Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A note on ranking k maximum sums
Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Computer Science.
2005 (English)Report (Other academic)
Abstract [en]

In this paper, we design a fast algorithm for ranking the k maximum sum subsequences. Given a sequence of real numbers and an integer parameter k, the problem is to compute k subsequences of consecutive elements with the sums of their elements being the largest, second largest, ..., and the k:th largest among all possible range sums. For any value of k, 1 <= k <= n(n+1)/2, our algorithm takes O(n + k log n) time in the worst case to rank all such subsequences. Our algorithm is optimal for k <= n.

Place, publisher, year, edition, pages
Luleå: Luleå tekniska universitet, 2005. , p. 9
Series
Research report / Luleå University of Technology, ISSN 1402-1528 ; 2005:08
National Category
Computer Sciences
Research subject
Dependable Communication and Computation Systems
Identifiers
URN: urn:nbn:se:ltu:diva-23826Local ID: 894036c0-b2a0-11db-bf9d-000ea68e967bOAI: oai:DiVA.org:ltu-23826DiVA: diva2:996876
Note
Godkänd; 2005; 20070202 (ysko)Available from: 2016-09-29 Created: 2016-09-29 Last updated: 2018-01-10Bibliographically approved

Open Access in DiVA

fulltext(176 kB)5 downloads
File information
File name FULLTEXT01.pdfFile size 176 kBChecksum SHA-512
7d40f28cef97ad107668817322dbbd871df3fd61c88d1ce64b68d54bdae6f6482c430c41011b76593f77315c6960bc65e4f6ba0badc20a48d8d1fa5ece12895a
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Bengtsson, FredrikChen, Jingsen
By organisation
Computer Science
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 5 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 4 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf