Change search
ReferencesLink to record
Permanent link

Direct link
Homogenization with applications in lubrication theory
Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
2014 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

In this licentiate thesis we study some mathematical problems in hydrodynamic lubrication theory. It is composed of two papers (A and B) and a complementary appendix. Lubrication theory is devoted to fluid flow in thin domains. The main purpose of lubrication is to reduce friction and wear between two solid surfaces in relative motion. The mathematical foundations of lubrication theory is given by the Navier--Stokes equation which describes the motion of viscous fluids. In thin domains several approximations are possible which leads to the so called Reynolds equation. This equation is crucial to describe the pressure in the lubricant film. When the pressure is found it is possible to predict different important physical quantities such as friction (stresses on the bounding surfaces), load carrying capacity and velocity field.In many practical situations the surface roughness amplitude and the film thickness are of the same order. Therefore, any realistic model should account for the effect of surface roughness. This implies that the mathematical modelling leads to partial differential equations with coefficients that will oscillate rapidly in space and time due to the relative motion of the surfaces. A direct numerical analysis is very difficult since an extremely fine mesh is required to describe the different scales. One method which has proved successful to handle such problems is to do some averaging (asymptotic analysis). The branch in mathematics which has been developed for this purpose is called homogenization.In Paper A the connection between the Stokes equation and the Reynolds equation is investigated. More precisely, the asymptotic behavior as both the film thickness ε and wavelength μ of the roughness tend to zero is analyzed and described. The results are obtained using the formal method of multiple scale expansion. The limit equation depends on how fast the two small parameters ε and μ go to zero relative to each other. Three different limit equations are derived. Time-dependent equations of Reynolds type are obtained in all three cases (Stokes roughness, Reynolds roughness and high frequency roughness regime).In paper B we present a mathematical model in hydrodynamic lubrication that takes into account cavitation (formation of air bubbles), surface roughness and compressibility of the fluid. We compute the homogenized coefficients in the case of unidirectional roughness. A one-dimensional problem describing a step bearing is also solved explicitly and by numerical methods.

Place, publisher, year, edition, pages
Luleå tekniska universitet, 2014.
Licentiate thesis / Luleå University of Technology, ISSN 1402-1757
Research subject
URN: urn:nbn:se:ltu:diva-18727Local ID: a08d6dc3-b43b-498a-8c20-9e020551e256ISBN: 978-91-7439-925-7ISBN: 978-91-7439-926-4 (PDF)OAI: diva2:991738
Godkänd; 2014; 20140415 (afotsa); Nedanstående person kommer att hålla licentiatseminarium för avläggande av teknologie licentiatexamen. Namn: Afonso Fernando Tsandzana Ämne: Matematik/Mathematics Uppsats: Homogenization with Applications in Lubrication Theory Examinator: Professor Peter Wall, Institutionen för teknikvetenskap och matematik, Luleå tekniska universitet Diskutant: Professor Anders Holmbom, Mittuniversitetet, Östersund Tid: Onsdag den 11 juni 2014 kl 10.00 Plats: E231, Luleå tekniska universitetAvailable from: 2016-09-29 Created: 2016-09-29Bibliographically approved

Open Access in DiVA

fulltext(635 kB)10 downloads
File information
File name FULLTEXT01.pdfFile size 635 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Tsandzana, Afonso
By organisation
Mathematical Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 10 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 3 hits
ReferencesLink to record
Permanent link

Direct link