Change search
ReferencesLink to record
Permanent link

Direct link
Advanced measurement and modelling methods for noise source analysis
Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Operation, Maintenance and Acoustics.
2010 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In daily life sound is a vital dimension for the perception of the world around us but can in some cases be considered as annoying, irritating, or even harmful. In these cases the sound is labelled as noise and can be addressed in two ways, either by insulating the noise problem from the receiver (person) or by altering the source. The work performed in this thesis has been focusing on the latter approach. To be able to alter the source, knowledge about the physical properties governing the sound generation process is essential. Advanced measurement and modelling methods have been applied in the study of two different cases of noise generation.Milling machine noise: The first study addressed sound generating vibrations in milling machine operations which are a common operation in e.g. the automotive and aerospace industry. Large metal work pieces are reduced to a fraction of their original weight when creating complex thin structures. During these operations it is important that unwanted behaviours such as excessive tool vibrations (chatter) can be avoided. Chatter causes poor surface finish and/or material damage and can expose machine operators to annoying and/or harmful noise levels. In order to predict process parameters for a chatter-free milling operation, knowledge of the properties of the dynamic system are essential. To improve the possibility of measuring milling machine tool vibrations or any other rotor vibration with a high accuracy a method for single beam Laser Doppler Vibrometry (LDV) measurements on rotating spindles was developed. The method solved two major problems using LDV on rotating targets, speckle noise and cross talk. To analyse the dynamic response of a rotor and its speed dependency, a method based on inductive displacement measurement, electromagnetic excitation, and FEM was developed. The measured dynamic response and the simulations of the studied milling machine, revealed the ball bearings as the weakest link capable of causing chatter vibrations and noise at high rotational speeds.Friction induced noise: The second study addressed problems regarding annoying sound generating vibrations in car door sealing systems and how these could be predicted and simulated for future car models. In the design process of a car door weather strip seals different conditions and demands must be considered. The primary goal of the seal is to act like a flexible barrier and protect the door/frame joint. The seal should prevent e.g. water and dust from entering the compartment and insulate the compartment from temperature and sound pressure differences between the two sides. Different types of seal geometries and rubber material can be used to achieve this. The seal stiffness affects the dynamic behaviour of the door and could result in squeak and rattle problems if not designed correctly. Relative displacement between the door and the seals can also be a source to squeaking noise. A common problem in winter conditions at sub-zero temperatures is when humidity on the seal surface freezes and cause the seal to stick to the door, with the risk of ripping the seal when the door is opened. In order to avoid this, different kinds of consumer lubrication products can be applied to the seal surface. By doing this the contact conditions between the door and the seal will change. To analyse the affect of different contact conditions and relative displacement, measurements and simulations of a seal segment compressed by a metal plate have been performed. The study showed that different contact conditions can affect the desired seal function by altering the resulting seal shape during compression, and that the energy relaxation is an important aspect when establishing the long term stiffness. A stick-slip phenomenon generating audible sound was generated by translating a metal plate along a car door seal. A difference, governed by the surface properties of the rough metal plate, between the static and the kinetic friction allowed the seal to stick to the translating surface and release its charged elastic energy in a sliding repelling motion creating an audible sound pulse. The frequency of this stick-slip oscillation was found to be linearly dependent on the plate speed and the static friction was found to be dependent on the plate speed. FEM simulations confirmed that a difference between the static and the kinetic friction could result in a stick-slip vibration.

Place, publisher, year, edition, pages
Luleå: Luleå tekniska universitet, 2010. , 42 p.
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
Research subject
Engineering Acoustics
URN: urn:nbn:se:ltu:diva-26276Local ID: d79063d0-ba6d-11df-a707-000ea68e967bISBN: 978-91-7439-134-3OAI: diva2:999438
Godkänd; 2010; 20100907 (matran); DISPUTATION Ämnesområde: Teknisk akustik/Engineering Acoustics Opponent: Professor Mats Åbom, Kungliga Tekniska högskolan Ordförande: Professor Anders Ågren, Luleå tekniska universitet Tid: Tisdag den 12 oktober 2010, kl 10.00 Plats: F531, Luleå tekniska universitetAvailable from: 2016-09-30 Created: 2016-09-30Bibliographically approved

Open Access in DiVA

fulltext(5422 kB)1 downloads
File information
File name FULLTEXT01.pdfFile size 5422 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Rantatalo, Matti
By organisation
Operation, Maintenance and Acoustics

Search outside of DiVA

GoogleGoogle Scholar
Total: 1 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

ReferencesLink to record
Permanent link

Direct link