Change search
ReferencesLink to record
Permanent link

Direct link
Chalcopyrite (Bio)leaching in Sulphate Solutions: An Investigation into Hindered Dissolution with a Focus on Solution Redox Potential
Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Minerals and Metallurgical Engineering.
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Chalcopyrite (CuFeS2) is the most abundant and the most economically important copper mineral. Increasing worldwide demand for copper accompanied by exhaustion of copper resources necessitate the development of new processes for treating lower-grade copper ores. Heap (bio)leaching of copper oxides and secondary sulphides (covellite (CuS) and chalcocite (Cu2S)) is a proven technology and a convenient process nowadays. However, chalcopyrite is recalcitrant to leaching and bioleaching in conventional leaching systems in sulphate media. Slow dissolution of chalcopyrite is attributed to the formation of compounds on the surface of the mineral during its dissolution and is often termed “passivation” or “hindered dissolution”. There is still no consensus about the nature of the passivation layer. There are, however, four proposed candidates suggested in the literature: metal deficient sulphides, polysulphides, jarosite and elemental sulphur. This project was aimed to further investigate the chalcopyrite dissolution and its passivation under strictly controlled redox potential conditions. The leaching experiments of the aged and fresh chalcopyrite concentrate under identical conditions showed that copper dissolution was significantly lower from the aged concentrate. The common understanding of reductive leaching mechanism (i.e. higher recoveries at lower redox potentials) was not valid for aged concentrates. Aged concentrates gave steadily increasing recoveries with increased redox potential. The hindering effect exerted from the atmospheric oxidation products on the surface of the aged concentrates was found to be responsible for this behaviour. It was also shown that the reductive leaching mechanism would be beneficial in the presence of an active galvanic interaction. Experiments using a pyritic concentrate resulted in higher recoveries at low redox potential while the dissolution rates were similar at low and high redox potentials using a relatively pure concentrate. In addition, the effect of initial copper concentration had no influential effect on the leaching rates for possible industrial processes. Redox potential development during moderately thermophilic bioleaching experiments of a pyritic chalcopyrite concentrate and a relatively pure chalcopyrite concentrate were chemically/electrochemically mimicked in the absence of microorganisms. The copper recoveries in absence and presence of microorganisms were similar. In some of the abiotic experiments, jarosite precipitated due to a loss of control of the redox potential. However, presence of bulk jarosite did not hamper the copper recovery compared to the bioleaching experiments where there was no bulk jarosite formation. Bio-oxidation of elemental sulphur did not have a positive effect on the leaching behaviour compared to the abiotic experiments where bulk elemental sulphur accumulated. Isotopic fractionations of copper and iron during the bioleaching and abiotic experiments showed that regardless of presence or absence of microorganisms the copper and iron isotopes fractionation followed a similar trend and that such analyses could be used in natural systems as an indicator of the oxidation extent. Surface analyses using X-ray photoelectron spectroscopy (XPS) measurements revealed that common phases on the surface of the samples leached for different durations were iron-oxyhydroxides and elemental sulphur. The elemental sulphur on the surface of the samples was bound to the surface rigidly in a way that it did not sublimate in the ultra-high vacuum environment of the XPS spectrometer at room temperature measurements. Surface jarosite was observed in only one sample but no correlation between its presence and the hindered leaching could be made. It is proposed that iron-oxyhydroxides are the main precursor of chalcopyrite hindered dissolution in sulphate media where their inevitable formation entraps surface elemental sulphur resulting in a consolidated phase on the surface. It was shown that when suitable conditions are met, high copper recoveries can be obtained before the surface is finally hindered.

Place, publisher, year, edition, pages
Luleå tekniska universitet, 2016.
Series
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
Research subject
Process Metallurgy
Identifiers
URN: urn:nbn:se:ltu:diva-18750Local ID: a25ec64d-437c-45ed-ab50-8de2df31cc5bISBN: 978-91-7583-507-5ISBN: 978-91-7583-508-2 (PDF)OAI: oai:DiVA.org:ltu-18750DiVA: diva2:991761
Note
Godkänd; 2016; 20151215 (seykos); Nedanstående person kommer att disputera för avläggande av teknologie doktorsexamen. Namn: Mohammad Khoshkhoo Ämne: Processmetallurgi /Process Metallurgy Avhandling: Chalcopyrite (Bio)leachning in Sulphate Solutions An Investigation into Hindered Dissolution with a Focus on Solution Redox Potential Opponent: Professor Joachim Petersen, Department of Chemical Engineering, University of Cape Town, Rondebosch, Sydafrika. Ordförande: Professor Åke Sandström, Avd för mineralteknik och metallurgi, Institutionen för samhällsbyggnad och naturresurser, Luleå tekniska universitet, Luleå. Tid: Fredag 26 februari, 2016 kl 09.30 Plats: E632, Luleå tekniska universitetAvailable from: 2016-09-29 Created: 2016-09-29Bibliographically approved

Open Access in DiVA

fulltext(7231 kB)26 downloads
File information
File name FULLTEXT01.pdfFile size 7231 kBChecksum SHA-512
8b741a3e78f6a9e128f204239975140ad58a4f236f9a0a68cf83e5c1ddedbda61b4740fcadfdaa6338350e94e52b5e0947e13d072d833f981d48168684692f21
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Sany, Seyed Mohammad Khoshkhoo
By organisation
Minerals and Metallurgical Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 26 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 48 hits
ReferencesLink to record
Permanent link

Direct link