Change search
ReferencesLink to record
Permanent link

Direct link
Estimates for Hardy-type integral operators in weighted Lebesgue spaces
Luleå University of Technology, Department of Engineering Sciences and Mathematics.
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This PhD thesis deals with the theory of Hardy-type inequalities in a new situation, namely when the classical Hardy operator is replaced by a more general operator with a kernel. The kernels we consider belong to the new classes $\mathcal{O}^+_n$ and $\mathcal{O}^-_n$, $n=0,1,...$, which are wider than co-called Oinarov class of kernels. This PhD thesis consists of four papers (papers A, B, C and D), two complementary appendixes (A$_1$, C$_1$) and an introduction, which put these publications into a more general frame. This introduction also serves as a basic overview of the field. In paper A some boundedness criteria for the Hardy-Volterra integral operators are proved and discussed. The case $1

Place, publisher, year, edition, pages
Luleå: Luleå tekniska universitet, 2013. , 138 p.
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
Research subject
URN: urn:nbn:se:ltu:diva-25949Local ID: bd49fa45-29fb-40bc-b910-dc8b1f3bbcb3ISBN: 978-91-7439-614-0ISBN: 978-91-7439-615-7 (PDF)OAI: diva2:999107
Godkänd; 2013; 20130426 (larare); Tillkännagivande disputation 2013-05-08 Nedanstående person kommer att disputera för avläggande av teknologie doktorsexamen. Namn: Larissa Arendarenko Ämne: Matematik/Mathematics Avhandling: Estimates for Hardy-type Integral Operators in Weighted Lebesgue Spaces Opponent: Professor Massimo Lanza de Cristoforis, Dipartamento di Matematica Universita degli Studi di Padova, Padova, Italy, Ordförande: Professor Peter Wall, Institutionen för teknikvetenskap och matematik, Luleå tekniska universitet Tid: Måndag den 3 juni 2013, kl 10.00 Plats: E246, Luleå tekniska universitetAvailable from: 2016-09-30 Created: 2016-09-30Bibliographically approved

Open Access in DiVA

fulltext(1046 kB)0 downloads
File information
File name FULLTEXT01.pdfFile size 1046 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Arendarenko, Larissa
By organisation
Department of Engineering Sciences and Mathematics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

ReferencesLink to record
Permanent link

Direct link