Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Microstructural characterization and hardening behavior of reactive magnetron sputtered TiN/Si₃N₄ multilayer thin films
2004 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

This licentiate thesis adds a new piece to the puzzle that describes how the microstructural characteristics influence the hardness behavior of a multilayer coating. It contains a presentation of the manufacturing and the subsequent characterization of multilayer thin films. These multilayers consist of alternating layers of crystalline titanium nitride (TiN) and amorphous silicon nitride (Si3N4), deposited with a physical vapor deposition technique referred to as reactive magnetron sputtering. The microstructure of as-deposited films was examined with cross-sectional transmission electron microscopy (XTEM) and x-ray diffraction (XRD). XRD studies revealed a transition in preferred orientation for TiN, from a pure 002 orientation to a mixed 111/002 orientation as the TiN layer thickness increased from 4.5 nm to 9.8 nm. XTEM studies showed a microstructure consisting of equiaxed or elongated TiN grains, depending on layer thickness, limited in size by the amorphous interlayers. Selected area diffraction verified the observed transition in preferred orientation in TiN. For small silicon nitride layer thicknesses (~0.3 nm) an epitaxial stabilization of Si3N4 to the crystalline TiN lattice was observed through high resolution electron microscopy studies. Instead of amorphous interlayers a cubic silicon nitride rich phase (SiNx) was observed. This is to the present knowledge of the author the first time this phenomenon has been observed within this material system. In order to explain the observed behavior a model based on the involved energies were developed. Nanoindentation was performed to evaluate the mechanical behavior of the coatings as the layer thicknesses varied. All multilayers were harder than the monolithic TiN film, which had a hardness of 18 GPa compared to 32 GPa for the hardest multilayer. An interesting observation was that the hardest multilayer corresponds to the presence of cubic silicon nitride. Curvature measurements were performed and showed that the residual stresses within the multilayers were compressive and relatively constant, 1.3±0.7 GPa. In addition to the XTEM studies of as-deposited samples, XTEM studies of deformed multilayers were also conducted. The 300 mN load produced plastic deformation in the substrate under the indent. Cracks within the multilayer normally propagated along TiN/Si3N4 interfaces, which suggest that a lower energy is needed for cracking along an interface compared to intralayer cracking. The observed hardness increase can be ascribed to the multilayered structure of these films. By the interruption of TiN growth with intermittent Si3N4 layers the produced microstructure consisted of small TiN grains, separated in the growth direction by amorphous or crystalline interlayers. Small grains are known to contribute to hardening, but the interlayers also contribute, acting as dislocation obstacles either due to the amorphous tissue or to coherency stresses.

Place, publisher, year, edition, pages
Luleå: Luleå tekniska universitet, 2004. , 64 p.
Series
Licentiate thesis / Luleå University of Technology, ISSN 1402-1757 ; 2004:58
National Category
Other Materials Engineering
Research subject
Engineering Materials
Identifiers
URN: urn:nbn:se:ltu:diva-26702Local ID: f9eb8360-b16b-11db-bf9d-000ea68e967bOAI: oai:DiVA.org:ltu-26702DiVA: diva2:999872
Note
Godkänd; 2004; 20060917 (cira)Available from: 2016-09-30 Created: 2016-09-30 Last updated: 2017-11-24Bibliographically approved

Open Access in DiVA

fulltext(2938 kB)8 downloads
File information
File name FULLTEXT01.pdfFile size 2938 kBChecksum SHA-512
6c8ee3897bb1072a569ed8ee8583d12412e39e49846dc0d760a9e538dc3925b4c3a5967b98106bdaf52d4cd1f9c7cf0a79d3d9bdda5baea6f34b66b2f48ded29
Type fulltextMimetype application/pdf

Authority records BETA

Söderberg, Hans

Search in DiVA

By author/editor
Söderberg, Hans
Other Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 8 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 23 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf