Change search
ReferencesLink to record
Permanent link

Direct link
Fatigue Behaviour of RC beams Strengthened with CFRP: Analytical and Experimental investigations
Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Construction Engineering.
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Repeated cyclic loading of reinforced concrete (RC) structures such as bridges can cause reduced service life and structure failure due to fatigue even when the stress ranges applied to the structural components are very low. These problems can be mitigated by using fiber-reinforced polymer (FRP) composites to increase the structures’ load carrying capacity and fatigue life or service life. Strengthening of this sort may be a suitable way to prolong the service life of concrete structures. FRP strengthening involves externally bonding a plate, sheet or rod of the strengthening material to the surface of the concrete member or placing the strengthening element in grooves cut into the member’s surface. The bonding of plates or sheets to the surface is often referred to as EBR (externally bonded reinforcement) whereas the placement of strengthening bars in grooves carved into the member’s surface is referred to as NSM (Near Surface Mounted) reinforcement. When this research project was initiated, it was not clear whether EBR or NSM strengthening was more effective at alleviating the effects of fatigue loading, and there were many aspects of their use that warranted further investigation. The main objectives of the work presented in this thesis were to study the behaviour of materials and structures under fatigue loading, to assess the structural challenges presented by fatigue loading of members strengthened with EBR plates or NSM bars, and to identify analytical models suitable for the design and analysis of FRP-strengthening elements and strengthened concrete members. The scientific approach adopted in this work is based on experimental fatigue loading tests of RC beams strengthened with EBR plates and NSM bars together with the development and assessment of analytical methods for describing the fatigue behaviour of tested strengthened beams and numerical models for predicting the behaviour of bond joints under fatigue loading. The analytical models were then verified against experimental results. The theoretical and experimental studies were supported by a state-of-the-art literature review that was conducted to gather existing knowledge concerning FRP strengthening of RC members and their fatigue behaviour at the material and structural levels

Place, publisher, year, edition, pages
Luleå tekniska universitet, 2015. , 138 p.
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
Research subject
Structural Engineering
URN: urn:nbn:se:ltu:diva-26738Local ID: fdcd24f9-cd32-46c1-821b-11ae03900ad9ISBN: 978-91-7583-234-0ISBN: 978-91-7583-235-7 (PDF)OAI: diva2:999908
Godkänd; 2015; 20150218 (mohsal); Nedanstående person kommer att disputera för avläggande av teknologie doktorsexamen. Namn: Mohammed Salih Mohammed Mahal Ämne: Konstruktionsteknik/Structural Engineering Avhandling: Fatigue Behaviour of RC Beams Strengthened with CFRP – Analytical and Experimental Investigations Opponent: Professor Pilate Moyo, Department of Civil Engineering, University of cape Town, South Africa Ordförande: Professor Björn Täljsten, Avd för byggkonstruktion och produktion, Institutionen för samhällsbyggnad och naturresurser, Luleå tekniska universitet Tid: Fredag den 27 mars 2015, kl 10.00 Plats: F1031, Luleå tekniska universitetAvailable from: 2016-09-30 Created: 2016-09-30Bibliographically approved

Open Access in DiVA

fulltext(50876 kB)0 downloads
File information
File name FULLTEXT01.pdfFile size 50876 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Mahal, Mohammed
By organisation
Structural and Construction Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

ReferencesLink to record
Permanent link

Direct link