Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Solving Boltzmann Equations by Bateman and Riccati Equations
Luleå tekniska universitet.
2001 (English)Report (Other academic)
Abstract [en]

Propositions for solutions of two discrete-velocity Boltzmann equations are given by rescaling Ans¨atze using truncated Painleve expansions. Solutions of the two- and three-dimensional Bateman equations for the singularity manifold conditions are used to reduce the problem to Riccati equations. This enables us to extend, essentially, the solutions obtainable by truncated Painlevé expansions for a two-dimensional and a three- dimensional Boltzmann equation. Both equations do not pass the Painlevé test.

Place, publisher, year, edition, pages
Luleå: Luleå tekniska universitet, 2001. , 20 p.
Series
Gula serien, ISSN 1400-4003 ; 2001:01
National Category
Mathematical Analysis
Research subject
Mathematics
Identifiers
URN: urn:nbn:se:ltu:diva-25235Local ID: e4c1634a-819a-4d31-bb63-15b585d2dedcOAI: oai:DiVA.org:ltu-25235DiVA: diva2:998287
Note
Godkänd; 2001; 20120118 (ysko)Available from: 2016-09-29 Created: 2016-09-29Bibliographically approved

Open Access in DiVA

fulltext(131 kB)5 downloads
File information
File name FULLTEXT01.pdfFile size 131 kBChecksum SHA-512
7311caa681e4e7ec84e7e1746ca24734a7bcd0fd74c6d55eee6552bde4e34c9531c0beaf163a6e6539c7992607c24b24756ab4d316661d087139365bf5ec55c9
Type fulltextMimetype application/pdf

Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar
Total: 5 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 7 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf