Change search
ReferencesLink to record
Permanent link

Direct link
Rotordynamic optimization of large turbo systems using genetic algorithms
2006 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In engineering design, nature has often been the source of inspiration. It is easy to point out solutions in nature that are optimal in some sense. One example is the roughness of the surface of a shark's skin. This is designed by nature to minimize the resistance when the shark swims in the water. Another example is the shape of an egg shell. This is an optimal load carrying structure which often is found in engineering design applications. An even more fascinating question is how nature has found these optimal solutions? The answer to this question is evolution. Instead of just analyzing and copying optimal structures invented by nature it seems reasonable to mimic the process how nature has came up with these solutions. Research on how these ideas can be interpreted and used in engineering design started in the early seventies and has now become a large field known as Evolutionary Algorithms (EAs). During the past decade these methods have emerged as potent tools for engineering design optimization. Some of these methods are especially suited for problems which involve multiple objectives such as almost all real engineering design problems. Just until recently, these methods have seldom been used in the area of rotordynamical design. This thesis deals with the question how these methods can be adapted and applied in order to improve the design and design process of large rotor-bearing system. A hypothesis for this work is that EAs are suitable to use in the late design process of these systems. The aim of this work is to evaluate this hypothesis by studying real applications found in industry. This thesis comprises an introductory part and five appended papers. The introductory part is divided into four different chapters. In the second chapter the concept of engineering design optimization is introduced. In the third chapter Genetic Algorithms (GAs) is presented. Finally, the analysis and design of rotor-bearing systems are introduced and discussed. The purpose with the introductory part is to introduce and prepare the reader to the concepts presented in the papers. The introductory part may serve as a start point for newcomers interested in these areas. The appended papers deal with different rotor-bearing system optimization problems and how these can be formulated and solved with GAs. Paper A introduces a constraint handling technique based on concepts found in multiobjective GAs. In Paper B the multiobjective optimization of a generator is presented and discussed. In Paper C and Paper D the constraint handling technique introduced in Paper A is used for two different rotor- bearing system where the actual bearing geometry parameters are used as design variables in the optimizations. In Paper E the feasibility of site balancing rewinded turbo generators is investigated by the use of a multiobjective GA.

Place, publisher, year, edition, pages
Luleå: Luleå tekniska universitet, 2006. , 45 p.
Series
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544 ; 2006:12
Research subject
Computer Aided Design
Identifiers
URN: urn:nbn:se:ltu:diva-18728Local ID: a0921660-8445-11db-aabe-000ea68e967bOAI: oai:DiVA.org:ltu-18728DiVA: diva2:991739
Note
Godkänd; 2006; 20061205 (haneit)Available from: 2016-09-29 Created: 2016-09-29Bibliographically approved

Open Access in DiVA

fulltext(2072 kB)1 downloads
File information
File name FULLTEXT01.pdfFile size 2072 kBChecksum SHA-512
f16e56b7fdbf318ad501219b0f88ca389a3955390ecfc3c3cee1498b83b4db0ddd271b90c1175268ee9d9a28f6d81503159e0634e734a8f43471b3892418aee7
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Angantyr, Anders

Search outside of DiVA

GoogleGoogle Scholar
Total: 1 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 26 hits
ReferencesLink to record
Permanent link

Direct link