Change search
ReferencesLink to record
Permanent link

Direct link
Towards autonomous condition monitoring sensor systems
Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Embedded Internet Systems Lab.
2015 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Rolling element bearings are used to carry load and reduce friction between moving parts in rotating machines, which play a central role in society and industry, for example in the transportation and energy sectors. It is essential to monitor and maintain the condition of bearings such that machines can operate efficiently and any failures resulting in unplanned stoppages are avoided. Therefore, bearings with embedded sensing capabilities are becoming increasingly common, which makes it possible to consider bearings to be sensor systems that can monitor the condition of rotating machines. However, the task of automatically analyzing the signals is challenging because machines are different and evolve over time; moreover, the complexity of the signals, machines and possible failure modes is high and costly to accurately predict and model. Therefore, the use of unsupervised machine learning methods for the automated analysis of such signals and the detection of abnormal operational conditions is an interesting subject worth further exploration.Previous work has strongly depended on static features defined by human experts and thresholds that characterize abnormal operational conditions. Furthermore, machine learning methods typically depend on such static features to classify the faults and various operational conditions of the machine. This approach is challenging when reusing a method for different applications and environments, wherein similar features and thresholds can have different meanings. This problem is typically solved by reconfiguring or redesigning the condition monitoring system, thereby constraining the applicability and efficiency of the method.In this licentiate thesis, I investigate unsupervised methods for feature learning and anomaly detection. In particular, I focus on vibration signals, which contain information about both the bearing condition and the condition of the machine.The considered model represents the signal as a linear superposition of noise and atomic waveforms of arbitrary shape, amplitude and position. The atomic waveforms are adapted to each signal and machine using an unsupervised probabilistic optimization method and are considered features of the machine and physical processes exciting the signal. This model can automatically adapt the features to different environmental and operational conditions, thereby forming the basis for the development of a condition monitoring system that requires a minimum of manual configuration. Additionally, the model produces sparse codes that decrease the sensor data rate and, in principle, simplify the task of analyzing and communicating complex sensor information in resource-constrained embedded sensor systems.The thesis outlines an implementation of a sparse representation and dictionary learning method that is applied to vibration signals. I describe how signal analysis is performed using typical static pre-defined features and contrast this analysis with an analysis based on features that are automatically derived from the signal. In particular, the analysis focuses on the evolution of the vibration signal and the features when a fault develops within the ball bearing of a rotating machine. The evolution rate of learned features is defined and proposed as an interesting quantity for an autonomous condition monitoring process, and a first step towards an FPGA implementation of the method is presented.

Place, publisher, year, edition, pages
Luleå tekniska universitet, 2015.
Licentiate thesis / Luleå University of Technology, ISSN 1402-1757
Research subject
Industrial Electronics
URN: urn:nbn:se:ltu:diva-25706Local ID: ab53214d-bebc-4391-8263-2f8c6849e8a9ISBN: 978-91-7583-313-2ISBN: 978-91-7583-314-9 (PDF)OAI: diva2:998861
Godkänd; 2015; 20150413 (sermar)Available from: 2016-09-30 Created: 2016-09-30Bibliographically approved

Open Access in DiVA

fulltext(3587 kB)0 downloads
File information
File name FULLTEXT01.pdfFile size 3587 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Barraza, Sergio Martin Del Campo
By organisation
Embedded Internet Systems Lab

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

ReferencesLink to record
Permanent link

Direct link