Change search
ReferencesLink to record
Permanent link

Direct link
Adsorption behavior of heavy metal ions from aqueous medium on nanocellulose
Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science.
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The aim of this work was to explore the potential of nanocellulose, nanocellulose derivatives and nanochitin to remove metal ions from contaminated water. The above nano-polysaccharides were of interest in water purification technologies due to their high surface area and versatile surface chemistry. Silver, copper and iron are the primary metal ions targeted in the study, due to their abundance in industrial effluents. The first part of the study explored the potential of native nanocellulose and nanochitin isolated from bioresidues in removing silver ions from contaminated water. The highest Ag(I) removal for cellulose nanocrystals (CNC) was 34.4 mg/g, corresponding to 64 % removal ratio (CNC > ChNC > CNF). Wavelength dispersive X-ray analysis (WDX) and X-ray photoelectron spectroscopy (XPS) analysis confirmed the presence of silver ions on the surface of the nanocellulose and nanochitin after sorption. This study showed that the sorption performance is pH dependent and adsorption by cellulose nanocrystals was superior to cellulose nanofibers. The second part of the work focused on evaluating the surface adsorption enhancements after nanocellulose surface modifications viz. enzymatically phosphorylation and TEMPO-mediated oxidation. Both surface modifications dramatically improved the functionality and sorption capacity; a ten fold increase in Cu(II) adsorption was observed for TEMPO-mediated oxidized CNF compared to native CNF. Generally, when the mixture of metal ions were present in water the metal ion selectivity was in the order Ag(I) > Fe(III) > Cu(II), irrespective of the surface functionality of nanocellulose. Phosphorylated nanocelluloses demonstrated the capacity to reduce Cu(II) and Fe(III) concentrations in the effluent from mirror making industry to the level that meets WHO drinking water requirements. The increase in Cu(II) adsorption on TEMPO-mediated oxidized cellulose nanofibers (TOCNF) correlated both with the pH and carboxylate content and reached maximum values of 135 mg/g for highly oxidized cellulose. Furthermore, the Cu(II) could be easily recovered from the contaminated nanofibers through a washing procedure with acidic water. The adsorption capacity of TOCNF for other metal ions, such as Ni (II), Cr (III) and Zn (II), was also demonstrated. The third part of the work aimed at gaining deeper understanding of the Cu(II) sorption behavior onto TOCNF. The carboxylate groups introduced by TEMPO- oxidation on nanocellulose surface provided negatively charged sorption sites for Cu(II) ions. The metal sorption had fast kinetics (te < 20s) and increase in temperature lead to a mild decrease in Cu(II) sorption capacity. The equilibrium sorption data fitted well with Langmuir isotherms. Furthermore SEM analysis showed copper element-containing nanoparticles with a rather narrow size distribution on TOCNF, which opens up a new and a promising possibility of converting the TOCNF after Cu (II) adsorption into a variety of value-added products. TOCNF coupled with the adsorbed copper exhibited superhydrophilicity and decreased the filtration time for the TOCNF suspension after copper sorption. A linear correlation between Δ [H+] and the corresponding Δ [Cu(II)] in the solution during Cu(II) sorption was found and discussed. This work has demonstrated that nano-polysaccharides, particularly nanocellulose are highly promising biosorbents for scavenging metal ions from water and of great industrial relevance and may enable next-generation of water purification technologies.

Place, publisher, year, edition, pages
Luleå tekniska universitet, 2015.
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
Research subject
Wood and Bionanocomposites
URN: urn:nbn:se:ltu:diva-26361Local ID: de630589-73fd-4f4e-8712-d1cf25eb33d6ISBN: 978-91-7583-503-7ISBN: 978-91-7583-504-4 (PDF)OAI: diva2:999523
Godkänd; 2015; 20151204 (pengliu); Nedanstående person kommer att disputera för avläggande av teknologie doktorsexamen. Namn: Peng Liu Ämne: Trä- och bionanokompositer/Wood and Bionanocomposites Avhandling: Adsorption Behavior of heavy metal ions from aqueous medium on nanocellulose Opponent: Professor Lars Wågberg, Institutionen för fiber och polymerteknologi, Skolan för kemivetenskap, KTH, Stockholm Ordförande: Bitr professor Aji Mathew, Avd för materialvetenskap, Institutionen för teknikvetenskap och matematik, Luleå tekniska universitet, Luleå Tid: Torsdag 21 januari 2016, kl 10.00 Plats: Luleå tekniska universitet, sal E632Available from: 2016-09-30 Created: 2016-09-30Bibliographically approved

Open Access in DiVA

fulltext(24181 kB)3 downloads
File information
File name FULLTEXT01.pdfFile size 24181 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Liu, Peng
By organisation
Material Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 3 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

ReferencesLink to record
Permanent link

Direct link