CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt166",{id:"formSmash:upper:j_idt166",widgetVar:"widget_formSmash_upper_j_idt166",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt167_j_idt169",{id:"formSmash:upper:j_idt167:j_idt169",widgetVar:"widget_formSmash_upper_j_idt167_j_idt169",target:"formSmash:upper:j_idt167:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Some new Lizorkin multiplier theorems for Fourier series and transformsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2009 (English)Licentiate thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Luleå: Luleå tekniska universitet, 2009. , 7 p.
##### Series

Licentiate thesis / Luleå University of Technology, ISSN 1402-1757
##### National Category

Mathematical Analysis
##### Research subject

Mathematics
##### Identifiers

URN: urn:nbn:se:ltu:diva-25710Local ID: ab9bd170-300c-11de-bd0f-000ea68e967bISBN: 978-91-86233-40-2 (print)OAI: oai:DiVA.org:ltu-25710DiVA: diva2:998865
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt470",{id:"formSmash:j_idt470",widgetVar:"widget_formSmash_j_idt470",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt476",{id:"formSmash:j_idt476",widgetVar:"widget_formSmash_j_idt476",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt483",{id:"formSmash:j_idt483",widgetVar:"widget_formSmash_j_idt483",multiple:true});
##### Note

Godkänd; 2009; 20090423 (lyazzat); LICENTIATSEMINARIUM Ämnesområde: Matematik/Mathematics Examinator: Professor Lars-Erik Persson, Luleå tekniska universitet Tid: Torsdag den 4 juni 2009 kl 10.00 Plats: D 2214, Luleå tekniska universitetAvailable from: 2016-09-30 Created: 2016-09-30 Last updated: 2017-11-24Bibliographically approved

This Licentiate Thesis is devoted to the study of Fourier series and Fourier transform multipliers and contains three papers (papers A - C) together with an introduction, which put these papers into a general frame. In paper A a generalization of the Lizorkin theorem on Fourier multipliers is proved. The proof is based on using the so-called net spaces and interpolation theorems. An example is given of a Fourier multiplier which satisfies the assumptions of the generalized theorem but does not satisfy the assumptions of the Lizorkin theorem.In paper B we prove and discuss a generalization and sharpening of the Lizorkin theorem concerning Fourier multipliers between $L_p$ and $L_q$. Some multidimensional Lorentz spaces and an interpolation technique (of Sparr type) are used as crucial tools in the proofs. The obtained results are discussed in the light of other generalizations of the Lizorkin theorem and some open questions are raised.Paper C deals with the Fourier series multipliers in the case with a regular system. This system is rather general. For example, trigonometrical systems, the Walsh system and all multiplicative system with bounded elements are regular. A generalization and sharpening of the Lizorkin type theorem concerning Fourier series multipliers between $L_p$ and $L_q$ in this general case is proved and discussed.

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1207",{id:"formSmash:j_idt1207",widgetVar:"widget_formSmash_j_idt1207",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1260",{id:"formSmash:lower:j_idt1260",widgetVar:"widget_formSmash_lower_j_idt1260",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1261_j_idt1263",{id:"formSmash:lower:j_idt1261:j_idt1263",widgetVar:"widget_formSmash_lower_j_idt1261_j_idt1263",target:"formSmash:lower:j_idt1261:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});