Change search
ReferencesLink to record
Permanent link

Direct link
Kinetics of collector in-situ adsorption on metal sulphide surfaces studied by ATR-FTIR spectroscopy
Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Sustainable Process Engineering.
2006 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In sulphide mineral flotation, a sufficient hydrophobicity of the mineral surfaces is obtained by the adsorption of collector chemicals at the metal sulphide/aqueous interface. This surface alteration is of fundamental and applied interest. In this thesis, attenuated total reflection infrared spectroscopy has been used to monitor the adsorption kinetics and the orientation of heptyl xanthate when adsorbed onto three solid surfaces - germanium, zinc sulphide and lead sulphide in-situ. The Chemical Bath Deposition method has been used to deposit metal sulphides onto germanium internal reflection elements, and verified as capable in synthesizing metal sulphide surfaces for adsorption studies recovering information about surface reactions at metal sulphide/solution interfaces. In the study of surface reactions the substrate is of great importance, implying that the chemistry of the surface has to be well characterised. This work has utilized X-ray photoelectron spectroscopy in the characterisation of the different surfaces. The adsorption kinetics has been followed to monitor the adsorption equilibria at different concentrations. In the case of heptyl xanthate adsorbed at the zinc sulphide/aqueous interface, an adsorption isotherm has been calculated from the equilibrium data. On the assumption that the adsorption step was rate controlling a pseudo-first order equation was derived and adsorption rate data, in all the three studied systems, tested according to this equation. In addition, an orientation study of the heptyl xanthate molecule at the different interfaces was performed, which requires polarised infrared light. Density Functional calculations of a free heptyl xanthate molecule, and a heptyl xanthate molecule adsorbed on a pure Ge(111) were utilized to get more information about the in-situ adsorption of heptyl xanthate on a germanium surface. The important vibration bands were assigned to different vibrations, and the theoretical infrared spectra were compared with the experimentally analyzed spectra. This study shows the strengths of using advanced first-principle Density Functional Theory in the interpretation of real surface adsorption systems.

Place, publisher, year, edition, pages
Luleå tekniska universitet, 2006. , 104 p.
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544 ; 2006:52
Research subject
Chemistry of Interfaces
URN: urn:nbn:se:ltu:diva-26680Local ID: f7f628e0-d221-11db-b6e3-000ea68e967bOAI: diva2:999850
Godkänd; 2006; 20070314 (evan)Available from: 2016-09-30 Created: 2016-09-30Bibliographically approved

Open Access in DiVA

fulltext(3141 kB)0 downloads
File information
File name FULLTEXT01.pdfFile size 3141 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Fredriksson, Andreas
By organisation
Sustainable Process Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

ReferencesLink to record
Permanent link

Direct link