Change search
Refine search result
1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Aghaali, Habib
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Internal Combustion Engines.
    Ångström, Hans-Erik
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Internal Combustion Engines.
    Performance Sensitivity to Exhaust Valves and Turbine Parameters on a Turbocompound Engine with Divided Exhaust Period2014In: SAE International Journal of Engines, ISSN 1946-3936, E-ISSN 1946-3944, Vol. 7, no 4, p. 1722-1733Article in journal (Refereed)
    Abstract [en]

    Turbocompound can utilize part of the exhaust energy on internal combustion engines; however, it increases exhaust back pressure, and pumping loss.  To avoid such drawbacks, divided exhaust period (DEP) technology is combined with the turbocompound engine. In the DEP concept the exhaust flow is divided between two different exhaust manifolds, blowdown and scavenging, with different valve timings. This leads to lower exhaust back pressure and improves engine performance.

    Combining turbocompound engine with DEP has been theoretically investigated previously and shown that this reduces the fuel consumption and there is a compromise between the turbine energy recovery and the pumping work in the engine optimization. However, the sensitivity of the engine performance has not been investigated for all relevant parameters. The main aim of this study is to analyze the sensitivity of this engine architecture in terms of break specific fuel consumption to different parameters concerning the gas exchange such as blowdown valve timing, scavenging valve timing, blowdown valve size, scavenging valve size, discharge coefficients of blowdown and scavenging ports, turbine efficiency, turbine size and power transmission efficiency. This study presents the sensitivity analysis of the turbocompound DEP engine to these parameters and defines a set of important parameters that should be examined in experimental studies.

  • 2.
    Binder, Christian
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Internal Combustion Engines. Scania CV AB.
    Abou Nada, Fahed
    Lund University.
    Richter, Mattias
    Lund University.
    Cronhjort, Andreas
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Internal Combustion Engines.
    Norling, Daniel
    Scania CV AB.
    Heat Loss Analysis of a Steel Piston and a YSZ Coated Piston in a Heavy-Duty Diesel Engine Using Phosphor Thermometry Measurements2017In: SAE International Journal of Engines, ISSN 1946-3936, E-ISSN 1946-3944, Vol. 10, no 4, p. 1954-1968Article in journal (Refereed)
    Abstract [en]

    Diesel engine manufacturers strive towards further efficiency improvements. Thus, reducing in-cylinder heat losses is becoming increasingly important. Understanding how location, thermal insulation, and engine operating conditions affect the heattransfer to the combustion chamber walls is fundamental for the future reduction of in-cylinder heat losses. This study investigates the effect of a 1mm-thick plasma-sprayed yttria-stabilized zirconia (YSZ) coating on a piston. Such a coated piston and a similar steel piston are compared to each other based on experimental data for the heat release, the heat transfer rate to the oil in the piston cooling gallery, the local instantaneous surface temperature, and the local instantaneous surface heat flux. The surface temperature was measured for different crank angle positions using phosphor thermometry. The fuel was chosen to be n-heptane to facilitate surface temperature measurements during non-skip-fire, thermally stabilized operating conditions. Assuming one-dimensional heat transfer inside each piston, the local instantaneous surface heat flux was calculated using the heat transfer rate to the oil in the piston cooling gallery and the surface temperature measurements. The results from this study show that the surface temperature variation is similar for both pistons. The instantaneous heat flux during combustion is however significantly greater for the steel piston than the coated piston. The heat release analysis also indicates that combustion is slower for the piston with the yttria-stabilized zirconia coating.

  • 3.
    Boden, Hans
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
    IC-Engine Exhaust and Intake System Acoustic Source Characterization2014In: SAE International Journal of Engines, ISSN 1946-3936, E-ISSN 1946-3944, Vol. 7, no 3, p. 1579-1584Article in journal (Refereed)
    Abstract [en]

    The paper gives an overview of techniques used for characterization of IC-engines as acoustic sources of exhaust and intake system noise. Some recent advances regarding nonlinear source models are introduced and discussed. To calculate insertion loss of mufflers or the level of radiated sound information about the engine as an acoustic source is needed. The source model used in the low frequency plane wave range is often the linear time invariant one-port model. The acoustic source data is obtained from experimental tests or from 1-D CFD codes describing the engine gas exchange process. The IC-engine is a high level acoustic source and in most cases not completely linear. It is therefore of interest to have models taking weak non-linearity into account while still maintaining a simple method for interfacing the source model with a linear frequency domain model for the attached exhaust or intake system. The use of source characterization in acoustic design of mufflers is also briefly discussed.

  • 4.
    Eriksson, Lars
    et al.
    Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, Faculty of Science & Engineering.
    Lindell, Tobias
    Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, Faculty of Science & Engineering.
    Leufvén, Oskar
    Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, Faculty of Science & Engineering.
    Thomasson, Andreas
    Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, Faculty of Science & Engineering.
    Scalable Component-Based Modeling for Optimizing Engines with Supercharging, E-Boost and Turbocompound Concepts2012In: SAE International Journal of Engines, ISSN 1946-3936, E-ISSN 1946-3944, Vol. 5, no 2, p. 579-595Article in journal (Refereed)
    Abstract [en]

    Downsizing and turbocharging is a proven technology for fuel consumption reduction in vehicles. To further improve the performance, electrified components in the turbocharger arrangements have been proposed, and investigations have shown acceleration improvements, emission reductions, and further fuel conversion efficiency benefits. Simulation tools play an important role in the design process as the interplay between component selection, control strategy, system properties and constraints is very complex. Evaluations are performed with respect to BSFC map, fuel consumption in a drive cycle, acceleration performance, as well as many other aspects. A component-based engine and vehicle model is developed and evaluated to facilitate the process of assessing and optimizing the performance of e.g. engine, charging system, and electrical machine components. Considerations of the execution time and model fidelity have resulted in a choice of models in the mean value engine model family. The turbocharging and electrical system models have all been evaluated using experimental data from engine dynamometer tests and turbocharger gas stand measurements and other dedicated component measurements.

  • 5.
    Eriksson, Lars
    et al.
    Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, Faculty of Science & Engineering.
    Sivertsson, Martin
    Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, Faculty of Science & Engineering.
    Calculation of Optimal Heat Release Rates under Constrained Conditions2016In: SAE International Journal of Engines, ISSN 1946-3936, E-ISSN 1946-3944, Vol. 9, no 2, p. 1143-1162Article in journal (Refereed)
    Abstract [en]

    The work extends a methodology, for searching for optimal heat release profiles, by adding complex constraints on states. To find the optimum heat release profile a methodology, that uses available theory and methods, was developed that enables the use of state of the art optimal control software to find the optimum combustion trace for a model. The methodology is here extended to include constraints and the method is then applied to study how sensitive the solution is to different effects such as heat transfer, crevice flow, maximum rate of pressure rise, maximum pressure, knock and NO generation. The Gatowski single zone model is extended to a pseudo two zone model, to get an unburned zone that is used to describe the knocking and a burned zone for NO generation. A modification of the extended Zeldovich mechanism that makes it continuously differentiable, is used for NO generation. Previous results showed that the crevice effect had a significant influence on the shape for the unconstrained case where a two mode combustion was seen, one initial pressure rise and one constant pressure phase. Here it is shown that it still has a significant influence on the appearance until the maximum pressure limit is reached and becomes the dominating constraint. In the unconstrained case no conditions had combustion before TDC all started after, but when limitations are considered and come into play the combustion can now start before TDC to avoid excessive losses during the expansion. When introducing constraints on the NO formation through the extended Zeldovich mechanism the combustion takes the shape of a three mode combustion, one initial rapid burning, one later rapid burning and a constant pressure phase. In summary it is shown that the methodology is able to cope with the introduced constraints.

  • 6.
    Eriksson, Lars
    et al.
    Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, Faculty of Science & Engineering.
    Sivertsson, Martin
    Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, Faculty of Science & Engineering.
    Computing Optimal Heat Release Rates in Combustion Engines2015In: SAE International Journal of Engines, ISSN 1946-3936, E-ISSN 1946-3944, Vol. 8, no 2Article in journal (Refereed)
    Abstract [en]

    The combustion process has a high impact on the engine efficiency, and in the search for efficient engines it is of interest to study the combustion. Optimization and optimal control theory is used to compute the most efficient combustion profiles for single zone model with heat transfer and crevice effects. A model is first developed and tuned to experimental data, the model is a modification of the well known Gatowski-model (Gatowski et.al 1984). This model is selected since it gives a very good description of the in-cylinder pressure, and thus the produced work, and achieves this with a low computational complexity. This enables an efficient search method that can maximize the work to be developed. First, smooth combustion profiles are studied where the combustion is modeled using the Vibe function, and parametric optimization is used to search for the optimal profile. Then, the most efficient combustion process with a completely free combustion is studied with theory and software for optimal control. A parameter study is performed to analyze the impact of crevice volume and air/fuel ratio λ. The results show that the losses have a high impact on the behavior, which is natural, and that the crevice effect has a very distinct effect on the optimal combustion giving a two mode appearance similar to the Seiliger cycle.

  • 7.
    Kerres, Bertrand
    et al.
    KTH, School of Industrial Engineering and Management (ITM).
    Mihaescu, Mihai
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Industrial Engineering and Management (ITM), Centres, Competence Center for Gas Exchange (CCGEx). KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Gancedo, Matthieu
    Univ. of Cincinnati.
    Gutmark, Ephraim
    Aerospace Engineering, University of Cincinnati.
    Optimal Pressure based Detection of Compressor Instabilities using the Hurst Exponent2017In: SAE International Journal of Engines, ISSN 1946-3936, E-ISSN 1946-3944, Vol. 10, no 4, p. 1917-1926Article in journal (Refereed)
    Abstract [en]

    The compressor surge line of automotive turbochargers can limit the low-end torque of an engine. In order to determine how close the compressor operates to its surge limit, the Hurst exponent of the pressure signal has recently been proposed as a criterion. The Hurst exponent quantifies the fractal properties of a time series and its long-term memory. This paper evaluates the outcome of applying Hurst exponent based criterion on time-resolved pressure signals, measured simultaneously at different locations in the compression system. Experiments were performed using a truck-sized turbocharger on a cold gas stand at the University of Cincinnati. The pressure sensors were flush-mounted at different circumferential positions at the inlet of the compressor, in the diffuser and volute, as well as downstream of the compressor. Results show that the previously identified threshold value distinguishing between surge and stable operation when the analysis was carried out for a different and smaller compressor can be used also for this much larger compressor. The investigation concerning the sensor locations reveals that pressure sensors at the outlet or shortly upstream the volute tongue give the clearest distinction between fully stable operation and operation close to the surge line. Further investigations show that as currently implemented, the criterion would need a minimum sampling duration of 500 ms and sampling frequency of 512 Hz. An extended algorithm based on distinguishing between a mono- and multifractal pressure signal is shown to have potential as an early warning indicator.

  • 8.
    Kerres, Bertrand
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Nair, Vineeth
    KTH.
    Cronhjort, Andreas
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Internal Combustion Engines.
    Mihaescu, Mihai
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Industrial Engineering and Management (ITM), Centres, Competence Center for Gas Exchange (CCGEx). KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Analysis of the Turbocharger Compressor Surge Margin Using a Hurst-Exponent-based Criterion2016In: SAE International Journal of Engines, ISSN 1946-3936, E-ISSN 1946-3944, Vol. 9, no 3Article in journal (Refereed)
    Abstract [en]

    Turbocharger compressors are limited in their operating range at low mass flows by compressor surge, thus restricting internal combustion engine operation at low engine speeds and high mean effective pressures. Since the exact location of the surge line in the compressor map depends on the whole gas exchange system, a safety margin towards surge must be provided. Accurate early surge detection could reduce this margin. During surge, the compressor outlet pressure fluctuates periodically. The Hurst exponent of the compressor outlet pressure is applied in this paper as an indicator to evaluate how close to the surge limit the compressor operates. It is a measure of the time-series memory that approaches zero for anti-persistence of the time series. That is, a Hurst exponent close to zero means a high statistical preference that a high value is followed by a low value, as during surge. Maps of a passenger-car sized turbocharger compressor with inlet geometries that result in different surge lines are measured on a cold gas stand. It is demonstrated that the Hurst exponent in fact decreases as the compressor moves towards surge, and that a constant value of the Hurst exponent can be used as a threshold for stable operation. Transient pressure signals of the compressor entering surge are analyzed in order to evaluate the time lag until surge can be detected using the Hurst exponent. Two surge cycles are usually needed to detect unstable operation. However, since the amplitude of these oscillations is relatively small for the first cycles, detection is possible before the oscillations grow into deep surge.

  • 9.
    Llamas, Xavier
    et al.
    Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, Faculty of Science & Engineering.
    Eriksson, Lars
    Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, Faculty of Science & Engineering.
    Control-Oriented Compressor Model with Adiabatic Efficiency Extrapolation2017In: SAE International Journal of Engines, ISSN 1946-3936, E-ISSN 1946-3944, Vol. 10, no 4Article in journal (Refereed)
    Abstract [en]

    Downsizing and turbocharging with single or multiple stages has been one of the main solutions to decrease fuel consumption and harmful exhaust emissions, while keeping a sufficient power output. An accurate and reliable control-oriented compressor model can be very helpful during the development phase, as well as for engine calibration, control design, diagnostic purposes or observer design. A complete compressor model consisting of mass flow and efficiency models is developed and motivated. The proposed model is not only able to represent accurately the normal region measured in a compressor map but also it is capable to extrapolate to low compressor speeds. Moreover, the efficiency extrapolation is studied by analyzing the known problem with heat transfer from the hot turbine side, which introduces errors in the measurements done in standard gas stands. Since the parameterization of the model is an important and necessary step in the modeling, a tailored parameterization approach is presented based on Total Least Squares. A standard compressor map is the only data required to parameterize the model. The parameterization is tested with a database of more than 230 compressor maps showing that it can deal well with different compressor sizes and characteristics. Also, general initialization values for the model parameters are provided using the complete database parameterization results. The results show that the model accuracy is good and in general achieves relative errors below one percent. A comparison of the model accuracy for compressor maps with and without heat transfer influence is carried out, showing a similar model accuracy for both cases but better when no heat transfer is present. Furthermore, it is shown that the model is capable to predict the efficiency characteristics at low speed of two compressor maps, measured with near adiabatic conditions.

  • 10.
    Nilsson, Tomas
    et al.
    Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, The Institute of Technology.
    Fröberg, Anders
    Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, The Institute of Technology.
    Åslund, Jan
    Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, The Institute of Technology.
    Optimal Operation of a Turbocharged Diesel Engine during Transients2012In: SAE International Journal of Engines, ISSN 1946-3936, E-ISSN 1946-3944, Vol. 5, no 2, p. 571-578Article in journal (Refereed)
    Abstract [en]

    Recent development has renewed the interest in drivetrain concepts which give a higher degree of freedom by disconnecting the engine and vehicle speeds. This freedom raises the demand for active control, which especially during transients is not trivial but of which the quality is crucial for the success of the drivetrain concept. In this work the fuel optimal solution for a turbocharged diesel engine connected to a load which does not restrict the engine speed is derived, analysed and utilized for finding a suboptimal operating point trajectory. We use a Willan s efficiency model for the engine, expanded with a first order delay dependent torque reduction representing the turbocharger pressure, and study different output power transients. The analysis is made with dynamic programming, Pontryagin’s maximum principle and a suboptimal strategy based on the static optimal operating points. We present a method for using Pontryagin’s maximum principle for deriving the optimal operating point trajectory. The time needed for computation was reduced a factor >100 compared to dynamic programming, but this method is only applicable to load cases with steps between different high output powers. We also present a suboptimal method which shows a <1% increase in fuel consumption compared to the optimal, while reducing the time needed for computation a factor >1000 compared to dynamic programming.

  • 11.
    Tiikoja, Heiki
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, MWL Flow acoustics. KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Marcus Wallenberg Laboratory MWL.
    Rämmal, Hans
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Marcus Wallenberg Laboratory MWL.
    Åbom, Mats
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, MWL Flow acoustics. KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Marcus Wallenberg Laboratory MWL.
    Bodén, Hans
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, MWL Flow acoustics. KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Marcus Wallenberg Laboratory MWL.
    Investigations of automotive turbo-charger acoustics2011In: SAE International Journal of Engines, ISSN 1946-3936, E-ISSN 1946-3944, Vol. 4, no 2, p. 2531-2542Article in journal (Refereed)
    Abstract [en]

    In this paper an overview of recent experimental studies performed at KTH on the sound transmission and sound generation in turbochargers is presented. The compressor and turbine of the turbochargers are treated as acoustic active 2-ports and characterized using the unique experimental test facility established at KTH. The 2-port model is limited to the plane wave range so for higher frequencies the propagating acoustic power is estimated using an average based on pressure cross-spectra. A number of automotive turbochargers have been studied for a variety of operating conditions systematically selected from the compressor and turbine charts. The paper discusses the experimental procedures including special techniques implemented to improve the quality of the data. Results from a number of experiments on various modern automotive turbochargers including a unit with variable turbine geometry (VTG) are presented.

  • 12.
    Wahlström, Johan
    et al.
    Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, Faculty of Science & Engineering.
    Eriksson, Lars
    Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, Faculty of Science & Engineering.
    Nonlinear Input Transformation for EGR and VGT Control in Diesel Engines2010In: SAE International Journal of Engines, ISSN 1946-3936, E-ISSN 1946-3944, Vol. 3, no 2, p. 288-305Article in journal (Refereed)
    Abstract [en]

    In diesel engines with EGR and VGT, the gas flow dynamics has significant nonlinear effects. This is shown by analyzing DC-gains in different operating points showing that these gains have large variations. To handle these nonlinear effects, a nonlinear state dependent input transformation is investigated. This input transformation is achieved through inversion of the models for EGR-flow and turbine flow. It is shown that the input transformation handles the nonlinear effects and decreases the variations in DC-gains substantially. The input transformation is combined with a new control structure that has a pumping work minimization feature and consists of PID controllers and min/max-selectors for coordinated control of EGR-fraction and oxygen/fuel ratio. The EGR flow and the exhaust manifold pressure are chosen as feedback variables in this structure. Further, the set-points for EGR-fraction and oxygen/fuel ratio are transformed to set-points for the feedback variables. In order to handle model errors in this set-point transformation, an integral action on oxygen/fuel ratio is proposed in an outer loop. An experimental validation and comparison with a control structure without input transformation shows that the proposed structure reduces EGR-errors at the expense of increased pumping losses. In addition the comparison shows that the input transformation improves the performance and achieves the same step response for different flow conditions, thus handling the nonlinear effects.

  • 13.
    Zhang, Zhe
    et al.
    KTH, School of Engineering Sciences (SCI).
    Åbom, Mats
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
    Bodén, Hans
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
    Karlsson, Mikael
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
    Katoshevski, D.
    Particle Number Reduction in Automotive Exhausts Using Acoustic Metamaterials2017In: SAE International Journal of Engines, ISSN 1946-3936, E-ISSN 1946-3944, Vol. 10, no 4, p. 1566-1572Article in journal (Refereed)
    Abstract [en]

    Air pollution caused by exhaust particulate matter (PM) from vehicular traffic is a major health issue. Increasingly strict regulations of vehicle emission have been introduced and efforts have been put on both the suppression of particulate formation inside the engine cylinders and the development of after-treatment technologies such as filters. With modern direct injected engines that produce a large number of really small sub-micron particles, the focus has increased even further and now also includes a number count.The problem of calculating particle trajectories in flow ducts like vehicle exhaust systems is challenging but important to further improve the technology. The interaction between particles and oscillating flows may lead to the formation of particle groups (regions where the particle concentration is increased), yielding a possibility of realizing particle agglomeration. The oscillating flow may simply be hydrodynamic or as assumed here: the flow oscillations are created by sound propagation rather than hydrodynamic approaches. An analysis is presented which gives the relationship between the speed of sound, the mean flow velocity and the amplitude of the acoustic particle velocity for particle agglomeration to be feasible. It is shown that it can be achieved if the convective speed of sound is reduced to the same order as the mean flow velocity. It is therefore suggested to use the so-called acoustic metamaterials, which can help control, direct and manipulate sound waves. At this stage a phenomenological 1D model is used for the analysis, which allows the authors to build an understanding of the effect of the sound waves and flow oscillations on particle motion and paves the way for further analysis on particle agglomeration.

1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf