, Sch Chem Biol & Biotechnol, Guangdong Key Lab Nano Micromat Res, Shenzhen, Peoples R China..
    Ultrathin amorphous cobalt-vanadium hydr(oxy)oxide catalysts for the oxygen evolution reaction2018In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 11, no 7, p. 1736-1741Article in journal (Refereed)
    Abstract [en]

    Cost efficient and long-term stable catalysts are in great demand for the oxygen evolution reaction (OER), a key process involved in water splitting cells and metal-air batteries. Here, we demonstrate that the ultrathin amorphous cobalt-vanadium hydr(oxy)oxide we synthesized is a highly promising electrocatalytic material for the OER with a low overpotential of 0.250 V (even lower down to 0.215 V when supported on Au foam) at 10 mA cm(-2) and a long stable operation time (170 h) in alkaline media. In combination with in situ X-ray absorption spectral characterization and first-principles simulations, we reveal that the ultrathin, amorphous and alloyed structural characteristics have enabled its facile transformation to the desirable active phase, leading to a dramatically enhanced catalytic activity. Our finding highlights the remarkable advantages of the two-dimensional amorphous material and sheds new light on the design of high-performance electrocatalysts.

  • 39.
    Liu, Xufeng
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Miao, Rui
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Lindberg, Pia
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Lindblad, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Modular engineering for efficient photosynthetic biosynthesis of 1-butanol from CO2 in cyanobacteria2019In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 12, no 9, p. 2765-2777Article in journal (Refereed)
    Abstract [en]

    Cyanobacteria are photoautotrophic microorganisms which can be engineered to directly convert CO2 and water into biofuels and chemicals via photosynthesis using sunlight as energy. However, the product titers and rates are the main challenges that need to be overcome for industrial applications. Here we present systematic modular engineering of the cyanobacterium Synechocystis PCC 6803, enabling efficient biosynthesis of 1-butanol, an attractive commodity chemical and gasoline substitute. Through introducing and re-casting the 1-butanol biosynthetic pathway at the gene and enzyme levels, optimizing the 5 '-regions of expression units for tuning transcription and translation, rewiring the carbon flux and rewriting the photosynthetic central carbon metabolism to enhance the precursor supply, and performing process development, we were able to reach a cumulative 1-butanol titer of 4.8 g L-1 with a maximal rate of 302 mg L-1 day(-1) from the engineered Synechocystis. This represents the highest 1-butanol production from CO2 reported so far. Our multi-level modular strategy for high-level production of chemicals and advanced biofuels represents a blue-print for future systematic engineering in photosynthetic microorganisms.

  • 40. Lubitz, Wolfgang
    et al.
    Reijerse, Edward J
    Messinger, Johannes
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Solar water-splitting into H2 and O2: design principles of photosystem II and hydrogenases2008In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 1, no 1, p. 15-31Article in journal (Refereed)
    Abstract [en]

    This review aims at presenting the principles of water-oxidation in photosystem II and of hydrogen production by the two major classes of hydrogenases in order to facilitate application for the design of artificial catalysts for solar fuel production.

  • 41.
    Pati, Palas Baran
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Damas, Giane
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Tian, Lei
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Fernandes, Daniel L. A.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Zhang, Lei
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Bayrak Pehlivan, Ilknur
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Edvinsson, Tomas
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Araujo, Carlos Moyses
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Tian, Haining
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    An experimental and theoretical study of an efficient polymer nano-photocatalyst for hydrogen evolution2017In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 10, no 6, p. 1372-1376Article in journal (Refereed)
    Abstract [en]

    In this work, we report a highly efficient organic polymer nano-photocatalyst for light driven proton reduction. The system renders an initial rate of hydrogen evolution up to 50 +/- 0.5 mmol g(-1) h(-1), which is the fastest rate among all other reported organic photocatalysts. We also experimentally and theoretically prove that the nitrogen centre of the benzothiadiazole unit plays a crucial role in the photocatalysis and that the Pdots structure holds a close to ideal geometry to enhance the photocatalysis.

  • 42.
    Pazoki, Meysam
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Cappel, Ute B.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Johansson, Erik M. J.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Hagfeldt, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry. Ecole Polytech Fed Lausanne, Lab Photomol Sci, SB ISIC LSPM, Chemin Alambics, Lausanne, Switzerland..
    Boschloo, Gerrit
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Characterization techniques for dye-sensitized solar cells2017In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 10, no 3, p. 672-709Article, review/survey (Refereed)
    Abstract [en]

    Dye-sensitized solar cells (DSCs) have been widely studied in the last two decades and start to be commercialized in the photovoltaic market. Comprehensive characterization is needed to fully understand and optimize the device performance and stability. In this review, we summarize different characterization methods for dye-sensitized solar cells with liquid redox electrolytes or solid state hole transporting materials, most of which can also be used for similar devices such as perovskite based thin film solar cells. Limitations and advantages of relevant methods for studying the energy levels and time scales involved in charge transfer processes as well as charge transport related characteristic lengths are discussed. A summary of recent developments in DSCs and the importance of measured parameters for the device optimization procedure are mentioned at the end.

  • 43. Pazoki, Meysam
    et al.
    Cappel, Ute B.
    Uppsala University, Sweden.
    Johansson, Erik M. J.
    Hagfeldt, Anders
    Boschloo, Gerrit
    Characterization techniques for dye-sensitized solar cells2017In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 10, no 3, p. 672-709Article in journal (Refereed)
    Abstract [en]

    Dye-sensitized solar cells (DSCs) have been widely studied in the last two decades and start to be commercialized in the photovoltaic market. Comprehensive characterization is needed to fully understand and optimize the device performance and stability. In this review, we summarize different characterization methods for dye-sensitized solar cells with liquid redox electrolytes or solid state hole transporting materials, most of which can also be used for similar devices such as perovskite based thin film solar cells. Limitations and advantages of relevant methods for studying the energy levels and time scales involved in charge transfer processes as well as charge transport related characteristic lengths are discussed. A summary of recent developments in DSCs and the importance of measured parameters for the device optimization procedure are mentioned at the end.

  • 44.
    Pettersson, Henrik
    et al.
    RISE, Swerea, Swerea IVF.
    Nonomura, K.
    Uppsala University.
    Kloo, L.
    KTH Royal Institute of Technology.
    Hagfeldt, A.
    Uppsala University.
    Trends in patent applications for dye-sensitized solar cells2012In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 5, no 6, p. 7376-7380Article in journal (Refereed)
    Abstract [en]

    Dye-sensitized solar cell (DSC) technology has grown into a massive field of research and development with a fast increasing number of scientific publications and patent applications. We have created a database for patents and patent applications that deal with dye-sensitized solar cell technology. In this paper the database has been used to analyze the number of patent applications over time, as well as technical, organizational, and geographical trends in patent applications for dye-sensitized solar cells. Activity in relation to DSC patents seriously took off after the millennium, with the majority of DSC patent applications coming from Asia. Almost 90% of the documents in the database derive from Japan, China, and Korea. From a technical perspective, approximately 75% of the DSC patent applications deal with DSC materials, mainly semiconductor materials, dyes, electrolytes, and device substrates. The DSC patent situation is complex and we recommend any potential manufacturer of DSC devices and/or DSC components to carefully analyze their freedom-to-operate. © 2012 The Royal Society of Chemistry.

  • 45. Pettersson, Henrik
    et al.
    Nonomura, Kazuteru
    Kloo, Lars
    Hagfeldt, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Trends in patent applications for dye-sensitized solar cells2012In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 5, no 6, p. 7376-7380Article in journal (Refereed)
    Abstract [en]

    Dye-sensitized solar cell (DSC) technology has grown into a massive field of research and development with a fast increasing number of scientific publications and patent applications. We have created a database for patents and patent applications that deal with dye-sensitized solar cell technology. In this paper the database has been used to analyze the number of patent applications over time, as well as technical, organizational, and geographical trends in patent applications for dye-sensitized solar cells. Activity in relation to DSC patents seriously took off after the millennium, with the majority of DSC patent applications coming from Asia. Almost 90% of the documents in the database derive from Japan, China, and Korea. From a technical perspective, approximately 75% of the DSC patent applications deal with DSC materials, mainly semiconductor materials, dyes, electrolytes, and device substrates. The DSC patent situation is complex and we recommend any potential manufacturer of DSC devices and/or DSC components to carefully analyze their freedom-to-operate.

  • 46. Pettersson, Henrik
    et al.
    Nonomura, Kazuteru
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Hagfeldt, Anders
    Trends in patent applications for dye-sensitized solar cells2012In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 5, no 6, p. 7376-7380Article in journal (Refereed)
    Abstract [en]

    Dye-sensitized solar cell (DSC) technology has grown into a massive field of research and development with a fast increasing number of scientific publications and patent applications. We have created a database for patents and patent applications that deal with dye-sensitized solar cell technology. In this paper the database has been used to analyze the number of patent applications over time, as well as technical, organizational, and geographical trends in patent applications for dye-sensitized solar cells. Activity in relation to DSC patents seriously took off after the millennium, with the majority of DSC patent applications coming from Asia. Almost 90% of the documents in the database derive from Japan, China, and Korea. From a technical perspective, approximately 75% of the DSC patent applications deal with DSC materials, mainly semiconductor materials, dyes, electrolytes, and device substrates. The DSC patent situation is complex and we recommend any potential manufacturer of DSC devices and/or DSC components to carefully analyze their freedom-to-operate.

  • 47. Preat, Julien
    et al.
    Hagfeldt, Anders
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Perpete, Eric A.
    Investigation of the photoinduced electron injection processes for p-type triphenylamine-sensitized solar cells2011In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 4, no 11, p. 4537-4549Article in journal (Refereed)
    Abstract [en]

    We have carried out theoretical investigation aiming at modelling the assessment of mechanisms of photoinduced processes in a recent p-type organic metal-free dye derived from the triphenylamine (P-1) structure. In the P-1 system, one uses the triphenylamine moiety as the electron donor, malononitrile as the electron acceptor, and a thiophene that plays the role of the conjugated chain. Basically, the difference between the P-1 dye and the common organic dyes used in the n-type DSSC field is the anchoring group located on the electron donor group. In a first step, DFT and TDDFT approaches have been exploited to calculate the key parameters controlling both the intramolecular charge transfer (ICT) and hole transfer rate constants in the Gurney-Gerischer-Marcus (GGM) formalism, for either a solvent-controlled adiabatic or a nonadiabatic electron transfer. These are: (i) the electronic coupling; (ii) the reorganization energies; and (iii) the variation of the Gibbs energy. The gathered results are in agreement with the experimental trends. (i) The vertical ICT excited states energy has been calculated at 2.67 eV, in perfect line with the experiment (2.65 eV). (ii) Two mechanisms can be conceived for the hole transfer and regeneration process. The first deals with the reduction of dye molecule at the excited state followed by an electron transfer from the reduced dye to the oxidized regenerator. The second implies a redox reaction between the excited dye and the oxidized regenerator, followed by an electron transfer from the cathode to the oxidized dye. (iii) Our theoretical investigation suggests that the first mechanism is dominant. Secondly, we propose structural modifications improving the TPA-based DSSCs hole transfer efficiency and we show that an additional -CN graft on the malononitrile unit combined to the functionalisation of the TPA moieties by -OMe groups (to give P-1b) should significantly improve the key parameters related to the electron injection. Indeed, for P-1b, we have noticed an increase of both the RLHE factor (0.907) and the injection driving force (-0.33 eV). This dye is therefore expected to be a very promising molecule in the p-type DSSC field.

  • 48. Preat, Julien
    et al.
    Hagfeldt, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Physical and Analytical Chemistry, Physical Chemistry.
    Perpete, Eric A.
    Investigation of the photoinduced electron injection processes for p-type triphenylamine-sensitized solar cells2011In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 4, no 11, p. 4537-4549Article in journal (Refereed)
    Abstract [en]

    We have carried out theoretical investigation aiming at modelling the assessment of mechanisms of photoinduced processes in a recent p-type organic metal-free dye derived from the triphenylamine (P-1) structure. In the P-1 system, one uses the triphenylamine moiety as the electron donor, malononitrile as the electron acceptor, and a thiophene that plays the role of the conjugated chain. Basically, the difference between the P-1 dye and the common organic dyes used in the n-type DSSC field is the anchoring group located on the electron donor group. In a first step, DFT and TDDFT approaches have been exploited to calculate the key parameters controlling both the intramolecular charge transfer (ICT) and hole transfer rate constants in the Gurney-Gerischer-Marcus (GGM) formalism, for either a solvent-controlled adiabatic or a nonadiabatic electron transfer. These are: (i) the electronic coupling; (ii) the reorganization energies; and (iii) the variation of the Gibbs energy. The gathered results are in agreement with the experimental trends. (i) The vertical ICT excited states energy has been calculated at 2.67 eV, in perfect line with the experiment (2.65 eV). (ii) Two mechanisms can be conceived for the hole transfer and regeneration process. The first deals with the reduction of dye molecule at the excited state followed by an electron transfer from the reduced dye to the oxidized regenerator. The second implies a redox reaction between the excited dye and the oxidized regenerator, followed by an electron transfer from the cathode to the oxidized dye. (iii) Our theoretical investigation suggests that the first mechanism is dominant. Secondly, we propose structural modifications improving the TPA-based DSSCs hole transfer efficiency and we show that an additional -CN graft on the malononitrile unit combined to the functionalisation of the TPA moieties by -OMe groups (to give P-1b) should significantly improve the key parameters related to the electron injection. Indeed, for P-1b, we have noticed an increase of both the RLHE factor (0.907) and the injection driving force (-0.33 eV). This dye is therefore expected to be a very promising molecule in the p-type DSSC field.

  • 49. Qiu, Zhen
    et al.
    Tai, Cheuk-Wai
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Niklasson, Gunnar A.
    Edvinsson, Tomas
    Direct observation of active catalyst surface phases and the effect of dynamic self-optimization in NiFe-layered double hydroxides for alkaline water splitting2019In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 12, no 2, p. 572-581Article in journal (Refereed)
    Abstract [en]

    Earth-abundant transition metal-based compounds are of high interest as catalysts for sustainable hydrogen fuel generation. The realization of effective electrolysis of water, however, is still limited by the requirement of a high sustainable driving potential above thermodynamic requirements. Here, we report dynamically self-optimized (DSO) NiFe layered double hydroxide (LDH) nanosheets with promising bi-functional performance. Compared with pristine NiFe LDH, DSO NiFe LDH exhibits much lower overpotential for the hydrogen evolution reaction (HER), even outperforming platinum. Under 1 M KOH aqueous electrolyte, the bi-functional DSO catalysts show an overpotential of 184 and -59 mV without iR compensation for oxygen evolution reaction (OER) and HER at 10 mA cm(-2). The material system operates at 1.48 V and 1.29 V to reach 10 and 1 mA cm(-2) in two-electrode measurements, corresponding to 83% and 95% electricity-to-fuel conversion efficiency with respect to the lower heating value of hydrogen. The material is seen to dynamically reform the active phase of the surface layer during HER and OER, where the pristine and activated catalysts are analyzed with ex situ XPS, SAED and EELS as well as with in situ Raman spectro-electrochemistry. The results show transformation into different active interfacial species during OER and HER, revealing a synergistic interplay between iron and nickel in facilitating water electrolysis.

  • 50.
    Qiu, Zhen
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Tai, Cheuk-Wai
    Stockholm Univ, Dept Mat & Environm Chem, SE-10691 Stockholm, Sweden.
    Niklasson, Gunnar
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Edvinsson, Tomas
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Direct observation of active catalyst surface phases and the effect of dynamic self-optimization in NiFe-layered double hydroxides for alkaline water splitting2019In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 12, no 2, p. 572-581Article in journal (Refereed)
    Abstract [en]

    Earth-abundant transition metal-based compounds are of high interest as catalysts for sustainable hydrogen fuel generation. The realization of effective electrolysis of water, however, is still limited by the requirement of a high sustainable driving potential above thermodynamic requirements. Here, we report dynamically self-optimized (DSO) NiFe layered double hydroxide (LDH) nanosheets with promising bi-functional performance. Compared with pristine NiFe LDH, DSO NiFe LDH exhibits much lower overpotential for the hydrogen evolution reaction (HER), even outperforming platinum. Under 1 M KOH aqueous electrolyte, the bi-functional DSO catalysts show an overpotential of 184 and -59 mV without iR compensation for oxygen evolution reaction (OER) and HER at 10 mA cm(-2). The material system operates at 1.48 V and 1.29 V to reach 10 and 1 mA cm(-2) in two-electrode measurements, corresponding to 83% and 95% electricity-to-fuel conversion efficiency with respect to the lower heating value of hydrogen. The material is seen to dynamically reform the active phase of the surface layer during HER and OER, where the pristine and activated catalysts are analyzed with ex situ XPS, SAED and EELS as well as with in situ Raman spectro-electrochemistry. The results show transformation into different active interfacial species during OER and HER, revealing a synergistic interplay between iron and nickel in facilitating water electrolysis.

12 1 - 50 of 74
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf