Change search
ReferencesLink to record
Permanent link

Direct link
Development of a process model for a Peirce-Smith converter
Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Sustainable Process Engineering.
2013 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Copper was one of the first metals ever extracted and used by mankind. It is used for its unique properties, like corrosion resistance, good workability, high thermal conductivity and attractive appearance. New mines are opened to maintain a supply of primary feedstock to copper smelters. These new deposits are in many instances found to have a more complex mineralogy with several minor elements. Besides treating primary material, copper smelters also show an increasing interest in treating secondary material, such as copper containing scrap from waste electric and electronic equipment, which also have a complex composition.Waste electric and electronic equipment are first disassembled and upgraded by mechanical processing, generating a product stream called e-scrap, that can be added directly to the smelting processes as cold material or melted in a separate furnace producing a metallic alloy (referred to as black copper) and a slag phase. The black copper can be refined in different ways, whereof one is by using it as a secondary feed material for input to Peirce-Smith converters. Consequently the load of minor elements to the converter can be expected to increase with an increased treatment of e-scrap.This increased complexity of the raw material can potentially lead to smelter plants having to deal with a feedstock containing several minor elements such as; antimony, bismuth, arsenic, gold, silver, etc. in levels that can influence the ability to, in a cost effective way, maintain the final grade of the copper cathode. Process simulations can be an important tool for understanding the impact of process parameters on the product quality and for the purpose of process optimisation. In the present work a dynamic, non-equilibrium model based on thermodynamics over the Peirce-Smith converter has been developed. The non-equilibrium conditions have been simulated by introducing individual but linked segments. The purpose of using segments was to consider different reaction zones which yield different conditions within the converter. The model was validated using plant data and showed good agreement for the major elements. The agreement between plant and calculated data for Pb, and Zn was not as good and more work is required regarding this aspect. The model was used to investigate the influence on the distribution of Bi and Sb during addition of black copper with or without slag. When black copper is added to a blow, the removal of Bi and Sb becomes lower compared to a blow without addition of black copper. Similar result is obtained during addition of black copper with slag. To maintain a total removal of Bi and Sb in similar levels as a blow without black copper, the black copper should be added as early as possible during the converting operation.

Place, publisher, year, edition, pages
Luleå: Luleå tekniska universitet, 2013.
Licentiate thesis / Luleå University of Technology, ISSN 1402-1757
Research subject
Process Metallurgy
URN: urn:nbn:se:ltu:diva-25755Local ID: af80b12f-edfb-4295-bdad-a1fb04c4af31ISBN: 978-91-7439-764-2ISBN: 978-91-7439-765-9 (PDF)OAI: diva2:998911

Godkänd; 2013; 20131008 (lenann); Tillkännagivande licentiatseminarium 2013-11-06 Nedanstående person kommer att hålla licentiatseminarium för avläggande av teknologie licentiatexamen. Namn: Andreas Lennartsson Ämne: Processmetallurgi/Process Metallurgy Uppsats: Development of a Process Model for a Peirce-Smith Converter Examinator: Bitr professor Caisa Samuelsson, Institutionen för samhällsbyggnad och naturresurser, Luleå tekniska universitet Diskutant: Dr Universitetslärare Eetu-Pekka Heikkinen, Department of Process and Environmental Engineering, University of Oulu, Finland Tid: Måndag den 9 december 2013 kl 13.00 Plats: F341, Luleå tekniska universitet

Available from: 2016-09-30 Created: 2016-09-30 Last updated: 2016-10-20Bibliographically approved

Open Access in DiVA

fulltext(1327 kB)3 downloads
File information
File name FULLTEXT01.pdfFile size 1327 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Lennartsson, Andreas
By organisation
Sustainable Process Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 4 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

ReferencesLink to record
Permanent link

Direct link